Устройство система зажигания
Система зажигания автомобиля: предназначения, устройство, принцип работы
Система зажигания авто предопределена для создания искрового разряда, распределения его по свечам зажигания и все это в подходящий момент работы мотора. В определенных моделях авто импульсы системы поступают на блок управления с помощью погружного топливного насоса. В дизельных моторах зажигание случается во время впрыска топливной смеси при такте сжатия.
Система зажигания бывает трех типов:
- Контактная. Появление импульсов осуществляется в тот миг, когда контакты находятся в стадии разрыва.
- Бесконтактная. Появлению импульсов способствует коммутатор (генератор импульсов).
- Микропроцессорная. Механизм представляет собой электронный прибор, управляющий моментом воспламенения искры, а также и другими системами транспортного средства.
В двухтактных силовых агрегатах, для работы которых не нужен внешний источник питания, устанавливают системы от магнето. Магнето – это самостоятельное устройство, которое объединяет источник тока и катушку зажигания.
Все эти системы используют единый принцип для своей работы, а отличаются лишь методом образования управляющего импульса.
Строение системы зажигания:
- Источник питания. Во время запуска двигателя машины источником питания служит аккумулятор, а во время его эксплуатации – генератор авто.
- Замок зажигания — приспособление, благодаря которому осуществляется передача напряжения. Выключатель (замок зажигания) есть механический либо электрический.
- Накопитель энергии. Это устройство, главная роль которого в накоплении и преобразовании энергии в достаточном количестве для образования разряда меж электродами свечки зажигания. В устройстве современных автомобилей применяются такие накопители: емкостные, индуктивные. Первый вид накопителя представлен в виде емкости, использующей высокое напряжение для накапливания заряда, который в виде энергии поступает в определенное время на свечку. Второй вид накопителя, то есть накопитель индуктивный имеет вид катушки зажигания. Сначала первичная обмотка подсоединяется к плюсовому полюсу, а через прибор разрыва – к минусовому. Работающее устройство разрыва способствует появлению напряжения самоиндукции в обмотке. Относительно вторичной обмотки, то в ней появляется напряжение в количестве достаточном для того чтобы пробить воздушный зазор свечки.
- Свечки зажигания. Каждая свеча – это приспособление в виде изолятора из фарфора, накрученного на металлическую резьбу и имеющего два электрода, расположенные в интервале от 0,15 до 0,25 мм один от другого. Первым электродом является центральный проводник, а вторым – резьба металлическая.
- Система распределения зажигания. Предназначение системы – снабжение в необходимое мгновение энергией свечки зажигания. Она состоит из: распределителя (коммутатора), а также блока управления.
Распределитель зажигания – это приспособление, распределяющее высокое напряжение по электропроводам, подсоединенным к свечкам цилиндра. Этот процесс может иметь статическую или механическую природу. Статический распределитель не имеет в своей конструкции вращающихся деталей. В этом случае катушка зажигания прикрепляется прямо к свечке, а управление процессом осуществляется не чем иным как блоком управления зажиганием. Силовой агрегат, имеющий четыре цилиндра, будет иметь в своей конструкции и 4 катушки. Высоковольтные провода в этой системе не применяются. Что касается механического распределителя зажигания, то это устройство представлено в виде вала, запуск которого осуществляется при запуске двигателя, а распространение напряжения по проводам осуществляется с помощью специального «бегунка».
Коммутатор – это электронное приспособление, которое применяется для создания импульсов, приводящих в действие автотрансформатор (катушку).
Блок управления системой зажигания существует в виде микропроцессорного механизма, который устанавливает тот момент, когда нужно подать импульс в катушку. При этом учитываются показатели лямбда-зондов, коленвала, распредвала, температурные показатели.
Особенность функционирования
Система зажигания классическая функционирует следующим образом. Кулачки, активировавшиеся с помощью обращения вала привода трамблера, создают «разрыв», передаваемый на первичную обмотку авторансформатора заряд в размере 12 вольт. После исчезновения напряжения в обмотке образовывается ЭДС самоиндукции, а в обмотке вторичной зарождается напряжение в размере около 30 тысяч вольт. Далее высокое напряжение появляется в распределителе, а потом расходится на свечки в том количестве, которое требуется во время периода работы силового агрегата. В этом случае такого напряжения вполне достаточно для того чтобы пробить искровым зарядом зазор воздуха между электродами свечек зажигания.
Для полного перегорания топлива необходим процесс опережения зажигания. Учитывая то, что топливная смесь перегорает не сразу, ее нужно зажечь немного заранее. Миг подачи искры должен быть четко отрегулирован, ведь в случае несвоевременного зажигания может иметь место потеря мощности двигателя, повышенная детонация.
qvarto.ru
Система зажигания автомобиля
_____________________________________________________________________________________________________________________ |
Основным назначением системы зажигания автомобиля является подача искрового разряда на свечи зажигания в определённый такт работы бензинового двигателя. Для дизельных двигателей под зажиганием понимают момент впрыска топлива в такт сжатия. В некоторых моделях автомобилей система зажигания, а именно ее импульсы, подаются на блок управления погружным топливным насосом.
Систему зажигания, по мере своего развития, можно разделить на три типа. Контактная система зажигания, импульсы у которой создаются во время работы контактов на разрыв. Бесконтактная система зажигания, управляющие импульсы создаются электронным транзисторным управляющим устройством – коммутатором, (хотя правильно его назвать генератором импульсов). Микропроцессорная система зажигания - это электронное устройство, которое управляет моментом зажигания, а также другими системами автомобиля. Для двухтактных двигателей, без внешнего источника питания используются системы зажигания типа магнето. Основана на принципе создания ЭДС при вращении постоянного магнита в катушке зажигания по заднему фронту импульса.
Устройство системы зажигания
Схема системы зажигания: 1 - замок зажигания; 2 - катушка зажигания; 3 - распределитель, 4 - свечи зажигания; 5 - прерыватель, 6 - масса.
Все вышеперечисленные виды систем зажигания похожи между собой, отличаются только методом создания управляющего импульса. Так в систему зажигания входят:
- Источник питания для системы зажигания, это аккумуляторная батарея (в момент запуска двигателя), и генератор (во время работы двигателя).
- Выключатель зажигания – это механическое или электрическое контактное устройство подачи напряжения на систему зажигания, или по-другому – замок зажигания. Как правило, выполняет две функции: подачи напряжения на бортовую сеть и систему зажигания, подачи напряжения на втягивающее реле стартера автомобиля.
- Накопитель энергии – узел предназначенный для накопления, преобразования энергии достаточной для возникновения электрического разряда между электродами свечи зажигания. Условно накопители энергии можно разделить на индуктивный и емкостный.
- Простейший индуктивный накопитель – это катушка зажигания, которая представляет собой автотрансформатор, первичная обмотка у него подключается к плюсовому полюсу и через устройство разрыва к минусовому. Во время работы устройства разрыва, например кулачков зажигания, в первичной обмотке возникает напряжение самоиндукции. Во вторичной обмотке образуется повышенное напряжение, достаточное для пробоя воздушного зазора свечи.
- Емкостный накопитель представляет собой емкость, которая заряжается повышенным напряжением и в нужный момент отдает свою энергию на свечу зажигания
- Свечи зажигания, представляют собой устройство с двумя электродами находящимися друг от друга на расстоянии 0,15-0,25 мм. Это фарфоровый изолятор, насаженный на металлическую резьбу. В центре находится центральный проводник, который служит электродом, вторым электродом является резьба.
- Система распределения зажигания предназначена для подачи в нужный момент энергии от накопителя к свечам зажигания. В состав системы входят распределитель, и(или) коммутатор, блок управления системой зажигания.
