Число оборотов двигателя на холостом ходу


Обороты холостого хода, проверка и регулировка

 

Холостой ход регулируется на заводе и дополнительной регулировки не требуется.

Только если содержание СО после длительной эксплуатации перестает соответствовать нормам, карбюратор следует отрегулировать.

Карбюратор

Перед проверкой и регулировкой следующие детали должны быть в безупречном состоянии:

Порядок выполнения

При установленном сервоуправлении установите передние колеса в среднее положение. Следует взвести ручной тормоз.

Батарея должна быть заряжена.

Уровни двигательного масла и охлаждающей жидкости должны соответствовать требуемым значениям.

Все вакуумные шланги должны быть подключены.

Система всасывания воздуха должна быть герметична.

Цилиндры должны иметь хорошую компрессию.

Система возврата отработавших газов должна работать безупречно.

Дроссельная заслонка должна хорошо открываться и закрываться.

Отключите все потребители электроэнергии, например, фары, вентилятор отопителя, обогреватель заднего стекла и т. д.

Вентилятор охлаждения не должен работать.

Прогрейте двигатель, т. е. стрелка дистанционного термометра должна стоять в среднем положении. Во время регулировки двигатель должен сохранять свою рабочую температуру, т. е. двигатель в паузах следует запускать, чтобы снова прогреть его. Двигатель должен работать с числом оборотов менее 1000 об/мин.Подключите тахометр согласно инструкции по эксплуатации.

Запустите двигатель и посмотрите со стороны смотрового окошка карбюратора проверьте, чтобы уровень топлива находился на средней линии.

Разгоните двигатель на две или три минуты до числа оборотов 2000 - 3000 об/мин и затем дайте поработать одну минуту на холостом ходе.

Снимите на тахометре значение холостых оборотов. Двигатель должен работать с числом оборотов 750±50 об/мин.

Если число оборотов холостого хода не соответствует требуемому значению, вращайте винт, пока значение не будет лежать в требуемых пределах. Если значение холостого хода отрегулировать не удается, а все перечисленные выше системы в хорошем состоянии, может потребоваться замена карбюратора.

Заглушите двигатель. Тахометр остается подключен.

Посередине крышки выпускного коллектора отключите штекер лямбда-зонда. Второй штекер следует отключить от клапана регулировки всасываемого воздуха. Он находится в показанном на иллюстрации положении с правой стороны катушки зажигания перед стойкой подвески (если стоять перед двигательным отсеком).

Справа, рядом с теплозащитным экраном выпускного коллектора, можно увидеть заборную трубку для измерения содержания СО. Снимите колпачок трубки и подключите прибор для измерения СО в соответствии с инструкциями. Соединение между измерительным прибором и трубкой должно быть герметично.Запустите двигатель, разгоните его до 2000 - 3000 об/мин и затем верните на холостые обороты. Считайте показания прибора. Значение должно лежать в пределах 1.0±0.5%. Если содержание СО не соответствует требуемому значению, следует вращать регулировочный винт, вставленный в блок дроссельных заслонок. Он закрыт пломбой, чтобы не допустить несанкционированного вращения. Так как карбюратор необходимо снимать кроме прочего и для того чтобы высверлить пломбу, эту работу рекомендуется проводить специализированной мастерской. На иллюстрации показано местонахождение пломбы. Если работа выполняется самостоятельно, нельзя сверлить пломбу слишком глубоко. После высверливания пломбы снова установите карбюратор и вращайте находящийся внутри винт обычной отверткой, пока значение СО не будет лежать в необходимых пределах. После регулировки еще раз проверьте холостой ход и в заключение вставьте в отверстие новую пломбу. Карбюратор для этого снимать не требуется.

Автомобили без катализатора

Холостой ход регулируется, так же как и на моделях с катализатором, однако для регулировки состава смеси необходима специальная отвертка, которая вставляется в засечки регулировочного винта (см. иллюстрацию ниже), тахометр и для достижения лучших результатов прибор для измерения содержания СО. В случае необходимости работы могут выполняться и без последнего прибора, если четко следовать указаниям, однако следует помнить о законах об охране окружающей среды.

Порядок выполнения

Во-первых отрегулируйте холостой ход.

Произведите уже описанные подготовительные операции и снимите показания тахометра. Если холостые обороты лежат вне пределов 750±50 об/мин, холостой ход необходимо отрегулировать. Регулировочный винт холостых оборотов выглядит также, как показано на иллюстрации. Проверьте содержание СО при помощи соответствующего прибора, при необходимости отрегулируйте.

 

Без измерителя содержания СО

Порядок выполнения

Проверьте, чтобы двигатель имел свою рабочую температуру.

Для регулировки состава смеси имеется винт под винтом регулировки холостого хода. Полностью вверните этот винт с помощью специальной отвертки (не слишком сильно) и выверните на два полных оборота. Холостые обороты должны при этом увеличиться на 50 об/мин, по сравнению с уже имеющимся значением.

С помощью специальной отвертки поверните регулировочный винт состава смеси, чтобы двигатель работал с максимально возможным числом оборотов. После этого вверните винт регулировки холостого хода, пока двигатель не будет работать с соответствующим Спецификациям числом оборотов. Содержание СО должно более менее соответствовать требуемому значению, т. е. должно лежать в пределах 1.5±0.5%.С помощью измерителя содержания СО

Порядок выполнения

Отрегулируйте холостой ход, как уже было описано.

Проверьте, чтобы двигатель еще имел свою рабочую температуру.

Подключите измеритель содержания СО. Шланг должен быть вдвинут в выхлопную трубу минимум на 40 см.Через смотровое окошко карбюратора проверьте, чтобы уровень топлива стоял на средней линии.

С помощью специальной отвертки поверните винт регулировки состава смеси так, чтобы прибор показывал значение 1.5±0.5%.

Повторите описанные регулировки, пока содержание СО и число оборотов не будут соответствовать требуемым значениям.

Система многопозиционного впрыска

Регулировка холостого хода и содержания СО обычно поддерживается автоматически прибором управления, однако возможно, что нужно проводить регулировку, если после длительной эксплуатации холостой ход не соответствует требованиям. Лучше всего обратиться в мастерскую Nissan, однако если четко следовать следующему описанию, можно отрегулировать холостой ход самостоятельно.

Перед проверкой и регулировкой должны быть выполнены следующие условия, т. е. нижеперечисленные элементы и системы должны быть в безупречном состоянии.

Порядок выполнения

Установите передние колеса в среднее положение, затяните ручной тормоз.

Батарея должна быть хорошо заряжена.

Система зажигания должна находиться в хорошем состоянии и работать безупречно.

Уровень двигательного масла и охлаждающей жидкости должны соответствовать требуемым значениям.Все вакуумные шланги должны быть подключены.

Система всасывания воздуха должна быть герметична.

Компрессия цилиндров должна соответствовать требуемым значениям.

Дроссельная заслонка должна полностью открываться и закрываться.

Все предохранители должны быть вставлены.

Выключите все потребители электроэнергии, т. е., например, фары, вентилятор отопителя, обогреватель заднего стекла и т. д.

При измерении содержания СО вставьте измерительную трубку прибора в выхлопную минимум на 40 см.

На автоматической трансмиссии установите рычаг в положение «N».

Отключите кондиционер.

Вентилятор охлаждения работать не должен.

При проверке холостого хода действуйте следующим образом:

Прогрейте двигатель, т. е. стрелка дистанционного термометра должна быть в среднем положении. При регулировке двигатель должен иметь рабочую температуру, т. е. двигатель в паузах снова запускайте и прогревайте. Двигатель должен работать с числом оборотов менее 1000 об/мин.

Заглушите двигатель и подключите тахометр согласно инструкции.

На выключенном двигателе найдите датчик положения дроссельной заслонки (см. иллюстрацию) и отключите штекер. Запустите двигатель.

Разгоните двигатель на 2 или 3 минуты до 2000 - 3000 об/мин и затем оставьте на две минуты работать на холостом ходу.

Снимите показания с тахометра. Двигатель должен работать с числом оборотов 800 об/мин.

Если значение холостого хода не соответствует требуемому, поверните винт (1) (см. иллюстрацию ниже), пока число оборотов не достигнет требуемого значения. При вращении влево число оборотов уменьшается, при вращении вправо увеличивается. Если значение холостых оборотов установить не удается, а все вышеназванные системы и элементы в хорошем состоянии, следует обратиться в мастерскую Nissan.

Вид клапана дополнительного воздуха и сопутствующих компонентов

Заглушите двигатель. Тахометр остается подключен.

Заглушите двигатель, подключите штекер датчика положения дроссельной заслонки и снова запустите двигатель.Разгоните двигатель 2-3 раза до 2000 об/мин и снимите показания холостого хода а тахометре. Число оборотов должно лежать в пределах 850±50 об/мин. Неудовлетворительный холостой ход может быть обусловлен клапаном дополнительного воздуха, его кабелями или электронным прибором управления.

Измерьте содержание СО в соответствии с указанием к измерительному прибору. Если значение не равно 0.5 %, нужно найти причину этому в мастерской. Точное измерение и регулировка содержания СО сопряжена с некоторыми трудностями и поэтому не описывается.

Система центрального впрыска

Система впрыска регулирует холостой ход автоматически на заданное значение.

Холостой ход регулируется точной регулировкой количества воздуха, который обходит дроссельную заслонку через клапан дополнительного воздуха. Клапан дополнительного воздуха включается и выключается, чтобы точно управлять количеством воздуха. Датчик угла поворота коленвала отслеживает точное число оборотов двигателя и сообщает информацию в прибор управления. На основании полученных данных прибор управления включает или выключает клапан дополнительного воздуха, чтобы поддерживать число оборотов холостого хода на предварительно запрограммированном значении. Другие факторы, как например, прогрев двигателя, движение накатом, расход топлива и нагрузка двигателя (кондиционер, электрическая нагрузка) автоматически оцениваются и компенсируются.

Хотя обычно это не требуется, холостой ход может проверяться и регулироваться. Перед проверкой и регулировкой должны быть выполнены требования, приведенные для системы многопозиционного впрыска. Проверка холостого хода осуществляется так же, как описано выше для карбюратора. Автомобили с ручной и автоматической коробкой передач имеют одинаковое число оборотов холостого хода.