- Распределитель зажигания (трамблёр) – устройство распределения высокого напряжения по проводам, ведущим к свечам цилиндров. Обычно в распределителе собран и кулачковый механизм. Распределение зажигания может быть механическим и статическим. Механический распределитель представляет собой вал, который приводится в действие от двигателя и при помощи «бегунка» распределяет напряжение по высоковольтным проводам. Статическое распределение зажигания подразумевает под собой отсутствие вращающихся деталей. При таком варианте катушка зажигания присоединятся непосредственно к свече, а управление происходит от блока управления зажиганием. Если, например, двигатель автомобиля имеет четыре цилиндра, то и катушек будет четыре. Высоковольтные провода в данной системе отсутствуют.
- Коммутатор – электронное устройство для генерации импульсов управления катушкой зажигания, включается в цепь питания первичной обмотки катушки и по сигналу от блока управления разрывает питание, в результате чего возникает напряжение самоиндукции.
- Блок управления системой зажигания – микропроцессорное устройство, которое определяет момент подачи импульса в катушку зажигания, в зависимости от данных датчиков положения коленвала, лямбда-зондов, температурных датчиков и датчика положения распредвала.
- Высоковольтный провод - это одножильный провод с повышенной изоляцией. Внутренний проводник может иметь форму спирали, для исключения помех в радиодиапазоне.
Принцип работы системы зажигания
Рассмотрим принцип действия классической системы зажигания. При вращении вала привода трамблёра в действие приводятся кулачки, которые «разрывают» подаваемые на первичную обмотку автотрансформатора (бобину) 12 вольт. При пропадании напряжения на трансформаторе, в обмотке появляется ЭДС самоиндукции, соответственно на вторичной обмотке возникает напряжение порядка 30000 вольт. Высокое напряжение подается в распределитель зажигания (бегунок), который вращаясь попеременно подает напряжение на свечи в зависимости от такта работы двигателя внутреннего сгорания. Высокого напряжения достаточно для пробоя искровым разрядом воздушного зазора между электродами свечи зажигания.
Опережение зажигания нужно для более полного сгорания топливной смеси. Из-за того, что топливо сгорает не сразу, поджечь его необходимо немного раньше, до прихода в ВМТ. Момент подачи искры должен быть точно отрегулирован, потому что в ином случае (раннее или позднее зажигание) двигатель потеряет свою мощность, возможна повышенная детонация.
РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ: _____________________________________________________________________________________________________________________ |
autoustroistvo.ru
Система зажигания автомобиля
Система зажигания автомобиля служит для обеспечения воспламенения рабочей смеси в цилиндрах карбюраторного двигателя в соответствии с порядком их работы. На карбюраторных двигателях применяют контактную, контактно-транзисторную и бесконтактную системы зажигания.
Система зажигания автомобиля
Контактная система зажигания состоит из аккумуляторной батареи, генератора, катушки зажигания, прерывателя-распределителя, искровых свечей зажигания, выключателя зажигания, проводов высокого напряжения и проводов низкого напряжения.
Принцип действия контактной системы заключается в следующем. При включенном зажигании и сомкнутых контактах прерывателя ток от аккумуляторной батареи или генератора поступает на первичную обмотку катушки зажигания, в результате чего образуется магнитное поле. Когда контакты прерывателя размыкаются, ток в первичной обмотке исчезает и исчезает вокруг нее магнитное поле. Исчезающий магнитный поток пересекает витки вторичной и первичной обмоток, вызывая возникновение в каждом из витков электродвижущей силы. Так как на вторичной обмотке количество витков, соединенных между собой последовательно, значительное, общее напряжение на концах достигает 20–24 кВ. Электродвижущая сила вторичной обмотки будет тем выше, чем больше скорость исчезновения магнитного потока. От катушки зажигания по проводам высокого напряжения через распределитель ток высокого напряжения поступает к искровым свечам зажигания, вызывая между электродами свечей искровой разряд, который воспламеняет рабочую смесь.
В настоящее время более широко применяют контактно-транзисторную систему и бесконтактую системы зажигания. Различных бесконтактных систем зажигания существует много. Принципы действия их примерно одинаковы, однако отдельные элементы существенным образом отличаются, например: транзисторное зажигание с индуктивным датчиком; электронное зажигание, управляемое компьютером с комплексом данных; электронное зажигание, управляемое процессорами, и др.
Принцип действия бесконтактной системы зажигания заключается в следующем. При включенном зажигании и вращающемся коленчатом вале двигателя датчик-распределитель выдает импульсы напряжения на коммутатор, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения идет от катушки зажигания по проводу через угольный контакт на пластину ротора и затем через клемму крышки распределителя по проводу высокого напряжения, в наконечнике которого установлен помехоподавительный экран, попадает на соответствующую свечу зажигания и воспламеняет рабочую смесь в цилиндре.
Бесконтактная система зажигания двигателя ВАЗ-2108 включает датчик-распределитель, свечи зажигания, электронный коммутатор, аккумуляторную батарею, генератор, катушку зажигания, провода низкого напряжения, провода высокого напряжения, монтажный блок, выключатель зажигания, штекерный разъем датчика-распределителя, плюсовую клемму катушки зажигания.
Бесконтактная система зажигания повышает надежность из-за отсутствия подвижных контактов и необходимости систематической их регулировки и зачистки зазоров, а также повышает надежность пуска и работу при разгонах автомобиля благодаря более высокой энергии электрического разряда, который обеспечивает надежное воспламенение рабочей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала. Кроме того, одним из преимуществ бесконтактной системы зажигания является отсутствие влияния вибрации и биения ротора-распределителя на равномерность момента искрообразования.
Важным параметром, определяющим работоспособность системы зажигания, является угол опережения зажигания, который индивидуален для двигателей определенной модели и колеблется от 0 до 10 градусов.
Угол поворота кривошипа коленчатого вала, при котором появляется искра между электродами свечи зажигания до момента подхода поршня к верхней мертвой точке, называют углом опережения зажигания. Сгорание рабочей смеси в цилиндре двигателя должно заканчиваться при повороте кривошипа на 10–15 градусов после верхней мертвой точки, т. е. в начале рабочего хода. Поэтому искровой пробой между электродами должен происходить несколько раньше подхода поршня к верхней мертвой точке.
Когда искра между электродами свечи появляется слишком рано, т. е. при большом угле опережения зажигания, давление газов в цилиндре возрастает до подхода поршня к верхней мертвой точке, что препятствует движению поршня и приводит к уменьшению мощности и экономичности двигателя, к ухудшению его приемистости. При работе под нагрузкой двигатель перегревается, появляются стуки, а при малой частоте вращения коленчатого вала в режиме холостого хода двигатель работает неустойчиво.
Если зажигание произойдет позже, т. е. при малом угле опережения зажигания, воспламенение рабочей смеси происходит при движении поршня уже после верхней мертвой точки. Давление газов будет намного меньше, чем при нормальном зажигании, что приведет к резкому падению мощности и экономичности двигателя и к перегреву двигателя. Поэтому угол опережения зажигания должен регулироваться автоматически, с учетом скоростного и нагрузочного режима двигателя. С увеличением частоты вращения коленчатого вала и уменьшением нагрузки на двигатель угол опережения зажигания должен увеличиваться, а при уменьшении частоты вращения коленчатого вала и увеличении нагрузки – уменьшаться.
Методы облегчения пуска двигателя. Для облегчения пуска двигателя применяют пусковые жидкости типа «Арктика», предпусковые подогреватели, электроподогрев аккумуляторных батарей, свечи накаливания для дизельных двигателей и др.
В статье использованы материалы из открытых источников: (Виктор Барановский. Автомобиль. 1001 совет)
По материалам: avto-opel.com
Загрузка ...Поделиться "Система зажигания автомобиля"
Система зажигания автомобиля
5 (100%) проголосовало 2avto-opel.com
Какие виды систем зажигания бывают в автомобиле?
ЗаголовокТак или иначе, система зажигания присутствует на любом автомобиле, который ездит на бензине. Эту аксиому подтверждает то, что топливно-воздушная смесь в цилиндре двигателя сгорает. Ее ведь должно что-то поджигать, правильно?
В отличие от дизельного двигателя, где воспламенение достигается за счет просто бешеного давления в цилиндре, тут нужна зажигалка. И роль ее исполняет система зажигания автомобиля.
В этой статье мы разберемся какие системы бывают, по какому принципу они все работают и что их объединяет как представителей одного автомобильного элемента.
Система зажигания
Общее устройство
Как уже было сказано: система зажигания автомобиля есть в любом авто. Это так, но не совсем. Существует два принципиально разных вида работы бензиновых двигателей: карбюраторный и инжекторный. В инжекторе присутствует объединенная система впрыска и зажигания, в которой за управлением всем следит ЭСУД (электронная система управлением двигателем). Нас же интересует более устаревшая, но стабильно существующая и не собирающаяся пропадать обычная, не объединенная система впрыска и зажигания, в которой все выполнено раздельно и имеет свои функции.
Принципиально любое зажигание на карбюраторном автомобиле состоит из таких элементов:
- АКБ (аккумуляторная батарея).
- Катушка.
- Распределитель.
- Свечи.
- Выключатель.
- Высоковольтные провода.
В зависимости от принципа работы элементы будут добавляться, но все перечисленные выше присутствуют обязательно. Кстати, мы ведем разговор о элементах, что характерны для семейства автомобилей ВАЗ, но и на старых иномарках, таких как, например, Opel Cadett, работает все крайне аналогично и различий не имеет, вплоть до идентичного внешнего вида.
Принцип работы всех этих систем заключается в том, что берется электричество с аккумулятора и подается на катушку, которая трансформирует 12В взятых с АКБ в 20 – 30 тысяч Вольт. Далее, прерыватель-распределитель зажигания распределяет получаемое электричество по цилиндрам двигателя, где и происходит восгорание смеси бензина и воздуха. Вроде бы все просто, однако, разберемся в каждом отдельном виде этой системы.
Контактная система
Контактное зажигание – это система, которая является самой технически древней, так как появилась она еще очень давно, а недостатков у нее масса. Основной заключается в наличии механического прерывателя и механического распределителя цепи, которые со временем приходил в такую негодность, что могло привести к серьезным сбоям в работе двигателя. Прерыватель служит для того, чтобы размыкать цепь низкого напряжения. Когда она разомкнута, то во вторично обмотке катушки возникает высокое напряжение, которое необходимо для поджога.
Контактное зажигание оттого так и называется, потому что в нем присутствуют контакты. Со временем они могут залипать и пригорать, что крайне неблагоприятно сказывается на работе мотора.
К распределителю же подводится высокое напряжение, а внутри вращается бегунок, который замыкает и размыкает контакты, тем самым распределяя по цилиндрам ток. Как видим, здесь все основано на чистой механике, все крутится, все вращается. Эти элементы требуют постоянного ухода и смазки, однако, даже при достойном уходе через время начинаются сбои.
Контактно-транзисторное зажигание
Контактно транзисторная система зажигания – это следующая ступень эволюции. Здесь в игру вступают два новых игрока – транзистор, как и следует из названия, и коммутатор. Эта система является более совершенной по отношению к предыдущей. Здесь основное отличие заключается в том, что прерыватель воздействует ни на что другое, а именно на транзистор, благодаря чему появилась возможность значительно увеличить электрический ток в первичной обмотке катушки зажигания. Повышенный ток значительно улучшает искрообразование на свечах, благодаря чему ощутимо лучше воспламеняется смесь. Иногда хозяевам определенных автомобилей, чтобы Контактно-транзисторная система зажигания у них могла работать, придется менять катушку зажигания на более мощную, с раздельными обмотками в ней. Так же, благодаря транзистору удается уменьшить нагрузку на контакты, благодаря чему вся система просуществует дольше. Вот мы и узнали еще один принцип работы.
Бесконтактная работа
Далее, в нашем списке идет бесконтактная система зажигания и ее принцип работы. Принципиальное отличие здесь заключается в том, что как таковой здесь отсутствует прерыватель, его здесь просто нет. За него работает бесконтактный датчик, который выполняет такую же роль. Применяется бесконтактная система зажигания до сих пор на различных автомобилях, а также вполне часто встречается вариант замены этой моделью все прошлые, чтобы добиться лучших результатов. Так называемые датчик Холла позволяет создавать импульсы, которые выступают в роли катализатора для создания свечи. Здесь нет распределителя, и система в принципе не требует контроля, так как трущихся деталей нет. Использование этой системы позволяет добиться более ровной работы двигателя и еще более качественного воспламенения смеси.
Электронный типа зажигания
Принцип работы последнего, и самого совершенного типа зажигания довольно сложен. Имеет эта модель два названия: электронное зажигание или микропроцессорная система зажигания, правильны и верны оба названия, как называть выбирать вам. Здесь практически полностью отсутствуют какие-либо трущие или механические детали, все полностью происходит с помощью электроники. Помимо всего, что было указано электронное зажигание имеет еще и разные входные датчики, и электронный блок управления. Входные датчики необходимы для того, чтобы электронная система зажигания фиксировала показатели работы двигателя, чтобы вовремя подать искру в требующий того цилиндр. То, какие датчики применяются в машинах может отличаться в зависимости от машины. К примеру, распространены датчики вращения коленчатого вала, и датчики массового расхода воздуха, на самом деле их очень много.
Электронное зажигание позволяет добиться максимально слаженной работы моторы, однако, даже не это является самым большим преимуществом. Самое большое преимущество лежит в экономичности.
Как видим, микропроцессорная система зажигания является наиболее совершенной системой из возможных, именно она сейчас является самой распространенной среди современных автомобилей всех производителей, и отечественных в том числе. Наши автомобили в этом показателе нисколько не уступают иномаркам.
autodont.ru
Система зажигания
Система зажигания служит для преобразования тока низкого напряжения в ток высокого напряжения и подвода его к свечам для воспламенения рабочей смеси в соответствии с порядком работы цилиндров двигателя. В связи с тем, что воздушный, промежуток между электродами свечи оказывает большое сопротивление электрическому току, необходимо высокое напряжение до 20 000 В, чтобы вызвать искровой разряд. Кроме этого, искровые разряды в цилиндрах должны появляться при определенном положении поршней в цилиндрах и в определенной последовательности в соответствии с установленным порядком работы цилиндров двигателя. Выполнение этих тpeбований обеспечивается системой батарейного зажигания, состоящей из источников тока (аккумуляторная батарея, генератор) и потребителей. В систему зажигания входят две группы приборов: приборы цепи низкого напряжения и приборы цепи высокого напряжения.
Устройство и работа приборов системы зажигания
Катушка зажигания вместе с прерывателем преобразует ток низкого напряжения в ток высокого напряжения. На автобусах устанавливают маслонаполненную катушку Б13. Катушка состоит из сердечника, набранного из отдельных полосок электротехнической стали, изолированных между собой окалиной. Между сердечником и латунной вставкой установлена пружина для надежного контакта с проводником. На сердечник надета изоляционная трубка, на которой намотана вторичная обмотка. На вторичную обмотку надета катушка первичной обмотки, концы которой помещены в изолированные трубки и присоединены один к зажиму Р, второй к зажиму ВК. Вторичная обмотка одним концом соединена с первичной обмоткой, а вторым - с латунной вставкой. Для усиления магнитного поля вокруг вторичной обмотки поверх обмоток установлен кольцевой магнитопровод. Все детали помещены в корпусе и изолированы от него фарфоровым изолятором, а сверху - карболитовой крышкой. Между корпусом и крышкой имеется резиновая прокладка. Внутрь катушки залито трансформаторное масло, которое обладает изоляционными качествами и хорошо отводит тепло.