Воздушный фильтр

Воздушный фильтр имеет бумажный элемент, который не подлежит очистке. Фильтрующий элемент должен заменяться каждые два года или через каждые 60000 км. Для снятия элемента удалить крышку и вынуть старый элемент. На рис. выше показано снятие фильтрующего элемента на обоих двигателях. Собравшуюся пыль следует удалить из корпуса фильтра с помощью тряпки. Вставить новый фильтрующий элемент и установить крышку на место.

Источник 

www.xn--55-6kcajt1cpvihe.xn--p1ai

Регулировка и проверка оборотов холостого хода

Регулятор холостого хода настраивается на заводе, он не нуждается в дополнительной регулировке. Карбюратор следует заново отрегулировать в том случае, если уровень СО после долгой эксплуатации не соответствует норме.

регулятор холостого хода

Перед тем, как произвести регулировку, нужно проследить, что бы детали были в безупречном состоянии.

Порядок выполнения регулировки

В том случае, если у Вас установлен сервоуправления поверните руль, пока передние колеса не в станут в среднее положение. Автомобиль должен стоять на ручном тормозе. Аккумулятор должен быть заряжен. Уровни масла в двигателе и охлаждающей жидкости должны соответствовать нужным значениям.

  1. Вакуумные шланги нужно подключить все до одного.
  2. Свою герметичность должна сохранить система всасывания воздуха.
  3. В цилиндрах должна быть хорошая компрессия.
  4. Система возврата выхлопных газов должна быть в хорошем состояние.
  5. Заслонка дросселя должна хорошо закрываться и открываться.

Вам придется выключить потребители электроэнергии. Не должен работать даже вентилятор охлаждения.

Двигатель необходимо прогреть, стрелка термометра должна оставаться в среднем положении. В процессе работы двигатель должен сохранить такую температуру, Вы должны будите запускать двигатель, чтобы прогреть его заново. Обороты двигателя должны быть менее 1000 об/мин.

Тахометр подключается согласно инструкциям по эксплуатации. Вам нужно будет запустить двигатель, и посмотреть со стороны смотрового окошка карбюратора и проверить, что уровень топлива находится на средней линии.После обороты двигателя нужно увеличить до 2000 — 3000 об/мин, такие обороты нужно держать от двух или трёх минут, а затем дайте поработать минуту на холостом ходу.Посмотрите на тахометр, обороты двигателя должны быть примерно 750±50 об/мин.В том случае, если обороты не соответствует необходимому значению, Вам придётся вращать винт, пока значение не встанет в требуемые пределы. А если же холостой ход отрегулировать не удастся, но вышеперечисленные системы работают без сбоев, то, скорее всего вам понадобится замена карбюратора.

Глушите двигатель, тахометр оставьте подключенным.

После Вам понадобится отключить штекер лямбда-зонда посередине крышки выпускного коллектора. Второй штекер нужно отключить от клапана регулировки всасываемого воздуха. Он находится на правой стороне катушки зажигания почти перед самой стойкой подвески. Справа, около теплозащитного экрана выпускного коллектора, располагается заборная трубка, задача которой измерение содержание СО. Колпачок трубки снимается и подключается прибор для измерения СО, при подключение нужно соблюдать инструкцию. Герметичным должно быть соединение между трубкой и измерительным прибором.

Позже нужно запустить двигатель, и разгоните его до 2000 — 3000 об/мин, а затем вернуть на холостые обороты. Показания прибора должны быть в пределах 1.0±0.5%. Если содержание СО не соответствует положенному значению, Вам придется вращать винт регулировки, вставляющийся в блок заслонок дросселя. Он, закрывается пломбой, чтобы не допускать самопроизвольно вращения. Есть одна причина, из-за которой нужно снять карбюратор, для того, что бы высверлить пломбу, эта работа проводится в специально предназначенной для этого мастерской. Если работу Вы производите самостоятельно, не сверлите пломбу слишком глубоко. После того, как высверлите пломбу, карбюратор снова устанавливается и стоящий внутри винт вращается обычной отверткой, пока значение СО не установится в нужных пределах, в отверстие нужно вставить новую пломбу.

Карбюратор для этого снимать не нужно.

Автомобили, на которых отсутствует катализатор. На таких автомобилях холостой ход можно регулировать, по такой же схеме, как и на моделях с установленным катализатором, однако, чтобы отрегулировать состав смеси понадобится специальная отвертка, которая должна вставляться в засечки регулировочного винта, для того, чтобы получить максимально лучший результат воспользуйтесь тахометром и прибором измеряющим содержания СО. Если Вы не имеете прибор, работа может выполняться и без него, если соблюдать последовательность, однако, Вы должны помнить об охране окружающей среды.

Во-первых, нужно отрегулировать холостой ход. Вам придется проделать вышесказанные подготовительные операции и снять показания тахометра. В случае, если обороты вне пределов 750±50 об/мин, придется регулировать.

Порядок выполнения

  1. Прогрейте, двигатель чтобы рабочая температура держалась все время.
  2. Для того, что бы отрегулировать поступающую смесь, нужно воспользоваться винтом, которым регулируется холостой ход. Нужно полностью ввернуть винт, при помощи специальной отвертки, сильно затягивать его не нужно, после болт выворачивается на два полных оборота. В итоге, обороты холостого хода увеличатся на 50 об/мин, по сравнению с предыдущим значением.При помощи этой же отвертки поворачивается регулировочный винт, изменяющий состав смеси, после настройки двигатель начнет работать с максимально возможным количеством оборотов. После этого винт нужно ввернуть. Нужно помнить и о количестве СО, соответствие требуемому значению равно 1.5±0.5%.

Тоже самое можно сделать при помощи прибора измеряющего содержания СО

Порядок выполнения

Вам так же предстоит отрегулировать холостой ход, как уже было описано, проверить, чтобы двигатель сохранял рабочую температуру.Прибор для измерения СО вдвигается в выхлопную трубу (минимальная глубина 40 см). Через смотровое окошко нужно проверить уровень топлив, он должен стоять на средней линии.Пользуясь специальной отверткой, регулировочный винт состава смеси поворачивается так, чтобы показания прибора имели значение 1.5±0.5%.

Система многопозиционного впрыска

Регулируется холостой ход и содержания СО обычно автоматически, специальным прибором, однако существует такой вариант, при котором регулировку придется проводить вручную. Лучше всего Вам настроят все в мастерской, однако если внимательно изучить описание, тогда Вы сможете самостоятельно отрегулировать холостой ход.

Перед регулировкой и проверкой необходимо выполнить некоторые условия, все части системы должны находиться в неплохом состояние.

Порядок выполнения

  1. Машина ставится на ручник, а колеса поворачиваются в среднее положение.
  2. Аккумулятор должен быть заряжен.
  3. Система зажигания должна работать безупречно, то есть находиться в отличном состояние.
  4. Уровень охлаждающей жидкости и масла в двигатели, обязательно должны соответствовать нужным значениям.
  5. Свою герметичность должна сохранить система всасывающая воздух.
  6. Требуемые значения должна сохранить компрессия в цилиндрах.
  7. Должна идеально выполняться работа дроссельной заслонки.
  8. Все до единого, предохранителя должны работать.

В том случае, если у Вас коробка автомат рычаг ставится в положение нейтралки. Кондиционер нужно отключить.

Проверка холостого хода

При проверке холостого хода действуйте следующим образом:

Двигатель прогревается, пока стрелка термометра не окажется в среднем положении. Во время регулировки двигателя, должна поддерживаться рабочая температура, количество оборотов должно быть не ниже 1000 об\м. После уже на заглушенном двигателе отключите штекер датчика положения дроссельной заслонки и запускайте двигатель.

Посмотрите на тахометр, двигатель должен работать с частотой 800 об/мин. После обороты двигателя 2-3 раза увеличить до 2000 об/мин и снять показания холостого хода. Число оборотов должно быть около 850±50 об/мин. В большинстве случаев, перед тем, как проверять и регулировать холостой ход нужно выполнить все требования, приведенные системой многопозиционного впрыска.

Воздушный фильтр

Фильтр воздуха имеет бумажную основу, который не в коем случае нельзя чистить. Фильтр нужно заменять через каждые два года, 60000 км. Для того, что бы сменить его, нужно снять защитную крышку, после вытащить старый фильтр и поставить новый.

Спрашивайте в комментариях. Ответим обязательно!

etlib.ru

Обороты двигателя.

Обороты двигателя.

Подробности Автор: Владимир Бекренёв Просмотров: 7604

Почему изменяются обороты двигателя в процессе эксплуатации автомобиля? Приехать в автосервис владельца автомобиля часто вынуждает факт изменения оборотов двигателя при занижении или завышении привычных оборотов. В первом варианте владельцы замечают, что обороты мотора постепенно занижаются. Это обстоятельство приводит к некомфортной тряске двигателя, вибрации в салоне автомобиля и посторонним шумам. В движении, при подъезде к светофору, случаются внезапные остановки мотора. Во втором варианте, владельцы обращаются в сервис по факту увеличения оборотов мотора.

Например, если обороты двигателя остаются завышенными после прогрева. Включение и переключение передач в АКПП, в таком положении происходит с ударами, а это уже губительно для автоматических коробок передач и вариаторов. Эти моменты пугают водителей, и мотивируют обратиться в сервис. Разберем суть проблемы. Почему изменяются обороты двигателя? Что является причиной изменения оборотов? Итак, в любом двигателе для смазывания деталей используется моторное масло. Масло заливается в двигатель и «хранится» в поддоне. Вся масляная система герметична. При работе мотора из камеры сгорания, в которой нет полной герметичности, неизбежно происходит прорыв газов в картер - так образуются картерные газы. Если мотор новый и исправен, то количество газов будет мизерным. Если же мотор изношен (с приличным пробегом), то в картере будет создаваться повышенное давление, что впоследствии неизбежно приведет к прорыву газов через сальники или уплотнения. Для уменьшения влияния картерных газов на масло и для устранения процесса образования повышенного давления в картере мотора была придумана и организована в двигателе принудительная линия вентиляции картера. Картерные газы откачиваются и направляются прямиком во впускной коллектор и к дроссельной заслонке.Для справки «на пожилых моторах явление повышенного давления газов хорошо заметно. При серьезных выработках в цилиндропоршневой группе - при износе цилиндров и поршневых колец линия вентиляции не справляется. Двигатель весь «потеет». Всюду видны масляные потёки.

 

Плюс ко всему из шлангов линии вентиляции или из-под масляного щупа можно наблюдать дым при демонтаже шлангов или при подъеме щупа.