Последовательно с первичной обмоткой катушки соединен резистор (вариатор), который в двух изоляторах крепится к зажимам ВК и ВК-Б катушки зажигания.
Спираль резистора изготовлена из вольфрамовой проволоки. При длительном замыкании контактов при минимальной частоте вращения коленчатого вала двигателя спираль нагревается, ее сопротивление увеличивается. Этим ограничивается величина тока в первичной обмотке катушка. При большой частоте вращения период замкнутого состояния контактов незначителен. Спираль остывает, ее сопротивление уменьшается, а следовательно, вариатор почти не препятствует прохождению тока. Таким образом, вариатор выравнивает силу тока, поступающего на первичную обмотку, и этим выравнивает силу искры независимо от частоты вращения коленчатого вала двигателя, предохраняя первичную обмотку от перегрева. При пуске двигателя стартером вариатор через выключатель стартера закорачивается, чем обеспечивается высокое напряжение во вторичной обмотке.
Прерыватель-распределитель. Прерыватель служит для своевременного размыкания контактов и замыкания первичной цепи зажигания, а распределитель — для распределения тока высокого напряжения по свечам зажигания. В корпусе прерывателя закреплен неподвижный диск, на котором через шариковый подшипник установлен подвижной диск с контактами. Подвижкой контакт изолирован от массы и прижимается к неподвижному контакту пластинчатой пружиной. Неподвижный контакт установлен на - регулировочной пластине, соединенной с поворотным диском стопорным и эксцентриковым винтами. Контакты прерывателя изготовлены из вольфрама, и размыкает их кулачок, который через центробежный регулятор соединен с валиком привода.
Рабочая смесь в цилиндре сгорает не мгновенно, а в течение некоторого промежутка времени.
Наибольшая мощность двигателя и экономичность его работы достигаются тогда, когда полное воспламенение смеси совпадает с положением поршня в в. м. т. Поэтому искру в цилиндр необходимо подавать с некоторым опережением до прихода поршня в в. м. т. Это опережение измеряют в градусах поворота коленчатого вала и называют углом опережения зажигания. Для изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя служит центробежный регулятор. При увеличении частоты вращения грузики, установленные на штифтах, под действием центробежных сил расходятся и через траверсу, в прорези которой входят пальцы двух грузиков, поворачивают втулку с кулачком по направлению вращения кулачка на некоторый угол. При этом размыкание контактов происходит раньше, угол опережения зажигания увеличивается.
При уменьшении частоты вращения грузики под действием пружин возвращаются в исходное положение и угол опережения зажигания уменьшается. Кроме того, угол опережения зажигания необходимо менять в зависимости от нагрузки на двигатель, т. е. от величины открытия дроссельной заслонки.
При незначительном открытии дроссельной заслонки (немного больше чем на частоте вращения в режиме холостого хода) ухудшается наполнение цилиндров горючей смесью и в цилиндрах остается большое количество отработавших газов.
Смесь в данном режиме, как мы знаем по работе карбюратора, приготовляется обедненная, горит медленнее обогащенной а наличие остаточных газов еще более замедляет горение. Поэтому необходимо подать искру раньше.
Опережение зажигания на данном режиме выполняет вакуумный регулятор, который состоит из корпуса с крышкой, диафрагмы, соединенной тягой с подвижным диском прерывателя и пружины. Полость крышки соединена со смесительной камерой карбюратора, а полость корпуса - с атмосферой.
В нижнем патрубке карбюратора выполнено отверстие, куда ввертывается штуцер соединительной трубки вакуумного регулятора. Когда коленчатый вал двигателя работает при минимальной частоте вращения холостого хода, это отверстие оказывается выше кромки дросселя и вакуумный регулятор не работает, так как на данном режиме приготовляется обогащенная смесь, которая горит быстрее. При незначительном нажатии на педаль управления дроссельными заслонками при малых нагрузках они открываются чуть больше, чем при частоте вращения в режиме холостого хода. В этот момент верхняя кромка дроссельной заслонки поднимается выше отверстия в патрубке, под ним создается разрежение, которое передается по трубке на диафрагму. Диафрагма прогибается и через тягу поворачивает диск вместе с контактами навстречу грани кулачка. Зажигание становится ранним. При увеличении открытия дроссельных заслонок условия очистки цилиндров улучшаются, разрежение под дроссельными заслонками снижается, вакуумный регулятор выключается под действием пружины и зажигание становится поздним. Если при этом увеличится частота вращения коленчатого вала, в работу вступит центробежный регулятор. Для изменения угла опережения зажигания в зависимости от сорта топлива и для уточнения правильности установки зажигания на ходу служит октан-корректор. Применяя топливо с повышенным октановым числом, угол опережения зажигания следует увеличивать, а применяя топливо с пониженным октановым числом - уменьшать.
Ток высокого напряжения подводится через центральный электрод к пластине ротора. Через контактный уголек с пружиной и через вращающийся ротор поступает к боковым электродам крышки распределителя, а по проводам - к свечам.
Свечи зажигания. На современных двигателях применяют неразборные свечи. Свечи работают в тяжелых условиях, поэтому изолятор обладает высокой механической прочностью. На двигателях ЗИЛ-130 и ЗИЛ-375 устанавливают свечи А15Б и А13Б. Буква А в маркировке свечей обозначает диаметр ввертываемой части 14 мм, цифры 15, 13 указывают высоту теплового конуса (юбки) в миллиметрах, буква Б - материал изолятора - бор корунд. Наружная цилиндрическая часть изолятора покрыта глазурью для улучшения изоляционных свойств. Внутри изолятора при помощи термоцемента токопроводящего стеклогерметика крепится центральный электрод, который делают составным. В одном случае верхняя часть его выполнена из малоуглеродной стали и приварена к нижней, в другом - она изготавливается отдельно от центрального электрода для бесперебойной работы свечи рабочая темпер тура центрального электрода и юбки изолятора должна быть в пределах 500—600° С. Такая температура исключает появление калильного зажигания и обеспечивает сгорание нагара на электродах.
Для обеспечения бесперебойной работы зазор между электродами свечи должен быть 10 - 12 мм при транзисторном зажигании и 0,7 - 6,8 мм при обычном. Зазор регулируют, подгибая боковой контакт - электрод, проверяют - круглым щупом.
Приспособление для уменьшения радиопомех. Искрение между контактами и электродами приборов электрооборудования, между щетками и коллекторами электродвигателей является причиной возникновения электромагнитных волн высокой частоты, которые, пересекая антенны, создают помехи, ухудшающие радиоприем, прием телевизионных передач, и мешают радиолокационным установкам. Поэтому каждый автомобиль должен быть оборудован приспособлениями для уменьшения радиопомех. На автобусах устанавливают провода высокого напряжения марки ПВВО, которые имеют изоляцию из полихлорвинилового пластика и неметаллическую жилу с распределенным сопротивлением, чем обеспечивается эффективное подавление радиопомех. Кроме того, для уменьшения радиопомех на автомобилях блокируют искрящие контакты включением проходных конденсаторов параллельно искрящим контактам (контактам реле-регулятора, щеткам генератора и т. д.).