 Механики в таких случаях говорят - двигатель «сапунит». Это косвенно указывает на износ деталей и необходимый двигателю капитальный ремонт. Естественно в откачанном из картера воздухе присутствуют масляные пары, которые прилипают к дроссельной заслонке, и к частям клапана холостого хода. И все бы было хорошо, если бы двигатель питался идеально чистым воздухом. Но на практике, хоть и имеется в машине воздушный фильтр, его заслона мелкой пыли недостаточно. Пыль прилипает к замасленной заслонке, и к обходному каналу холостого хода - постепенно его загрязняя. При этом процессе обороты двигателя постепенно уменьшаются. Далее на фото примеры напыления на заслонках и на клапанах холостого хода.

  

  

  Мудрые инженеры решили и эту проблему. Они научили компьютеры моторов оценивать процесс изменения оборотов, и при помощи электронных клапанов или электронных дроссельных заслонок приводить обороты в норму. Этот процесс корректировки длиться месяцами и без участия водителя. Пока не произойдет сброс накопленных в процессе эксплуатации данных из бортового компьютера. Как это может произойти - очень просто. Один из вариантов - пропадание питания с ЭБУ (справедливо к моторам концерна Toyota, Honda, MMC и др.) При этом пропадает и накопленная компьютером память. Задумали вы просто сменить АКБ и получили проблему. Двигатель запускается и глохнет. В памяти компьютера остаются только стандартные данные об углах заслонки, без поправок на загрязнение. В такой ситуации неизбежно возникает необходимость очистки канала холостого хода и дроссельной заслонки, иначе мотор будет работать на очень низких оборотах. Но не для всех марок автомобилей и моторов справедливо такое влияние снятия АКБ. Или другой вариант. На автомобилях, где обороты не зависят от сброса питания - вы чистите заслонку - обороты становятся высокими. Самостоятельно, без применения автомобильного сканера, обороты занизить до номинальных – вы уже не сможете и неизбежно потратитесь на визит в автосервис. Очистка дроссельной заслонки - процесс не сильно затратный и вполне доступен любому владельцу автомобиля. Механики легко выполняют эту процедуру. Очистка производится на заглушенном моторе, при помощи очистителя карбюратора.На фото очищенные заслонки.

  

После очистки все детали собираются, заслонка продувается сжатым воздухом. Можно легко очистить заслонку и без применения очистителей - используя ватные палочки. Проблемы могут возникнуть после очистки. На некоторых марках японских автомобилей «новые» обороты нужно прописать (адаптировать). Делается эта процедура авто сканером или ручным методом. Ручной метод производится строго по прописанному алгоритму и по секундомеру. И не всегда завершается с одного раза. Процедура ручного обучения описана в мануалах по ремонту. Как пример на Тойоте для адаптации достаточно после очистки отключить повторно питание с ЭБУ - снять минусовую клемму АКБ, и завышенные обороты снизятся - придут в норму. На «вариаторных» Тойотах с коробкой CVT такой вариант уже не пройдет. Придется использовать автосканер, и программу дилерского уровня. А на некоторых праворульных машинах (Toyota Vitz, Mark X , Voxy) для адаптации оборотов используется только японская программа. Сначала производится общий сброс сканером, а затем калибровка давления в вариаторе и калибровка «G- сенсора». Контролировать процесс калибровок можно на мониторе сканера. Несколько лет назад дилерское оборудование было финансово недоступно. Диагносты, для решения проблемы завышенных оборотов, нашли оригинальный способ их занижения. Они перепрограммировали микросхему в ЭБУ двигателя. Записывали дамп памяти, переписанный с ЭБУ исправного автомобиля.

 На автомобилях ММС до 2003года выпуска обороты прописываются несложным методом манипуляций с отключением питания АКБ и замком зажигания. На более новых автомобилях адаптация производится только сканером. У ниссана «прописка» происходит как сканером, так и ручками. Но с оговоркой, что двигатель должен быть полностью исправен. Свечи, фильтры, расходомеры, топливная система - все должно правильно функционировать. Иначе завершения процедуры «адаптации оборотов» не произойдет. Очень сложная процедура «прописки» на моторах с двумя заслонками. Синхронизировать их бывает крайне затруднительно. На фото пример завершённой процедуры адаптации оборотов на сканере Consult2, и фото запуска процедуры адаптации на сканере G-scan.

 

Другая проблема – повышенные и плавающие обороты. Причин возникновения масса. В большинстве случаев виноват интернет и самоуверенность владельцев. Как пример, были плавающие обороты или пониженные обороты, тряска. Почитали интернет, оценили простоту процесса и сами помыли заслонку. В итоге получили завышенные обороты мотора. Заручившись мнением гаражных умельцев - мол, покатайся и все придет в норму. Решили покататься на повышенных оборотах и перегрузили автомат (АКПП). Результат - незапланированный и дорогой ремонт. Винить остается только себя. Завышенные обороты, могут возникнуть и возникают по причинам неисправностей в моторах. С такими проблемами нужно досконально разбираться в автосервисе на диагностике с правильным оборудованием. Например, Mazda страдает срывом прокладки по впускному коллектору, порванными резиновыми гофрированными патрубками, загрязнением клапанов холостого хода, расслоением шлангов вентиляции картера. Старые Nissan славились сгоревшими моторами холостого хода, у Toyota клинят клапаны VVTi и клапан холостого хода, у ММС срывает магниты в заслонках, отгорают обмотки в клапанах холостого хода или не закрывается мотор EGR,у Honda также клинит клапан холостого хода и EGR. В итоге - процесс очистки клапанов или моторов холостого хода не такой уж и простой. Как может показаться на первый взгляд. И правильней чистку все же доверить профессионалам. Например - на Тойоте, при обильной промывке клапана, вымывается смазка из опорных подшипников штока - закрывающей шторки канала холостого хода. В результате происходит полное заклинивание штока. И при последующем запуске двигателя обороты остаются завышенными. Есть подводные камни и для ремонтников. В некоторых случаях производить очистку заслонок просто опасно для ремонтника. Если владелец эксплуатировал автомобиль с грязным, дырявым воздушным фильтром или вовсе без фильтра есть вероятность фатальной выработки диска дроссельной заслонки по краям. Этим славятся ММС и Toyota с моторами больших объемов. После очистки вы получаете «просвет» при полностью закрытой заслонке. При этом обороты становятся примерно 1200. И уронить их до нормы можно будет только после замены диска заслонки. Хотя в таких случаях ремонт все же возможен. Неплотности закрытия диска заслонки попросту закрашивают специальной краской. Такой метод ремонта авантюрный, но все же он работает.

Выводы.

Проблемы моторов с оборотами возникают по различным причинам и неисправностям, независящим от владельца. Предупредить проблему можно на плановой диагностике у проверенного диагноста. Например, при подготовке автомобиля к зиме или к лету. Самостоятельное решение проблем с оборотами возможно, но не всегда приводит к должному результату. И порой, саморемонт оборачивается против владельца. Повторюсь - самостоятельная очистка заслонки приводит, как правило, к повышенным оборотам или к полному заклиниванию шторки клапана холостого хода. А вот уронить обороты до нужного уровня без сканеров и знаний бывает очень сложно. Если автомобиль оборудован CVT коробкой с дополнительными системами улучшенной управляемости, то и просто невозможно.Для предотвращения непредвиденных ситуаций с оборотами на автомобиле, необходимо планово очищать дроссельную заслонку или клапана холостого хода. Желательно производить эту процедуру в автосервисе. В автосервисе с правильной технической поддержкой вашего автомобиля и с ремонтниками, которые понимают суть процессов и умеют решать такие проблемы моторов. Автокомплекс «Южный» в Хабаровске предлагает своим клиентам услугу по промывке дроссельных заслонок, клапанов холостого хода. Мы восстановим правильные обороты вашего двигателя и произведем все необходимые для этого адаптации и прописки на правильном оборудовании, с гарантией работ и по приемлемым ценам.

Добавить комментарий

bvy.su

Причины вибрации оборотов на холостом ходу

Итак, какие проблемы встречаются наиболее часто при работе двигателя на холостом ходу? Эксперты выделяют две наиболее распространенных неисправности. Первую из них зарубежные специалисты называют авиационным термином – «помпаж». Под этим термином имеются в виду любые резкие перепады оборотов вверх или вниз. Иногда эта проблема возникает после резкого торможения, но не менее редко резкое снижение оборотов происходит во время обычной стоянки, вплоть до полной остановки двигателя. Другими словами – это целая группа проблем, которая может быть вызвана самыми разными причинами.

 

Вторая проблема – нестабильность холостого хода, при которой обороты двигателя медленно изменяются в сторону увеличения и снижения.

 

Перечень возможных причин, которые вызывают данные проблемы, может быть очень широким.

 

 

Вот только наиболее распространенные из них:

 

• Замок трансмиссии не фиксирует рычаг АКПП

• Подсос воздуха

• Клапан EGR заклинил в открытом положении

• Загрязнение и залипание клапана IAC, который отвечает за регулирование рабочей смеси (P0505)

• Неправильная работа или поломка датчика температуры двигателя

• Проблема с датчиком детонации

• Загрязнение каналов EGR

• Засорение системы перемены фаз газораспределения

• Воздух в системе охлаждения

• Разъем MAF имеет нестабильное соединение, либо некорректно работает сам датчик MAF

• Проблемы с давлением в топливной системе

• Засорение топливного фильтра

• Забитая либо засоренная система выхлопа отработавших газов

• Неработающий датчик положения коленчатого вала (P0336)

• Обрыв в цепи датчика усилителя руля

• Постоянное включение/выключение кондиционера из-за низкого уровня хладагента

• Неисправность датчика положения дроссельной заслонки (TPS)

• Засорение каталитического нейтрализатора

• Пропуски зажигания

• Некорректная работа клапана PCV (вентиляция выхлопных газов

• Высокое давление масла в системе (в дизельных двигателях).

 

Итак, причин очень много, и не мешало бы нам систематизировать информацию и выделить наиболее вероятные источники неисправности. Именно на них следует обратить внимание в первую очередь при диагностике двигателя.

 

Проблема:

Резкое колебание оборотов коленвала на холостом ходу.

 

Что проверяем?

1. Цепь управления топливным насосом.

2. Свечи зажигания.

3. Стабильность зажигания.

4. Состояние инжекторов.

5. Блокировку замка АКПП.

 

Проблема:

Высокие обороты холостого хода.

 

Что проверяем?