Выключатель зажигания служит для включения и выключения системы зажигания, стартера, контрольно-измерительных и других приборов. Он расположен на панели приборов. Выключатель состоит из замка с индивидуальным ключом и выключателя. Все детали выключателя расположены в общем цилиндрическом корпусе, закрытом крышкой, которая представляет собой панель из изоляционного материала. На панели установлены контактные винты для зажимов AM, КЗ, ПР, СТ (амперметр, катушка зажигания, приемник, стартер).
В корпусе включателя установлены ротор с возвратной пружиной, поводок с пружиной поворота и шариками фиксатора. Поводок своим выступом связан с контактной пластиной, при измении положения которой происходит включение или выключение различных цепей.
Ротор выключателя при различных положениях ключа может иметь четыре различных положения. Ключ вставлен вертикально нулевое положение — под током находится один зажим AM.
При повороте ключа направо в первое фиксированное положение ток с зажима AM через контактную пластину поступает на зажимы КЗ и ПР.
При повороте ключа направо во второе фиксированное положение ток поступает с зажима AM на зажимы КЗ и СТ.
При повороте ключа налево от нулевого положения ток поступает с зажима AM на зажим ПР.
Контактно-транзисторная система зажигания. Достоинством транзисторной системы зажигания является то, что напряжение во вторичной цепи повышается на 30% по сравнению с обычной системой зажигания, не обгорают контакты прерывателя, повышается экономичность работы двигателя, облегчается пуск двигателя. В реальной схеме транзисторного зажигания установлены дополнительные приборы, которые служат для улучшения работы транзистора и предохранения его от пробоя. В контактно-транзисторную систему зажигания двигателей ЗИЛ-130 и ЗИЛ-375 входят следующие приборы.
Распределитель Р13-Д. Распределитель отличается от стандартного тем, что не имеет конденсатора.
Катушка зажигания Б114. Особенностью катушки Б114 по сравнению с катушкой Б13 является то, что первичная обмотка этой ка тушки имеет меньше витков (180), но больший диаметр провода (1,25 мм), что позволяет увеличить силу тока в цепи. Вторичная же обмотка катушки Б114 имеет гораздо большее число витков (41500), чем вторичная обмотка катушки Б13.
Добавочные резисторы СЭ107 (R4, R3). Резистор R4 при пуске двигателя стартером закорачивается, что позволяет увеличить ток в первичной цепи катушки зажигания: резистор R3 постоянно ограничивает силу тока, поступающего в первичную обмотку катушки зажигания.
Транзисторный коммутатор ТК102 состоит из транзистора Т диода Д, стабилитрона СТ, резисторов R1 и R2 конденсаторов С1 и С2 и импульсного трансформатора ИТ. При включении зажигания выключателем ВЗ и при сомкнутых контактах прерывателя П в цепи управления транзистора Т появится ток, равный 0,3-0,6 А. Путь тока: плюсовый зажим аккумуляторной батареи - выключатель зажигания ВЗ - резисторы R4, R3 - первичная обмотка 1 катушки зажигания КЗ - электроды Э и Б транзистора - первичная обмотка 1 импульсного трансформатора ИТ - контакты прерывателя - масса автомобиля - отрицательный зажим аккумуляторной батареи автомобиля.
При прохождении тока с эмиттера на базу происходит резкое снижение сопротивления перехода эмиттер – коллектор, транзистор открывается и включает цепь рабочего тока низкого напряжения. Минуя контакты прерывателя, через первичную обмотку катушки пройдет ток от 3 до 8 А.
Путь рабочего тока: плюс аккумуляторной батареи - выключатель зажигания ВЗ - резисторы R4, R3 - первичная обмотка катушки зажигания КЗ - электроды Э и К транзистора – масса - отрицательный зажим аккумуляторной батареи. При прохождении тока (равного 8 - 13 А) по первичной обмотке катушки зажигания создается сильный магнитный поток. При размыкании контактов прерывателя ток управления прерывается, транзистор запирается. Резкое падение магнитного поля вокруг первичной обмотки вызывает ток индукции во вторичной обмотке напряжением около 30 000 В. Одновременно возникает и ток самоиндукции в первичной обмотке напряжением около 80 – 110В. Ток высокого напряжения со вторичной обмотки 11 катушки зажигания КЗ подводится к ротору распределителя, где распределяется по свечам и возвращается во вторичную обмотку катушки зажигания, так как один конец вторичной обмотки выведен на массу ЭДС самоиндукции первичной обмотки 1 идет на заряд конденсатора С1 и на нагрев резистора R1. При отсоединении провода высокого напряжения от свечи или от крышки распределителя напряжение тока самоиндукции в первичной обмотке может превысить 400 В. Это напряжение может пробить транзистор. Для предохранения транзистора от пробоя в схему включены диод Д и стабилизатор С1. При увеличении напряжения тока самоиндукции в первичной обмотке катушки зажигания более 100 В стабилитрон пробивает и он пропускает через себя ток самоиндукции, предотвращая пробой транзистора. Для отсечки запирания транзистора служит импульсный трансформатор. Ток самоиндукции вторичной обмотки 11 трансформатора ИТ направлен против тока, идущего на эмиттер от аккумуляторной батареи, и этим отсекающе запирает транзистор. Ток самоиндукции обмотки 1 импульсного трансформатора ИТ расходуется на нагрев резистора R2. Электрический конденсатор С2 емкостью 50 мкФ включен параллельно генератору и аккумуляторной батарее и защищает транзистор от импульсных перенапряжений в случаях выключения аккумуляторной батареи, обрыва одной из фаз обмотки статора генератора переменного тока, обрыва проводника, соединяющего корпусы генератора и реле - регулятора. При возникновении импульса напряжения в цепи источника тока конденсатор С2 будет заряжаться, что уменьшит напряжение в цепи приборов. Все приборы коммутатора установлены в оребренном алюминиевом корпусе для лучшего охлаждения.
Для включения коммутатора в цепь необходимо зажим М надежно соединить с массой. Зажим К соединить с одноименным зажимом катушки, средний зажим - с безымянным зажимом катушки, а зажим Р - с изолированным зажимом прерывателя.
aboutavtobus.ru
Устройство и работа приборов системы зажигания
Устройство и работа приборов системы зажигания Катушка зажигания предназначена для преобразования тока низкого напряжения в ток высокого напряжения. В системе зажигания автомобиля ЗИЛ-131 установлена катушка марки Б118, экранированная, герметическая, закреплена на щите кабины. Катушки зажигания современных автомобилей имеют одинаковое устройство и внешний вид, но отличаются обмоточными данными, способом крепления концов обмоток и наличием или отсутствием дополнительного сопротивления; по этим причинам они не взаимозаменяемые.
Рис. 71. Катушка зажигания: а - разрез; б - электрическая схема; 1 - штуцер клеммы высокого напряжения; 2 - крышка; 3 - клемма высокого напряжения; 4-контактная пружина; 5 - клемма низкого напряжения; 6 - уплотнительная прокладка; 7 - кожух; 8 - вторичная обмотка; 9 - контактная пластина клеммы высокого напряжения; 10 - кронштейн для крепления; 11- магнитопровод; 12 - изолирующая прокладка; 13 - изолятор; 14 - первичная: обмотка; 15 - сердечник; А - масло
Основными частями катушки зажигания являются: корпус 7 (рис. 71), крышка 2 с выводами, изолятор 13, сердечник 15, магнитопровод 11, первичная обмотка 14, вторичная обмотка 8. Сердечник набран из пластин электротехнической стали, изолированных между собой окалиной для уменьшения вихревых токов, на сердечник одета изоляторная трубка, на которую намотана вторичная обмотка, один конец этой обмотки присоединен к корпусу (массе автомобиля), а второй - к клемме высокого напряжения. Поверх вторичной обмотки надета катушка первичной обмотки, ее концы выведены на крышку и прикреплены к клеммам «ВК» и «Р». Первичная обмотка имеет 250 витков, вторичная обмотка - около 40 тыс. витков, обе обмотки пропитаны смесью парафина с канифолью, для усиления магнитного потока, пронизывающего вторичную обмотку, поверх обмоток установлен кольцевой магнитопровод 11.
Все детали, катушки размещены в стальном штампованном корпусе и изолированы от него снизу фарфоровым изолятором 13, сверху корпус закрывается карболитовой крышкой через резиновую прокладку. Внутренняя полость катушки заполнена трансформаторным маслом, обладающим изоляционными свойствами и хорошо проводящим теплоту от обмоток на корпус.
Катушка зажигания работает по принципу трансформатора. При прохождении импульса тока низкого напряжения через первичную обмотку в катушке создается магнитный поток, пронизывающий витки вторичной обмотки, в которых наводится высокое напряжение.
Распределитель зажигания служит для управления работой транзисторного коммутатора, распределения тока высокой напряжения по свечам в соответствии с порядком работы цилиндров двигателя, а также для изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя. В системе зажигания двигателя ЗИЛ-131 установлен экранированный, герметизированный, бесконтактный распределитель Р351. Валик распределителя приводится во вращение от распределительного вала двигателя.
Рис. 72. Распределитель зажигания Р 351: а - общий вид; б - статор датчика; в - ротор и центробежный регулятор датчика; 1 - рычаг установки зажигания; 2 - масленка; 3 -валик; 4 - вывод низкого напряжения; 5 - контактный уголок; 6 - пружина уголка; 7 - вывод высоковольтного провода к катушке зажигания; 8 - крышка экрана; 9 - экран; 10 - крышка распределителя; 11 - ротор-распределитель; 12 -втулка; 13 - статор в сборе: 14 -корпус распределителя; 15 - метка установки зажигания: 16 -регулировочные гайки октан-корректора; 17 - центробежный регулятор в сборе; 18 - концы обмотки; 19 - колодка; 20, 22 - пластины статора 21 - обмотка; 23 - полюсные наконечники ротора; 24 - магнит; 25 -шпонка; 26 - поводковая пластина регулятора; 27 - грузики регулятора.
Основными частями распределителя (рис.72) являются: корпус 14, катушка 10, экран 9 с крышкой 6, валик 3, датчик импульсов, центробежный регулятор 17, октан-корректор.
Крышка корпуса изготовлена, из карболита и крепится к корпусу тремя винтами. В ней имеются гнезда, куда оставлены изготовления из латуни центральный и боковые электроды (контакты) для соединения с проводами высокого напряжения. Доступ к этим контактам возможен при снятой крышке 10 экрана, а для доступа к ротору-распределителю 11 необходимо снимать экран 9, закрепленный тремя винтами к корпусу распределителя. Валик 3 вращается в конусе на двух втулках, которые смазываются через масленку 2, сверху на валик установлена втулка 12.
Датчик импульсов предназначен для управления работой транзисторного коммутатора. Этот датчик магнитоэлектрический, состоит статора и ротора. К статору относятся две пластины 20 и 22 и обмотка 21. Пластины статора закреплены в корпусе распределителя. Ротор датчика образует постоянный магнит 24 и два полюсных наконечника 23. Детали ротора при помощи шпонки 25 закреплены на втулке12.
Датчик импульсов работает по принципу генератора переменного тока. При вращении ротора в обмотке статора наводятся импульсы переменного напряжения, которые и подаются к транзисторному коммутатору.
Центробежный регулятор служит для автоматического изменения угла опережения зажигания в зависимости от частоты вращения коленчатого вала двигателя.
Углом опережения зажигания называется угол, на который поворачивается коленчатый вал двигателя с момента подачи искры в цилиндр до прихода поршня в ВМТ. В зависимости от режима работы двигателя оптимальный угол опережения зажигания изменяется в широких пределах и составляет 5…50°.
При позднем воспламенении рабочей смеси в камере сгорания (малом угле опережения зажигания) двигатель перегревается, ухудшается его экономичность, снижается мощность. При слишком раннем воспламенении смеси (большем угле опережения зажигания) значительное давление в. цилиндре развивается до прихода поршня в ВМТ, что приводит к снижению мощности двигателя, ускоренному износу кривошипно-шатунного механизма, появлению стуков при работе двигателя.
Величина оптимального угла опережения зажигания зависит от конструктивных особенностей двигателя, частоты вращения коленчатого вала, октанового числа топлива. Центробежный регулятор и учитывает меняющуюся частоту вращения коленчатого вала двигателя.
Центробежный регулятор состоит из двух грузиков 27 с пружинами и шрифтами, поводковой пластины 26, втулки 12. Грузики 27 расположены на пластине, закрепленной на валике регулятора, и могут поворачиваться относительно осей, установленных в опорной пластине. Поводковая пластин 26 своими прорезями надевается на штифты грузиков и соединяется со втулкой 12, которая при помощи шпонки 25 соединены с кольцевым магнитом 24 датчиков импульсов.
При увеличении частоты вращения коленчатого вала двигателя центробежная сила грузиков возрастает, они расходятся и своими штифтами поворачивают поводковую пластину 26, втулку 12 и магнит 24 в сторону вращения валика-регулятора. Поворот магнита 24 приводит к более раннему образованию управляющего сигнала датчиком импульсов, следовательно, к более раннему появлению искры на свечах зажигания, т.е. к увеличению угла опережения зажигания.
При уменьшении частоты вращения коленчатого вала центробежная сила грузиков уменьшается, пружины сближают грузики, втулка с магнитом поворачивается против, вращения валима регулятора, и угол опережения зажигания уменьшается.
Ротор-распределитель служит для распределения тока высокого напряжения от центрального по боковым электродам крышки. Ротор и крышка образуют распределительные устройства прибора.
Ротор изготовлен из карболита, к нему приклепана латунная разносная пластина, к которой пружиной пожимается угольный контакт 5, установленный в центральном гнезде крышки, этот контакт представляет собой подавительный резистор и служит для уменьшения помех радиоприему. Ротор установлен в верхней части втулки 12, имеющей лыску для правильного расположения ротора. Между пластинами ротора и боковыми электродами крышки должен быть зазор 0,2...0,8мм.
Ток высокого напряжения от катушки зажигания поступает по пр. воду высокого напряжения к центральному электроду, через угольный контакт передается разносной пластине ротора и далее при вращении ротора передается боковым электродом крышки, которые проводами высокого напряжения соединены со свечами зажигания в соответствии с порядком работы цилиндров двигателя.
Октан-корректор служит для ручной корректировки угла опережения зажигания в зависимости от октанового числа топлива. Октан-корректор расположен внизу конуса регулятора и состоит из двух пластин, винта и двух регулировочных гаек 16. Пластина, имеющая шкалу, прикреплена к блоку цилиндров, а пластина с указателем к корпусу; регулировочными гайками можно повернуть корпус и переменить пластину с указателем на пластине, имеющей шкалу. При перемещении платины на одно деление шкалы корпус регулятора поворачивается на 2° что соответствует изменению угла опережения залегания на 4°. При повороте корпуса по часовой стрелке угол опережения зажигания уменьшается. Октан-корректором можно изменять угол опережения зажигания в пределах +12°. Герметизация распределителя. обеспечивается постановкой резиновых колец в выводы проводов низкого и высокого напряжения и канавку посадочного хвостовика корпуса.