1. IAC.

2. Силовую цепь блока управления двигателем (ECM).

3. Цепь управления кондиционера.

4. Клапан PCV

 

Проблема:

Низкие обороты холостого хода.

 

Что проверяем:

1. IAC.

2. Силовую цепь блока управления двигателем (ECM).

3. Цепь управления кондиционера.

4. Клапан PCV.

5. Состояние инжекторов.

 

Проблема:

Плавающие обороты холостого хода.

 

Что проверяем?

1. IAC.

2. Блок управления двигателем (ECM).

3. Клапан PCV.

4. Цепь управления топливным насосом.

5. Свечи зажигания.

6. Стабильность системы зажигания.

7. Состояние инжекторов.

 

Теперь рассмотрим подробно каждый из этих пунктов.

 

 

Неисправный датчик положения коленвала

 

Как правило, неисправность датчика положения коленвала сопровождается кодом ошибки P0336 код. На многих двигателях в качестве датчика положения коленвала используется двухпроводной сенсор с сигнальным проводом и «землей». В датчике установлен постоянный магнит либо трехпроводной датчик Холла, который устанавливается в блок двигателя соосно зубчатому колесу, установленному на коленвале. В процессе вращения колеса магнит формирует сигнал переменного тока, передает его в блок управления, который и определяет по данному сигналу частоту вращения двигателя.

 

В зависимости от конструкции двигателя и модели, число зубьев звездочки коленвала может отличаться. Имейте в виду, что даже в пределах одного семейства двигателей (GM LS, например) количество зубьев может быть разным. Соответственно, установка звездочек с другим количеством зубцов – не допустима.

 

Показатели датчика положения коленчатого вала, как и сигналы датчика положения распредвалов, используются блоком управления двигателем для регулировки впрыска топлива и подачи искры. Естественно, любая ошибка в показателях датчика легко может стать причиной пропуска зажигания, который приводит к резким и кратковременным провалам оборотов холостого хода (которые многие автовладельцы описывают как тряску двигателя).  Кроме того, неправильные показатели датчика положения коленвала могут стать причиной неудавшегося запуска двигателя или периодической остановки двигателя на холостом ходу. Искажение показателей датчика положения коленвала довольно часто связаны с неисправностью звездочки: износ или поломка зубцов, налет металлических частиц на зубцах и так далее. Кроме того, довольно распространенной причиной неправильной работы датчика является нарушение электропроводки. На большинстве двигателей звездочка запрессована на коленвале, но в процессе эксплуатации она может расшататься и выйти с посадочного места. Происходит это не часто, однако если возникло такое подозрение, его надо немедленно проверить и в случае обнаружения устранить, поскольку свободное вращение звездочки на коленчатом валу может вызвать уже не только пропуски зажигания, но и механические повреждения внутри двигателя – повреждение блока цилиндров или юбки поршня. Если данная проблема выявлена – не пытайтесь самостоятельно заменить звездочку коленвала. Чаще всего для этого требуется специальный дилерский инструмент и диагностическое оборудование. Лучше всего направить такой автомобиль в дилерский центр либо заменить коленчатый вал целиком, вместе с установленной звездочкой.

 

 

Неисправный датчик давления в гидросистеме  ГУР

 

Один из автомобилей, в котором данная проблема встречается наиболее часто, – Honda Odissey. Провод датчика подвержен коррозии. Итогом этого является нестабильный сигнал, который ECU двигателя воспринимает как активную работу гидроусилителя в ситуации, когда он неподвижен. Блок управления начинает регулировать обороты двигателя, и сетка тахометра начинает рыскать. Проблема решается путем замены проводки.

 

 

Воздух в системе охлаждения

 

Для того, чтобы датчик температуры ОЖ показывал правильную температуру, он должен быть постоянно погружен в жидкость. В том случае, если в системе возникли воздушные пробки, возникает вероятность того, что горячий воздух может попасть на чувствительный элемент датчика и привести к колебанию температуры. В свою очередь блок управления двигателем (ECU) начнет менять состав топливо-воздушной смеси, дабы приспособиться к «изменению» работы мотора. Убедитесь в том, что система охлаждения заполнена и удалите воздушную пробку.

 

 

Проблемы с датчиком положения дроссельной заслонки

 

Если изношен вал привода дроссельной заслонки, необходимо проверить расположение датчика дроссельной заслонки TPS. Он должен находиться на самом конце вала. Любое отклонение положения вала привода дросселя, вызванное износом, повлияет на сигнал, генерируемый датчиком положения дроссельной заслонки.  ECU может расценить это как реальное изменение положения дроссельной заслонки. В соответствии с этим блок управления подаст сигнал на увеличение подачи топлива, что приведет к переобогащению топливной смеси. Аналогичная проблема возникает в случае поломки датчика или нарушения в цепи питания, плохого контакта. Проверить работоспособность датчика можно следующим образом. Заглушите двигатель (ключ в положение – OFF), подключите мультиметр к датчику и измерьте напряжение при отпущенной педали акселератора. Затем несколько раз нажмите на акселератор и проверьте изменение напряжения. Если после этого показатели напряжения изменятся, то следует проверить состояние вала дроссельной заслонки и проводку датчика TPS.

 

 

Неисправность контрольного воздушного клапана (IAC)

 

Для обогащения смеси при запуске инжекторных двигателей используется, так называемый, контрольный воздушный клапан (IAC - Idle Air Control Valve или, как он еще называется, By-Pass Air Control Valve/Solenoid, AIS (Automatic Idle Speed), ISC (Idle Speed Control). Суть его работы - формирование воздушного потока при закрытой дроссельной заслонке. В обычном положении этот клапан закрыт и открывается только при прогреве двигателя для увеличения расхода воздуха (воздушная магистраль этого клапана идет во впускной коллектор в обход дроссельной заслонки). Как правило, при возникновении проблем с клапаном IAC блок двигателя выдает ошибку P0505. При этом двигатель может вести себя по-разному: глохнет на холостых оборотах, либо, наоборот, поднимает обороты. Для срабатывания клапана используется плунжерный механизм, который в случае засорения имеет склонность к заклиниванию или залипанию в открытом положении. Это не такая уж редкость, поскольку клапан имеет тенденцию к накоплению углеродистых отложений. Кроме того клапан IAC оборудован вакуумным шлангом. Если этот шланг имеет микротрещины и другие повреждения, двигатель будет реагировать так, будто IAC неисправен. На некоторых двигателях Toyota и Lexus устанавливаются электромагнитные клапаны IAC, которые нуждаются в периодической очистке.

 

Чтобы проверить IAC, сотрите все ошибки в блоке управления, отключите клапан и запустите двигатель. Если код ошибки P0505 больше не появляется, значит, клапан IAC не исправен. Если же код ошибки снова появился, это означает вероятность короткого замыкания или других проблем с проводкой. Проверьте жгут проводов на всем пути к ECU.

 

Вот один из примеров диагностики системы управления контрольным воздушным клапаном на ToyotaYaris2008 года выпуска с двигателем 1NZ-FE. Блок управления выдает код P0505.

 

 

Описание системы управления

 

Число оборотов холостого хода на данном автомобиле контролируется ETCS (электронная система управления дроссельной заслонкой). Система составит из:

• дроссельной заслонки,

• привода дросселя, который отвечает за открывание и закрывание заслонки,

• датчика положения дроссельной заслонки (TPS), который определяет угол открывания дроссельной заслонки,

• датчика положения педали акселератора (APP),

• блока управления двигателем, который контролирует работу всех компонентов.

 

Блок управления двигателем контролирует обороты холостого хода и объем поступающего воздуха на холостом ходу  по показателям ISC (Iddle Speed Control). Система выдает ошибку в том случае если:

• объем воздуха на холостом ходу фиксируется на максимальном либо минимальном уровне не менее 5 раз за поездку,

• после поездки со скоростью от 10 километров в час и более фактические обороты холостого хода отклоняются от штатных на 100 и более оборотов в минуту не менее 5 раз за поездку,

 

В описанных выше случаях на панели приборов, загорается сигнальная лампа, а в блоке управления записывается ошибка P0505. Есть ещё несколько причин, вызывающих данную ошибку:

 

• коврик салона создает небольшое давление на педаль газа, в результате которого дроссельная заслонка находится всегда в немного приоткрытом положении,

• педаль акселератора не может быть до конца отпущена.

 

 

Веселый MAF

 

Неисправность датчика MAF становится причиной резких скачков оборотов двигателя – от 0 до 2 000 об/мин. Чаще всего проблема возникает из-за обрыва и замыкания в пучке проводов либо из-за повреждения (засорения) чувствительного элемента MAF.

 

Датчик MAF измеряет количество воздуха, проходящего через дроссельную заслонку. ECU использует эту информацию для определения времени впрыска топлива и создания оптимальной топливо-воздушной смеси. Внутри датчика стоит подогреваемый чувствительный элемент из платиновой проволоки, через который проходит поток воздуха. Проволока нагревается до определенной температуры при помощи тока определенной силы. Поступающий воздух охлаждает проволоку, меняя её сопротивление. Чтобы сохранить показатели тока на постоянном уровне, ECU двигателя меняет напряжение на проводе MAF. Это напряжение пропорционально объему воздуха, проходящему через датчик. Именно таким образом блок управления двигателем и рассчитывает объем поступающего воздуха.

 

Соответственно, если есть дефект в датчике (обрыв или короткое замыкание в цепи MAF), уровень напряжения отклоняется от нормального рабочего диапазона. ECU интерпретирует это как неисправность в приборе MAF и устанавливает диагностический код неисправности (DTC).

 

Коды неисправности MAF:

 

P0101: Указывает на высокое напряжение (обороты двигателя ниже 2000 оборотов в минуту, температура теплоносителя 158 градусов F или выше, а выходное напряжение MAF более 2,2 В), или низкое напряжение (оборотов двигателя более 3000 в минуту и  выходное напряжение MAF меньше, чем 0,93 В).

 

P0102: Цепь MAF имеет низкое входящее напряжение (менее 0,2 В). Ошибка появляется в случае обрыва в электрической цепи в течение более 3 секунд. Ошибка также может свидетельствовать о неисправности MAF либо сильном загрязнении датчика. Если вы используете в автомобиле так называемые пропитанные воздушные фильтры, то они могут стать причиной появления данной неисправности.

 

P0103: Высокое входящее напряжение MAF (более 4,9 В). Обычно это означает короткое замыкание в цепи датчика. MAF может быть поврежден.