Для вентиляции внутренней полости корпуса распределителя к нему подсоединяются через конические штуцеры два гибких шланга. Вентиляция распределителя осуществляется воздухом, очищенным воздушным фильтром.
Рис. 73. Схема бесконтактно-транзисторной системы зажигания: 1 - аккумуляторная батарея; 2 - выключатель зажигания; 3 - добавочный резистор; 4 - транзисторный коммутатор; 5 - катушка зажигания; 6 - свеча; 7 - распределитель зажигания.
Транзисторный коммутатор предназначен для коммутации (размыкания и замыкания) цепи низкого напряжения системы зажигания в соответствии с поступающими к нему сигналами, коммутатор собран на кремниевых транзисторах. Он имеет четыре экранированных штепсельных разъема и один клемный зажим. К разъемам ВК (рис 73.) подсоединяются провода от замка зажигания и клеммы ВК катушки зажигания, к разъему Д, провод от датчика импульсов, к разъему КЗ - от клеммы Р катушки зажигания, через клемный зажим коммутатор соединяется с «массой» автомобиля.
Рис. 74. Аварийный вибратор: 1 - контакты; 2 - якорь; 3 - сердечник; 4 - обмотка; 5 - пружина; 6 - конденсатор, 4 - изолирующая втулка; 3, 14 - терморезистор; 6 - каркас; 7 -экранирующий цилиндр; 5 - мостик; 9 - ось; 10, 15, 16, 17-катушки; 11 - постоянный магнит; 12-стяжной винт; 13 - подпятник; 18 - термокомпенсационный резистор; 19 - термобиметаллическая пластина; 20 - изолятор; 21 - выводной зажим; 22, 23 - контакты; 24 - шайба; 25 - корпус.
На рис 73 схема транзисторного коммутатора 4 представлена в упрощенном виде для понимания принципа его действия.
При включении зажигания и неработающем двигателе транзистор Т1 закрыт, так как на его базу не подается потенциал отдатчиков импульсов. К базе транзистора Т2 через резистор R2 и диод Д2 подводится положительный потенциал от аккумуляторной батареи, этот транзистор закрыт и через него проходит ток цепи низкого напряжения: вывод «+» аккумуляторной батареи 1-выключатель зажигания 2 -добавочный резистор 3- две клеммы ВК -обмотка низкого напряжения катушки зажигания 5- диод ДЗ - транзистор Т2- клемма М-вывод «-» аккумуляторной батареи. Сила тока в цепи при неработающем двигателе составляет около 6А.
При вращении коленчатого вала двигателя от датчика импульсов поступают положительные сигналы напряжения на базу транзистора Т1. В момент поступления сигнала транзистор Т1 открывается. Это значит, что теперь ток от замка зажигания через резистор Р2 и транзистор Т1 проходит на корпус коммутатора (массу), минуя диод Д2, и поступает на базу транзистора Т2. Последний закрывается и прерывает ток в цепи низкого напряжения, при этом во вторичной обмотке катушки зажигания возникает электродвижущая сила высокого напряжения. За два Оборота коленчатого вала (один оборот ротора датчика импульсов) на базу транзистора Т1 подается восемь положительных импульсов, вызывающих столько же раз закрытие транзистора Т1 и прерывание тока в первичной обмотке катушки зажигания.
В реальной схеме коммутатора роль транзистора Т2 выполняют нисколько транзисторов, что обеспечивает высокий коэффициент усиление сигнала. Стабилитрон Д4 защищает транзистор Т2 от пробоя током самоиндукции первичной обмотки катушки двигателя. Срабатывает он от электродвижущей силы самоиндукции свыше 180В. Стабилитрон Д5 защищает коммутатор от чрезмерного напряжения в сети автомобиля (при неработающем регуляторе напряжения). При напряжении свыше 16В происходит пробой стабилитрона Д5 и на базу транзистора Т1 подается положительный потенциал, что приводит к закрытию транзистора Т2 и выключению системы зажигания, уменьшению частоты вращения коленчатого вала двигателя. Тем самым генератор не имеет возможности развивать напряжение более 16В. Цепь, состоящая из резистора R3 и конденсатора С2 обеспечивает надежде искрообразование при прокручивании коленчатого вала рукояткой с малой скоростью. Эта же цепь обеспечивает и выключения цепей зажигания и стартер, поэтому он называется комбинированным. На автомобиле ЗиЛ-131 применен выключатель марки ВК-350 он установлен на переднем щите кабины.
Выключатель зажигания объединен вместе с замком и работает только в том случае, если в цилиндр замка вставлен индивидуально подобранный ключ. Ключ имеет три положения: нейтральное - все выключено, первое положение (поворот направо по часовой стрелке) - включена система зажигания и контрольно-измерительные приборы, второе положение - дополнительно с аккумуляторной батареей соединяется реле включения стартера. Второе положение ключа нефиксируемое.
Свечи зажигания (рис75) преобразуют импульсы высокого напряжения в искровой разряд.
На двигателе ЗиЛ-131 установлены неразборные, герметизированные экранированные свечи марки СН307. Такая маркировка не является стандартной, а введена заводом для обозначения свечей, применяемых на этом автомобиле.
Рис. 75. Свеча зажигания: 1 - уплотнительная втулка; 2 - керамическая втулка; 3 - вкладыш; 4 - свеча; 3 - контактное устройство; - экранирующий шланг.
Свеча зажигания состоит из стального корпуса с резьбой и боковым электродом и изолятора с центральным электродом. Величина зазора между электродами 0,5...0,65 мм. Резьба верхней части корпуса М14х1,25. Свеча СН307 сверху закрыта экраном, к которому с помощью накидной гайки подсоединяется экранирующий шланг провода высокого напряжения. Место соединения уплотняется резиновой втулкой 1. Контакт провода высокого напряжения с центральным электродом свечи осуществляется через керамический вкладыш 3 со встроенным в него сопротивлением от 1000 до 7000 Ом и контактное устройство 5, размещенное в керамической втулке 2.
Свечи работают в сложных условиях. Оптимальная температура нижней части изолятора свечи должна быть 500...6000 С.При меньшей температуре возможно отложение нагара на изоляторе свечи и утечка тока высокого напряжения. При более высокой температуре интенсивно подгорают контакты. При этом возможно также калильное зажигание, когда рабочая смесь воспламеняется не от искры в нужный момент, а от нагретого изолятора свечи. Калильное зажигание недопустимо. Поэтому на автомобиле нужно применять только те свечи, которые рекомендованы заводом-изготовителем, и следить за величиной зазора между электродами свечи. При появлении перебоев в системе зажигания надо проверять величину этого зазора и в случае необходимости устанавливать его нормальную величину.
Фильтр 1 (см. рис 70) и конденсатор 6 предназначены для снижения радиопомех от системы зажигания автомобиля.
Резкое изменения силы тока в этой системе, искрение являются причиной возникновения высокочастотных электромагнитных волн, которые создают помехи и нарушают работу радио и телевизионных аппаратов, установленных на автомобиле и вблизи него. Применение экранированного электрооборудования, установка Специальных фильтров радиопомех и конденсаторов обеспечивает ведение радиоприема без помех.
Провод высокого напряжения марки ПВС7 имеет двухслойную изоляцию и жилу из семи стальных нержавеющих проволочек. Провода заключены в экранирующие герметичные шланги. Установка провода высокого напряжения в гнездо крышки катушки зажигания имеет большое значение для нормальной работы системы зажигания. Провод должен быть введен до упора, исключая появление искрения между наконечником провода и выводом крышки.
Провод низкого напряжения марки ПГВА 1,5 мм2 имеет экранирующую оплетку.