 

P0104: Цепь MAF разомкнута (плохое качество контакта, изношены разъемы, контакты или провода). Этот код может также указывать на утечку воздуха.

 

 

Дизельные колебания

 

Дизельные двигатели (возьмем в качестве примера моторы Ford 7.3L и 6.0L), как правило, имеют масляную систему высокого давления, которая управляет топливными форсунками. Показатели высокого давления на холостом ходу, как правило, составляют 500 psi. При 3300 об/мин давление составляет 120 psi, а при полной нагрузке – 3600 psi.

 

Система состоит из насоса высокого давления масла и регулятора давления впрыска. Колебание оборотов холостого хода может появляться в случае износа или подклинивания регулятора холостого хода. В некоторых случаях отмечается также полная остановка двигателя при движении на малых оборотах. Многим владельцам дизельных автомобилей известна проблема, когда дизельный двигатель в момент остановки на светофоре глохнет, после перевода ручки АКПП в положение N или P он запускается снова, но опять на следующем светофоре глохнет. Это один из признаков изношенного регулятора холостого хода. Другие симптомы:

• затрудненный пуск,

• небольшие провалы при резком нажатии на педаль акселератора.

 

Конечно, подобные симптомы могут свидетельствовать о самых разных неисправностях, но в первую очередь следует проверять систему высокого давления масла. Первая реакция владельца, столкнувшегося с этой проблемой – в топливный фильтр попала влага и его надо заменить. Безусловно, для дизельного двигателя, который работает в условиях холодного климата, эта процедура лишней не будет. Начинать надо всегда с малого. Но если смена фильтров не решила проблему, то следует проверить клапан системы высокого давления масла и регулятор оборотов холостого хода. Система работает при очень высоком давлении, и любое отклонение показателей приведет к тому, что блок управления двигателем начнет менять свои настройки формирования топливо-воздушной смеси, что скорее всего приведет к её переобогащению.

 

Примечание: Не спешите выбрасывать залипающий клапан высокого давления и покупать новый. Большинство из них вполне ремонтопригодны.  Весь ремонт сводится к тому, чтобы разобрать клапан, почистить его и собрать заново. Также не забудьте измерить давление масла в рейке высокого давления и проверить её на отсутствие масляных пятен, которые не только приводят к быстрому загрязнению двигателя в задней части впускного коллектора, но и могут стать причиной падения давления в системе. Важно также напомнить клиентам, что только определенные марки моторного масла следует использовать в дизельных двигателях. Так, для поддержания правильного и постоянного давления к топливным форсункам в современных двигателях необходимо использовать масла со специальными антипенными присадками, которые не допускают аэрации масла.По API такие масла имеют класс CF-4/SH или CG-4/SH или выше. Эти присадки вырабатывают свой ресурс примерно за 5-8 тыс. километров пробега, поэтому масло необходимо менять своевременно.

automediapro.ru

Холостой ход | Автомастер55.рф Омск СТО

 Холостой ход — специальный режим работы двигателя внутреннего сгорания на неподвижном автомобиле. Следует после режима «пуск» и режима «прогрев».

Во время холостого хода лямбда-зонд (на инжекторных автомобилях) уже разогрет до рабочей температуры (выше 300°C) и бортовой компьютер начинает использовать показания датчика для регулирования состава горючей смеси. Целевая функция — минимум токсичности выхлопных газов.

Некоторые современные двигатели не имеют холостого хода, что иногда создает курьезные проблемы с техосмотром.

Неравномерности работы двигателя на холостом ходу

Холостой ход, несмотря на кажущуюся простоту его реализации в бензиновых двигателях, является весьма "неудобным" режимом. На этом режиме полезной энергии выделяется ровно столько, чтобы обеспечить вращение коленвала с минимальной устойчивой скоростью, привод механизма газораспределения с осуществлением процессов газообмена и привод вспомогательных агрегатов. Индикаторный КПД на режиме холостого хода минимален. Рабочий процесс в двигателе, работающем на холостом ходу, происходит при весьма неблагоприятном сочетании условий:

  • низкая скорость топливно-воздушной смеси в тактах впуска и сжатия не способствует хорошему смесеобразованию;
  • продолжительное время рабочего цикла способствует интенсивному теплообмену рабочего тела с деталями двигателя;
  • низкое давление во впускном коллекторе является причиной низкой концентрации реагирующих веществ (углеводородов и кислорода), и, как следствие, процесс сгорания происходит медленно и нестабильно;
  • перепад давлений между впускным и выпускным коллекторами, в сочетании с большой продолжительностью всех процессов, приводит к обратному забросу отработавших газов в камеру сгорания, и далее во впускной коллектор, в момент перекрытия фаз газораспределения (перекрытие клапанов), что ещё больше снижает концентрации реагирующих веществ в камере сгорания.

На пункты 1 и 2 влияют исключительно конструктивные особенности двигателя. Поговорим теперь о пунктах 3 и 4 и их взаимном влиянии. Для начала вспомним, что поршневой бензиновый двигатель внутреннего сгорания является двигателем с количественным регулированием рабочего процесса, то есть, крутящий момент, снимаемый с коленвала двигателя, зависит от количества поступившей в цилиндр свежей смеси. Ограничение подачи воздуха (топливовоздушной смеси) называется дросселированием. Двигатель "душат", не дают ему "дышать".

Положением дроссельной заслонки определяется, сколько воздуха попадёт во впускной коллектор при данном перепаде давлений между атмосферным давлением и давлением во впускном коллекторе.

Как оценить эффективность работы двигателя? Очевидным критерием будет расход топлива, отнесённый к производимой работе.

При работе двигателя на холостом ходу эффективная работа равна нулю, следовательно, расход топлива (при прочих равных условиях) однозначно характеризует эффективность работы двигателя на холостом ходу. Но расход топлива и расход воздуха являются взаимосвязанными величинами. На холостом ходу дроссельная заслонка полностью закрыта, воздух поступает во впускной коллектор через РДВ (регулятор добавочного воздуха), и он даёт двигателю столько воздуха, сколько ему нужно для работы на холостом ходу.

Рассмотрим такой интересный параметр работы двигателя, как давление во впускном коллекторе. При рассмотрении этого параметра можно вспомнить задачу про бассейн, в который по одной трубе вода вливается (дроссельная заслонка), а по другой – выливается (впускные клапана), а уровень воды (давление во впускном коллекторе) является результирующей работы этих двух труб. Только в случае с автомобильным двигателем всё сложнее: расход воздуха через РДВ зависит от его положения и перепада давлений между впускным коллектором и атмосферой, а расход воздуха через впускные клапана зависит от давления во впускном коллекторе и от фаз газораспределения. От давления во впускном коллекторе напрямую зависит, какое количество свежей рабочей смеси попадёт в цилиндр. И если, два одинаковых двигателя работают на холостом ходу с одинаковой дополнительной нагрузкой, обусловленной приводом агрегатов, то индикаторный КПД выше у того двигателя, у которого ниже давление во впускном коллекторе (чем ниже давление (больше разрежение), тем меньше свежей смеси попадает в цилиндры, а если работа этими двигателями совершается одинаковая, то КПД выше у того, который меньше потребляет топлива). Для удобства рассмотрения мы принимаем, что оба рассматриваемых двигателя работают по лямбда-регулированию и с одинаковым УОЗ. Величина давления во впускном коллекторе оказывает существенное влияние на процесс обратного заброса газов: чем ниже давление во впускном коллекторе, тем большим будет перепад давлений между впускным и выпускным коллекторами, то есть перепад, под действием которого происходит обратный заброс. Если мы начинаем увеличивать угол перекрытия клапанов (время-сечение, когда открыты оба клапана), то тем самым мы резко увеличиваем обратный заброс. Отработавшие газы из выпускного коллектора попадают через открытые клапана и камеру сгорания во впускной коллектор. Во время впуска в цилиндр сначала поступают заброшенные из выпускного коллектора отработавшие газы, а затем только свежая смесь. При неизменном давлении во впускном коллекторе это приведёт к замещению части свежего заряда отработавшими газами (снижение циклового наполнения свежей смесью) и снижению концентрации реагирующих веществ. Оба этих момента ведут к снижению эффективности рабочего цикла. Компенсационной мерой для поддержания частоты вращения двигателя является увеличение расхода воздуха (и топлива) на данной частоте вращения. Увеличение расхода воздуха осуществляется за счёт увеличения проходного сечения РДВ. Это приводит к росту давления во впускном коллекторе (снижению перепада давлений между впускным и выпускным коллекторами) и, как следствие, сокращению обратного заброса отработавших газов.

Соответственно, каждому взаиморасположению фаз газораспределения соответствует свой расход воздуха и топлива и своё давление во впускном коллекторе, обеспечивающие работу двигателя на заданных оборотах холостого хода.

Итак, мы приходим к выводу, что при проведении ремонтных и регулировочных работ реально можно повлиять только на взаимное расположение и ширину перекрытия фаз газораспределения. У каждой компоновочной схемы ГРМ свои особенности. На двигателях с гидрокомпенсаторами зазоров в приводе клапанов и индивидуальными валами на впускные и выпускные клапана фазы газораспределения имеют весьма широкий диапазон возможной установки.

На одновальных (с одним распределительным валом) двигателях с регулируемым тепловым зазором в приводе клапанов, ширина перекрытия фаз газораспределения зависит от профиля кулачков и величины тепловых зазоров (чем больше зазор, тем меньше перекрытие фаз).

На одновальных двигателях с гидрокомпенсаторами зазоров в приводе клапанов влияние на ширину и взаимное положение фаз газораспределения оказывает только профиль кулачков.

При ремонтном воздействии возможно только совместное смещение фаз газораспределения относительно положения поршня в цилиндре (поворот распредвала относительно коленвала). Нужно отметить, что ширина фаз газораспределения и их взаимное расположение на автомобильных моторах общего назначения выбирается как компромисс между режимами максимальной мощности, максимального крутящего момента, минимальных оборотов под нагрузкой и холостого хода.

Для обеспечения комфортной эксплуатации автомобиля, автомобильный двигатель должен иметь "хорошие низы", плавную кривую крутящего момента в широком диапазоне частоты вращения и ровную работу на холостом ходу. На механизм газораспределения возложена задача обеспечить максимальную очистку цилиндра от отработавших газов и максимальное наполнение его свежим зарядом во всём диапазоне работы двигателя.

С точки зрения холостого хода режим максимальной мощности является диаметрально противоположным. И, если для работы на холостом ходу оптимальны узкие фазы газораспределения (позднее открытие – раннее закрытие) без перекрытия фаз, то для максимальной мощности требуются широкие фазы, чем выше максимальная частота вращения тем шире фазы. Это объясняется двумя обстоятельствами: сокращением времени на процессы газообмена и увеличением скоростей, а следовательно, ускорений, а следовательно, усилий в приводе клапанов при увеличении частоты вращения.

Второе обстоятельство накладывает жесткие ограничения на траекторию движения клапана, особенно на участках открытия и закрытия. Это значит, что на участке отрыва клапана от седла и его посадки в седло изменение положения клапана за некий угол поворота распредвала очень мало. На высоких скоростях вращения эти участки (начало и окончание движения клапана) не играют существенной роли в процессах газообмена, на режиме же холостого хода именно эти участки создают описанные выше проблемы неравномерности на холостом ходу. На практике проблемы с равномерностью работы двигателя на холостом ходу могут возникнуть в результате удлинения (вытяжки) приводной цепи или замены распределительных валов.

Как ни странно, но профиль кулачка у "старого" вала может существенно отличаться от профиля "нового". Если мы говорим, что равномерность работы двигателя на холостом ходу нас не устраивает, то для её улучшения путём корректировки фаз нужно чем-то жертвовать. В двигателях с двумя распределительными валами уменьшение перекрытия фаз газораспределения путём изменением положения распредвалов относительно коленвала приносит в жертву мощностные режимы (уменьшение угла перекрытия фаз газораспределения на 6 градусов поворота коленвала на двигателе М60 увеличивает время свободного разгона до 6000 об/мин на 4 – 6 %). На одновальных двигателях увеличение теплового зазора в приводе клапанов, с целью уменьшения угла перекрытия фаз газораспределения, увеличивает ускорения, а следовательно и усилия, в приводе клапанов. При этом повышается шумность работы двигателя и риск ускоренного износа пар кулачок – рокер и эксцентрик – клапан. Теперь, рассмотрев влияние фаз газораспределения на работу двигателя, постараемся понять, почему незначительное изменение угла перекрытия фаз газораспределения (6 – 10 градусов ПКВ - поворота коленвала) приводит к столь ощутимому увеличению уровня неравномерности частоты вращения (при расширении фаз) и, наоборот, при уменьшении угла перекрытия фаз неравномерность резко уменьшается?

Дело в том, что на участках начала открытия и конца закрытия клапана, площадь проходного сечения между седлом и клапаном меняется нелинейно. На начальной части траектории открытия клапана увеличение его проходного сечения по мере поворота распредвала незначительно. Затем, проходное сечение клапана начинает увеличиваться всё более интенсивно. Соответственно, интегральный показатель перекрытия фаз газораспределения, "время – проходное сечение", будет резко меняться при незначительном изменении угла взаимного перекрытия фаз газораспределения.

Рассмотрим причины возникновения колебаний двигателя на опорах при работе на холостом ходу.

Известно, что при выстреле, пушка откатывается в сторону, противоположную направлению выстрела: работает закон сохранения импульса. В случае с двигателем роль снаряда отводится коленвалу с маховиком, а роль пушки – блоку цилиндров с навесным оборудованием. Когда коленвал получает угловое ускорение по часовой стрелке, блок по закону сохранения момента импульса, получает угловое ускорение против часовой стрелки.

Соответственно, чем выше нестабильность частоты вращения коленвала (изменение частоты вращения за малый промежуток времени), тем большей будет амплитуда колебания двигателя на опорах. При работе на холостом ходу средняя частота вращения коленвала поддерживается блоком управления двигателем на заданной величине. Поршневой двигатель – машина дискретного типа, и эффективность работы серии рабочих тактов не может быть абсолютно одинаковой.

Это особенно относится к холостому ходу, неблагоприятность режима которого была отмечена выше. И, даже если значения средней эффективности, посчитанные по всем цилиндрам двигателя, за какой-либо промежуток времени работы двигателя (5 – 10 секунд) близки к нулю, при рассмотрении серии последовательных рабочих тактов наблюдается чередование тактов с положительной и отрицательной эффективностью.

Под эффективностью понимается изменение частоты вращения коленвала на промежутке между ВМТ двух последовательно работающих цилиндров. Если частота вращения возросла – эффективность положительная, снизилась – отрицательная. При работе двигателя с увеличенным углом перекрытия фаз газораспределения рабочие такты с положительной и отрицательной эффективностью могут следовать в самых различных комбинациях, причём, чем больше угол перекрытия фаз газораспределения, тем большие значения как положительной, так и отрицательной эффективности будут у тактов, составляющих рабочий процесс. Но, если проследить последовательно эффективности работы каждого цилиндра на выбранном промежутке времени работы двигателя, то обнаруживается интересный факт: в каждом цилиндре рабочие такты с положительной и отрицательной эффективностью следуют со строгим чередованием.

То есть, если в одном цикле, например, пятый цилиндр имеет положительную эффективность то в следующем – отрицательную, затем – вновь положительную и так далее. При этом каждый цикл состоит из комбинации рабочих тактов с положительной и отрицательной эффективностью, двигатель сильно раскачивается на опорах, а средняя арифметическая эффективность рабочих тактов от нуля отличается не значительно. Попробуем разобраться, чем вызвана такая работа двигателя? Как уже упоминалось, при увеличении угла перекрытия фаз, в цилиндр попадает значительно большее количество продуктов сгорания от предыдущего рабочего такта, ранее выброшенных в выпускной тракт. Эти продукты снижают концентрацию реагирующих веществ, и процесс сгорания в очередном рабочем такте идёт плохо и неполно. Соответственно, продукты горения этого рабочего такта содержат много кислорода и углеводородов, и когда этими продуктами разбавляется свежая смесь последующего рабочего такта, то итоговая концентрация реагирующих веществ в нём оказывается выше, чем у двигателя с нормальным углом перекрытия фаз (этому способствует более высокое давление во впускном коллекторе). В результате получается рабочий такт с высокой эффективностью и, соответственно, с хорошей полнотой сгорания.

Продукты этого, эффективного рабочего такта, содержат мало кислорода и углеводородов и, разбавляя собой свежую смесь очередного рабочего такта, приводят к его низкой эффективности. Таким образом, этот процесс повторяется и происходит во всех цилиндрах двигателя. Ниже приведены фрагменты работы на холостом ходу двигателя M50B25 Vanos. В первом фрагменте впускной вал повёрнут вперёд на 5 градусов ПКВ, а выпускной – назад на 5 градусов ПКВ. Во втором фрагменте наоборот, впускной вал повёрнут назад, а выпускной – вперёд на те же 5 градусов ПКВ. При сравнении этих фрагментов бросается в глаза отличие по неравномерности вращения коленвала. Также можно отметить, при сужении фаз, сокращение расхода воздуха и топлива, снижение давления воздуха во впускном коллекторе двигателя.

 

Подводя итог, можно отметить, что уход на 3 – 6 градусов поворота коленвала от заводских ТУ при установке распредвалов у двухвальных двигателей не приводит к ощутимому изменению динамических и экономических показателей двигателя. У двигателей с регулируемым тепловым зазором в приводе клапанов, увеличение теплового зазора на 0.05 – 0.10 мм также является допустимым.

Данная статья рассматривает неравномерность работы двигателя на холостом ходу, вызванную исключительно особенностями газообмена. За рамками рассмотрения остались проблемы, вызванные неравномерным распределением картерных газов, различным распределением топлива по цилиндрам, различной компрессией и т.д.

Авторы: Долгов И. А.; Александров А. В.

www.xn--55-6kcajt1cpvihe.xn--p1ai

Холостой ход

Холостой ход — специальный режим работы двигателя внутреннего сгорания на неподвижном автомобиле. Следует после режима «пуск» и режима «прогрев». 

 

Во время холостого хода лямбда-зонд (на инжекторных автомобилях) уже разогрет до рабочей температуры (выше 300°C) и бортовой компьютер начинает использовать показания датчика для регулирования состава горючей смеси. Целевая функция — минимум токсичности выхлопных газов. 

 

Некоторые современные двигатели не имеют холостого хода, что иногда создает курьезные проблемы с техосмотром.

 

 

Холостой ход, несмотря на кажущуюся простоту его реализации в бензиновых двигателях, является весьма "неудобным" режимом. На этом режиме полезной энергии выделяется ровно столько, чтобы обеспечить вращение коленвала с минимальной устойчивой скоростью, привод механизма газораспределения с осуществлением процессов газообмена и привод вспомогательных агрегатов. Индикаторный КПД на режиме холостого хода минимален. Рабочий процесс в двигателе, работающем на холостом ходу, происходит при весьма неблагоприятном сочетании условий: 

низкая скорость топливно-воздушной смеси в тактах впуска и сжатия не способствует хорошему смесеобразованию; 

 продолжительное время рабочего цикла способствует интенсивному теплообмену рабочего тела с деталями двигателя; 

 низкое давление во впускном коллекторе является причиной низкой концентрации реагирующих веществ (углеводородов и кислорода), и, как следствие, процесс сгорания происходит медленно и нестабильно; 

 перепад давлений между впускным и выпускным коллекторами, в сочетании с большой продолжительностью всех процессов, приводит к обратному забросу отработавших газов в камеру сгорания, и далее во впускной коллектор, в момент перекрытия фаз газораспределения (перекрытие клапанов), что ещё больше снижает концентрации реагирующих веществ в камере сгорания. 

 

На пункты 1 и 2 влияют исключительно конструктивные особенности двигателя. Поговорим теперь о пунктах 3 и 4 и их взаимном влиянии. Для начала вспомним, что поршневой бензиновый двигатель внутреннего сгорания является двигателем с количественным регулированием рабочего процесса, то есть, крутящий момент, снимаемый с коленвала двигателя, зависит от количества поступившей в цилиндр свежей смеси. Ограничение подачи воздуха (топливовоздушной смеси) называется дросселированием. Двигатель "душат", не дают ему "дышать". 

 

Положением дроссельной заслонки определяется, сколько воздуха попадёт во впускной коллектор при данном перепаде давлений между атмосферным давлением и давлением во впускном коллекторе. 

 

Как оценить эффективность работы двигателя? Очевидным критерием будет расход топлива, отнесённый к производимой работе. 