След. > Техническое обслуживание системы зажигания |
xn----7sbfkccucpkracijq8iofobm.xn--p1ai
Электронное зажигание: принцип работы системы
Одним из основных условий успешного старта двигателя и поддержания его работы на разных режимах является нормальное функционирование системы зажигания. Современным вариантом исполнения является электронное зажигание, которое обладает рядом существенных преимуществ.
Следует отметить, что на современном этапе все автомобили с бензиновыми двигателями выпускаются исключительно с таким оборудованием. Электронная начинка отличается только в зависимости от уровня оснащения и типа двигателя.
Содержание
Назначение и преимущества электронной конструкции
Важную роль системы воспламенения топлива автомобилей не трудно понять, если перечислить основные требования к ее работе:
- Образование искры в цилиндре для сгорания бензиново-воздушной смеси в конце такта сжатия.
- Обеспечение своевременного момента подачи искры с учетом того, какая схема работы цилиндров реализована в моторе, и с учетом опережения углов зажигания.
- Снабжение искры нужным запасом энергии, достаточным для начала процесса горения. Этот параметр зависит от состава смеси, ее плотности и температуры.
- Сохранение высокого уровня надежности с учетом ресурса двигателя.
Рабочая схема исполнения возможной системы зависит от типа поколения двигателя, и носит следующие названия:
- контактно транзисторная система зажигания;
- бесконтактная система;
- система зажигания на основе микропроцессора.
Особенности различных типов систем
В первом случае импульс тока передается в нужном направлении при соединении любых двух контактов. За счет наличия вращающихся элементов такая система не является надежной. Кроме того, после очередного ремонта приходится проводить точные настроечные действия своими руками.
Так называемое бэсз является следующим поколением в линейке возможных типов системы. Преимущество заключается в возможности передачи импульса большей энергии без потери на нагрев. Также стоит учитывать, что зажигание бесконтактное практически не имеет периодических регулировочных операций.
Принцип работы электронной конструкции основан на распределении импульсов от катушки зажигания напрямую к потребителю.
В конструкцию входят определенные составные устройства:
- устройство выключения зажигания;
- источник питания;
- преобразующая катушка;
- провода и свечи цилиндров.
Устройство электронного типа
Чтобы электронная система зажигания эффективно работала, ею управляет электронный блок. Его назначение выражается в приеме, анализе различных данных, и выдача указаний по формированию актуального режима образования искры. Многочисленные датчики, установленные в разных системах автомобилей, в постоянном режиме собирают следующую информацию:
- Параметры кривошипно-шатунного механизма. Отслеживается положение коленчатого вала и частота вращения.
- Параметры газораспределительного механизма. Контролируется положение распределительного вала.
- Работа системы охлаждения мотора. Уточняется рабочая температура и оценивается нагрузка на мотор.
- Выхлопная система. Контролируется состав отработанных газов.
Дополнительно производители вводят и другие датчики контроля различных параметров. Например, часто фиксируется процесс детонации, что связывается с низким качеством топлива или указывает на изменившееся октановое число бензина.
Дальнейшее совершенствование автомобилей приводит к появлению таких датчиков:
- положения электронной педали газа;
- массового расхода воздуха;
- давления в топливной магистрали.
Такая разносторонняя информация позволяет не только обеспечить качественный процесс искрообразования, но и значительно улучшает топливную экономичность двигателя. В этом случае вопрос – какое лучше зажигание использовать, отпадает сам собой.
Именно по этой причине все большую популярность приобретает вариант тюнинга, когда установка электронного зажигания своими руками востребована для подержанных автомобилей и мотоциклов.
Единственным недостатком совершенного электронного зажигания с множеством датчиков является трудность доработки двигателя под использование электронного блока управления.
Разместить датчики и научить их согласованно работать – непросто. Поэтому стоит рассмотреть более доступную схему – бесконтактного зажигания.
Работа электронного зажигания
Поступающие сигналы датчиков обрабатываются электронным блоком по разработанному алгоритму. В результате система зажигания подает электронный сигнал на воспламенитель. Это устройство производит включение транзистора, что обеспечивает прохождение тока на первичную обмотку катушки зажигания. В нужный момент времени цепь первичного тока разрывается, повышается напряжение накопленного тока на первичной обмотке. Импульс уходит на нужную свечу.
Вторая рабочая схема носит название конденсаторной. Сгенерированная энергия накапливается в конденсаторе и в нужный момент отводится к соответствующей свече.
В процессе работы анализируется скорость вращения коленчатого вала и нагрузка на двигатель. Это позволяет при необходимости корректировать угол опережения зажигания, увеличивая отдачу двигателя.
Установка электронного зажигания на авто
Таким образом, изучив все нюансы работы и преимущества бсз, понятно желание наделить подержанный автомобиль зажиганием по аналогичной схеме. Логично, что переделать двигатель с установкой многочисленных датчиков не получится, но заменить контактную схему на бесконтактный ее тип в состоянии каждый владелец машины.
Готовим запасные части
На начальном этапе подготавливаем все элементы по заранее спланированной схеме:
- Бесконтактный трамблер. Модель подбирают с учетом установленного двигателя на авто. К примеру, модель 1,3 л на ВАЗ-2016 подойдет с индексом 38.3706-01.
- Коммутатор. Устройство для прерывания поступающего тока на катушку зажигания.
- Катушка зажигания. Устройство с преобразованием тока с 11 вольт до 20 кВ для моделей ВАЗ имеет индекс 27.3705.
- Высоковольтные провода подбираем по размеру, а по типу подойдет проводка от современной Нивы.
- Свечи зажигания. Особенностью свечей станет установленный заводской зазор между электродами от 0,7 до 0,8 мм.
Прежде чем устанавливать все элементы бесконтактного зажигания, обязательно подготавливаем набор необходимых инструментов:
- электрическая дрель со сверлом под размер саморезов;
- два самореза;
- крестообразная отвертка;
- набор ключей.
Порядок проведения монтажных работ
Для ответа на вопрос, как установить бесконтактную систему зажигания своими руками, следует изучить последовательность выполнения работ на примере автомобиля ВАЗ шестой серии:
- Используем ранее установленный прерыватель-распределитель. Снимаем крышку и демонтируем высоковольтные провода.
- Выставляем «линию резистора». Короткими поворотами двигателя добиваемся положения резистора – перпендикулярного по отношению к корпусу мотора. Далее вращение коленчатого вала не допускается.
- Делаем отметку размещения трамблера. На корпусе двигателя наносим штрих напротив средней метки устройства регулировки опережения угла зажигания.
- Проводим демонтаж ранее установленного прерывателя-распределителя. Отсоединяем его от катушки зажигания и в месте установки на двигатель.
- Устанавливаем купленный бесконтактный трамблер. Снимаем верхнюю крышку, и садим в гнездо с учетом ранее установленной метки, закрепляем. Устройство должно быть заранее отрегулировано.
- Проводим замену катушки зажигания на место ранее установленного устройства. Подводим питающие провода.
- Размещаем все провода по своим местам – высоковольтные провода к свечам зажигания, провод между трамблером и катушкой.
- Монтируем коммутатор. Для этого в свободной зоне подкапотного пространства просверливаем отверстия под крепление, и после размещения – включаем в общую схему.
- Перед запуском двигателя еще раз проверяем правильность подключения в соответствии со схемой. Ее легко сделать самому или найти в комплекте поставки оборудования.
После запуска двигателя проверьте корректную работу двигателя в разных режимах. Это относится к устойчивости на холостых оборотах, работе под нагрузкой. Оцените расход топлива и состав отработанных газов. Только после этого будьте уверены в высоком качестве проделанной работы.
С уважением, Максим Марков!
carsmotion.ru