 

При работе двигателя на холостом ходу эффективная работа равна нулю, следовательно, расход топлива (при прочих равных условиях) однозначно характеризует эффективность работы двигателя на холостом ходу. Но расход топлива и расход воздуха являются взаимосвязанными величинами. На холостом ходу дроссельная заслонка полностью закрыта, воздух поступает во впускной коллектор через РДВ (регулятор добавочного воздуха), и он даёт двигателю столько воздуха, сколько ему нужно для работы на холостом ходу. 

 

Рассмотрим такой интересный параметр работы двигателя, как давление во впускном коллекторе. При рассмотрении этого параметра можно вспомнить задачу про бассейн, в который по одной трубе вода вливается (дроссельная заслонка), а по другой – выливается (впускные клапана), а уровень воды (давление во впускном коллекторе) является результирующей работы этих двух труб. Только в случае с автомобильным двигателем всё сложнее: расход воздуха через РДВ зависит от его положения и перепада давлений между впускным коллектором и атмосферой, а расход воздуха через впускные клапана зависит от давления во впускном коллекторе и от фаз газораспределения. От давления во впускном коллекторе напрямую зависит, какое количество свежей рабочей смеси попадёт в цилиндр. И если, два одинаковых двигателя работают на холостом ходу с одинаковой дополнительной нагрузкой, обусловленной приводом агрегатов, то индикаторный КПД выше у того двигателя, у которого ниже давление во впускном коллекторе (чем ниже давление (больше разрежение), тем меньше свежей смеси попадает в цилиндры, а если работа этими двигателями совершается одинаковая, то КПД выше у того, который меньше потребляет топлива). Для удобства рассмотрения мы принимаем, что оба рассматриваемых двигателя работают по лямбда-регулированию и с одинаковым УОЗ. Величина давления во впускном коллекторе оказывает существенное влияние на процесс обратного заброса газов: чем ниже давление во впускном коллекторе, тем большим будет перепад давлений между впускным и выпускным коллекторами, то есть перепад, под действием которого происходит обратный заброс. Если мы начинаем увеличивать угол перекрытия клапанов (время-сечение, когда открыты оба клапана), то тем самым мы резко увеличиваем обратный заброс. Отработавшие газы из выпускного коллектора попадают через открытые клапана и камеру сгорания во впускной коллектор. Во время впуска в цилиндр сначала поступают заброшенные из выпускного коллектора отработавшие газы, а затем только свежая смесь. При неизменном давлении во впускном коллекторе это приведёт к замещению части свежего заряда отработавшими газами (снижение циклового наполнения свежей смесью) и снижению концентрации реагирующих веществ. Оба этих момента ведут к снижению эффективности рабочего цикла. Компенсационной мерой для поддержания частоты вращения двигателя является увеличение расхода воздуха (и топлива) на данной частоте вращения. Увеличение расхода воздуха осуществляется за счёт увеличения проходного сечения РДВ. Это приводит к росту давления во впускном коллекторе (снижению перепада давлений между впускным и выпускным коллекторами) и, как следствие, сокращению обратного заброса отработавших газов. 

 

Соответственно, каждому взаиморасположению фаз газораспределения соответствует свой расход воздуха и топлива и своё давление во впускном коллекторе, обеспечивающие работу двигателя на заданных оборотах холостого хода. 

 

Итак, мы приходим к выводу, что при проведении ремонтных и регулировочных работ реально можно повлиять только на взаимное расположение и ширину перекрытия фаз газораспределения. У каждой компоновочной схемы ГРМ свои особенности. На двигателях с гидрокомпенсаторами зазоров в приводе клапанов и индивидуальными валами на впускные и выпускные клапана фазы газораспределения имеют весьма широкий диапазон возможной установки. 

 

На одновальных (с одним распределительным валом) двигателях с регулируемым тепловым зазором в приводе клапанов, ширина перекрытия фаз газораспределения зависит от профиля кулачков и величины тепловых зазоров (чем больше зазор, тем меньше перекрытие фаз). 

 

На одновальных двигателях с гидрокомпенсаторами зазоров в приводе клапанов влияние на ширину и взаимное положение фаз газораспределения оказывает только профиль кулачков. 

 

При ремонтном воздействии возможно только совместное смещение фаз газораспределения относительно положения поршня в цилиндре (поворот распредвала относительно коленвала). Нужно отметить, что ширина фаз газораспределения и их взаимное расположение на автомобильных моторах общего назначения выбирается как компромисс между режимами максимальной мощности, максимального крутящего момента, минимальных оборотов под нагрузкой и холостого хода. 

 

Для обеспечения комфортной эксплуатации автомобиля, автомобильный двигатель должен иметь "хорошие низы", плавную кривую крутящего момента в широком диапазоне частоты вращения и ровную работу на холостом ходу. На механизм газораспределения возложена задача обеспечить максимальную очистку цилиндра от отработавших газов и максимальное наполнение его свежим зарядом во всём диапазоне работы двигателя. 

 

С точки зрения холостого хода режим максимальной мощности является диаметрально противоположным. И, если для работы на холостом ходу оптимальны узкие фазы газораспределения (позднее открытие – раннее закрытие) без перекрытия фаз, то для максимальной мощности требуются широкие фазы, чем выше максимальная частота вращения тем шире фазы. Это объясняется двумя обстоятельствами: сокращением времени на процессы газообмена и увеличением скоростей, а следовательно, ускорений, а следовательно, усилий в приводе клапанов при увеличении частоты вращения. 

 

Второе обстоятельство накладывает жесткие ограничения на траекторию движения клапана, особенно на участках открытия и закрытия. Это значит, что на участке отрыва клапана от седла и его посадки в седло изменение положения клапана за некий угол поворота распредвала очень мало. На высоких скоростях вращения эти участки (начало и окончание движения клапана) не играют существенной роли в процессах газообмена, на режиме же холостого хода именно эти участки создают описанные выше проблемы неравномерности на холостом ходу. На практике проблемы с равномерностью работы двигателя на холостом ходу могут возникнуть в результате удлинения (вытяжки) приводной цепи или замены распределительных валов. 

 

Как ни странно, но профиль кулачка у "старого" вала может существенно отличаться от профиля "нового". Если мы говорим, что равномерность работы двигателя на холостом ходу нас не устраивает, то для её улучшения путём корректировки фаз нужно чем-то жертвовать. В двигателях с двумя распределительными валами уменьшение перекрытия фаз газораспределения путём изменением положения распредвалов относительно коленвала приносит в жертву мощностные режимы (уменьшение угла перекрытия фаз газораспределения на 6 градусов поворота коленвала на двигателе М60 увеличивает время свободного разгона до 6000 об/мин на 4 – 6 %). На одновальных двигателях увеличение теплового зазора в приводе клапанов, с целью уменьшения угла перекрытия фаз газораспределения, увеличивает ускорения, а следовательно и усилия, в приводе клапанов. При этом повышается шумность работы двигателя и риск ускоренного износа пар кулачок – рокер и эксцентрик – клапан. Теперь, рассмотрев влияние фаз газораспределения на работу двигателя, постараемся понять, почему незначительное изменение угла перекрытия фаз газораспределения (6 – 10 градусов ПКВ - поворота коленвала) приводит к столь ощутимому увеличению уровня неравномерности частоты вращения (при расширении фаз) и, наоборот, при уменьшении угла перекрытия фаз неравномерность резко уменьшается? 

 

Дело в том, что на участках начала открытия и конца закрытия клапана, площадь проходного сечения между седлом и клапаном меняется нелинейно. На начальной части траектории открытия клапана увеличение его проходного сечения по мере поворота распредвала незначительно. Затем, проходное сечение клапана начинает увеличиваться всё более интенсивно. Соответственно, интегральный показатель перекрытия фаз газораспределения, "время – проходное сечение", будет резко меняться при незначительном изменении угла взаимного перекрытия фаз газораспределения. 

 

Рассмотрим причины возникновения колебаний двигателя на опорах при работе на холостом ходу. 

 

Известно, что при выстреле, пушка откатывается в сторону, противоположную направлению выстрела: работает закон сохранения импульса. В случае с двигателем роль снаряда отводится коленвалу с маховиком, а роль пушки – блоку цилиндров с навесным оборудованием. Когда коленвал получает угловое ускорение по часовой стрелке, блок по закону сохранения момента импульса, получает угловое ускорение против часовой стрелки. 

 

Соответственно, чем выше нестабильность частоты вращения коленвала (изменение частоты вращения за малый промежуток времени), тем большей будет амплитуда колебания двигателя на опорах. При работе на холостом ходу средняя частота вращения коленвала поддерживается блоком управления двигателем на заданной величине. Поршневой двигатель – машина дискретного типа, и эффективность работы серии рабочих тактов не может быть абсолютно одинаковой. 

 

Это особенно относится к холостому ходу, неблагоприятность режима которого была отмечена выше. И, даже если значения средней эффективности, посчитанные по всем цилиндрам двигателя, за какой-либо промежуток времени работы двигателя (5 – 10 секунд) близки к нулю, при рассмотрении серии последовательных рабочих тактов наблюдается чередование тактов с положительной и отрицательной эффективностью. 

 

Под эффективностью понимается изменение частоты вращения коленвала на промежутке между ВМТ двух последовательно работающих цилиндров. Если частота вращения возросла – эффективность положительная, снизилась – отрицательная. При работе двигателя с увеличенным углом перекрытия фаз газораспределения рабочие такты с положительной и отрицательной эффективностью могут следовать в самых различных комбинациях, причём, чем больше угол перекрытия фаз газораспределения, тем большие значения как положительной, так и отрицательной эффективности будут у тактов, составляющих рабочий процесс. Но, если проследить последовательно эффективности работы каждого цилиндра на выбранном промежутке времени работы двигателя, то обнаруживается интересный факт: в каждом цилиндре рабочие такты с положительной и отрицательной эффективностью следуют со строгим чередованием. 

 

То есть, если в одном цикле, например, пятый цилиндр имеет положительную эффективность то в следующем – отрицательную, затем – вновь положительную и так далее. При этом каждый цикл состоит из комбинации рабочих тактов с положительной и отрицательной эффективностью, двигатель сильно раскачивается на опорах, а средняя арифметическая эффективность рабочих тактов от нуля отличается не значительно. Попробуем разобраться, чем вызвана такая работа двигателя? Как уже упоминалось, при увеличении угла перекрытия фаз, в цилиндр попадает значительно большее количество продуктов сгорания от предыдущего рабочего такта, ранее выброшенных в выпускной тракт. Эти продукты снижают концентрацию реагирующих веществ, и процесс сгорания в очередном рабочем такте идёт плохо и неполно. Соответственно, продукты горения этого рабочего такта содержат много кислорода и углеводородов, и когда этими продуктами разбавляется свежая смесь последующего рабочего такта, то итоговая концентрация реагирующих веществ в нём оказывается выше, чем у двигателя с нормальным углом перекрытия фаз (этому способствует более высокое давление во впускном коллекторе). В результате получается рабочий такт с высокой эффективностью и, соответственно, с хорошей полнотой сгорания. 

 

Продукты этого, эффективного рабочего такта, содержат мало кислорода и углеводородов и, разбавляя собой свежую смесь очередного рабочего такта, приводят к его низкой эффективности. Таким образом, этот процесс повторяется и происходит во всех цилиндрах двигателя. Ниже приведены фрагменты работы на холостом ходу двигателя M50B25 Vanos. В первом фрагменте впускной вал повёрнут вперёд на 5 градусов ПКВ, а выпускной – назад на 5 градусов ПКВ. Во втором фрагменте наоборот, впускной вал повёрнут назад, а выпускной – вперёд на те же 5 градусов ПКВ. При сравнении этих фрагментов бросается в глаза отличие по неравномерности вращения коленвала. Также можно отметить, при сужении фаз, сокращение расхода воздуха и топлива, снижение давления воздуха во впускном коллекторе двигателя. 

 

    

 

Подводя итог, можно отметить, что уход на 3 – 6 градусов поворота коленвала от заводских ТУ при установке распредвалов у двухвальных двигателей не приводит к ощутимому изменению динамических и экономических показателей двигателя. У двигателей с регулируемым тепловым зазором в приводе клапанов, увеличение теплового зазора на 0.05 – 0.10 мм также является допустимым. 

 

Данная статья рассматривает неравномерность работы двигателя на холостом ходу, вызванную исключительно особенностями газообмена. За рамками рассмотрения остались проблемы, вызванные неравномерным распределением картерных газов, различным распределением топлива по цилиндрам, различной компрессией и т.д. 

Авторы: Долгов И. А.; Александров А. В.

cara-eng.com

Карбюратор. Регулировка частоты вращения коленчатого вала на холостом ходу

Прежде чем напомнить вам о последовательности регулировки, несколько слов о схеме подачи топлива и воздуха, основных системах карбюратора и их работе.

Для эффективного сгорания рабочей смеси нормального состава необходимо 15 кг воздуха на 1 кг бензина. В том случае, если по каким-либо причинам количество воздуха возросло до 16,5 кг, состав смеси соответственно обедняется.

Необходимо помнить, что работа на обедненной смеси — нежелательна. Дело в том, что при обедненной смеси мощность двигателя заметно падает. Дальнейшее увеличение количества воздуха уже ведет к значительному падению мощности. Работа двигателя при этом протекает ненормально, двигатель перегревается и расходует топливо значительно больше нормы.

Работа на обедненной смеси нередко приводит к таким неприятным проявлениям, как возникновение вспышек в карбюраторе, чихание.

Наоборот, при уменьшении количества воздуха до 13 кг на 1 кг бензина рабочая смесь становится обогащенной. Работа двигателя на обогащенной смеси характеризуется увеличением скорости ее горения, соответствующим увеличением давления газов в цилиндрах двигателя и повышением мощности при незначительном увеличении расхода топлива.

Так же, как и при обедненной смеси, работа двигателя на обогащенной смеси не рекомендуется. При переобогащении смеси происходит неполное сгорание топлива, возникают «выстрелы» в глушителе и из него выбрасывается черный дым. В это время и внутри цилиндров происходят неприятные явления: несгоревшие частицы топлива создают нагар, закоксовавшиеся частицы масла и лаковые отложения вместе с нагаром способствуют перегреву деталей двигателя.

Кроме того, несгоревшее топливо смывает и разжижает масло, что приводит впоследствии к повышенному износу подшипников и других трущихся деталей двигателя.

Подводя черту, следует еще раз напомнить, что при нормальных условиях эксплуатации наиболее выгодно работать на слегка обедненной смеси как наиболее экономичной. В тяжелых условиях, где необходима большая мощность, следует немного обогатить смесь.

На двигателях автомобилей «Жигули» установлен карбюратор типа «Вебер», в «обязанности» которого входит приготовление смеси бензина с воздухом различного состава и дозирование его подачи в цилиндры двигателя.

Карбюратор

Карбюратор — двухкамерный, с последовательным включением в работу обеих камер. Он называется верхнепоточным, так как поток топлива и воздуха через карбюратор в цилиндры двигателя направляются сверху вниз.

Бензин из топливного бака подается к карбюратору с помощью диафрагменного бензонасоса. Из насоса бензин по шлангу подается в поплавковую камеру карбюратора. Благодаря поплавку и запорным игольчатым клапанам топливо в поплавковой камере всегда поддерживается на постоянном уровне.

Когда уровень топлива в пределах нормы, клапан закрывает отверстие, прекращая доступ топлива в поплавковую камеру. При этом топливный насос работает вхолостую. По мере расхода топлива поплавок опускается, игольчатый клапан открывает отверстие, и топливо поступает в поплавковую камеру.

Карбюратор, образно выражаясь, является фабрикой приготовления рабочей смеси, необходимой для обеспечения нормальной работы двигателя на различных режимах. Задачи карбюратора сложны и ответственны. Подстать задачам и его конструкция.

Карбюратор типа «Вебер» состоит из следующих основных систем и устройств:

  • поплавковой камеры с механизмами регулировки уровня топлива;
  • пускового устройства;
  • системы разбалансировки поплавковой камеры;
  • переходной системы вторичной камеры;
  • главных дозирующих систем первичной и вторичной камер;
  • обогатительного устройства;
  • устройства для обогащения смеси в режиме разгона;
  • золотникового устройства вентиляции картера двигателя;
  • систем холостого хода первичной камеры.

Система разбалансировки поплавковой камеры предназначена для облегчения запуска двигателя. Дело в том, что при работе двигателя в поплавковой камере скапливаются пары бензина. Особенно интенсивно пары скапливаются в летнее время при длительной работе двигателя под нагрузкой.

При таких режимах эксплуатации, если карбюратор не разбалансировать, пары заполняют полость воздушного фильтра и выпускной трубопровод. Балансировка заключается в уравнивании давления в поплавковой камере и воздушном патрубке. В воздушном патрубке создается разрежение, и в случае сбалансирования разрежение передается и в поплавковую камеру.В противном случае под атмосферным давлением из поплавковой камеры подавалось бы излишнее количество бензина. Таким образом, система разбалансировки поплавковой камеры влияет также на экономичность работы двигателя.Запуск холодного двигателя автомобиля "Жигули" рекомендуется выполнять при прикрытой воздушной заслонке. В момент прикрытия воздушной заслонки, благодаря системе рычагов, приоткрывается дроссельная заслонка первичной смесительной камеры. После пуска разрежение увеличивается и, если вовремя не открыть воздушную заслонку, двигатель может заглохнуть из-за избытка топлива и недостатка воздуха.Для своевременного открытия воздушной заслонки и предназначено автоматическое пусковое устройство диафрагменного типа.

Переходная система вторичной камеры вступает в работу после открытия дроссельной заслонки вторичной камеры. При максимальной нагрузке двигателя топлива, подаваемого системами первичной камеры, недостаточно, и на помощь приходит переходная система, которая дополнительной порцией рабочей смеси обеспечивает переход двигателя на режим полных нагрузок.Система обогащения является активным помощником главных дозирующих систем. В процессе работы двигателя с максимальной частотой вращения коленчатого вала наступает момент, когда рабочей смеси, вырабатываемой и поставляемой главными дозирующими системами, явно не хватает.

В этот момент и срабатывает система обогащения. Используя топливо из колодца своей системы, а воздух — из поплавковой камеры, обогатительное устройство через специальные жиклеры и распылители восполняет нехватку смеси.В процессе разгона также ощущается нехватка рабочей смеси. В этом случае помощь оказывает насос-ускоритель, выделяя из своих запасов дополнительную порцию бензина.Система холостого хода предназначена для питания двигателя на холостом ходу.

Многие неопытные автолюбители испытывают большие трудности при пуске двигателя. Это вызвано тем, что они искусственно обогащают смесь, нажимая на педаль дроссельных заслонок. При нажатии на педаль в момент пуска двигателя приводится в действие ускорительный насос и смесь переобогащается. Образовавшийся избыток топлива и мешает нормальному пуску.В процессе эксплуатации автомобиля оптимальные режимы работы карбюратора могут нарушаться, поэтому рекомендуем вам при первом удобном случае убедиться в правильности регулировки. С опытом нормальную работу карбюратора на всех режимах вы научитесь распознавать на слух, а пока опыт накапливается, не ленитесь лишний раз проконтролировать регулировку путем простейших операций.

Для выполнения операции регулировки частоты вращения коленчатого вала двигателя на холостом ходу необходима всего лишь отвертка. Проводить эту работу следует на прогретом работающем двигателе.

Регулировка осуществляется винтом 1, который фиксирует положение дроссельной заслонки в первичной смесительной камере. Выполняя роль фиксатора заслонки, винт фактически регулирует дозировку количества смеси, поступающей в цилиндры двигателя. Качественная (состав смеси) регулировка осуществляется винтом 5.

Регулировку необходимо выполнять в следующем порядке:

  1. отворачивая винт 1, установить минимально допустимую частоту вращения коленчатого вала двигателя;
  2. вращая винт качества 5, установить максимально возможную частоту вращения коленчатого вала, соответствующую установленному положению дроссельной заслонки.
  3. В связи с качественным изменением состава смеси, повторно поворачивая винт 1, установить минимально устойчивую частоту вращения
  4. и вновь винтом 5 повысить частоту вращения коленчатого вала до возможного предела.

Чтобы убедиться в правильности выполненной операции, необходимо слегка повернуть винт 5.

От незначительных его перемещений частота вращения коленчатого вала не должна изменяться.

В этом случае винт нужно установить в крайнее завернутое положение.

Закончив регулировку, следует "на деле" проверить качество выполненной работы, для чего сделайте несколько резких перемещений педалью акселератора.

При этом двигатель должен развивать устойчивую частоту вращения холостого хода в пределах 600-700 об/мин, а при закрытии дросселя не должен глохнуть.

old-vaz.ru