Диодный мост фото


Диодный мост схема

В данной статье мы постараемся дать ответ, что же это, диодный мост схема его и каково предназначение. Как сразу слышно, в данном термине присутствует слово «диод». И действительно, главный компонент диодного моста это диоды, для которых основное свойство пропускать напряжение только в одном направлении. Именно по этой характеристике определяют работоспособность диодов.

Предназначение диодного моста — преобразовывать напряжение переменное в напряжение постоянное.

Схема диодного моста

Схема диодного моста состоит из правильно соединенных четырех диодов, а чтобы эта схема была работоспособной, к ней нужно правильно подключить переменное напряжение.

На схеме, как и на корпусе моста две точки для подачи переменного напряжения обозначены значком «~». А с двух других проводов или выходов, плюса и минуса, снимается постоянное напряжение.

Теоретически, сделать из переменного напряжения постоянное можно и одним диодом, но для практики такое выпрямление не желательно. Как известно диод пропускает напряжение, только превышающее ноль, в противоположном случае диод заперт, а переменное напряжение изменяет свою величину в течение времени. Вроде бы все понятно.

Но получается, что при таком методе получения из переменного напряжения постоянный ток, по этой «замечательной» схеме, диод оставляет только положительную полуволну, а отрицательную срезает. Вместе с ней он просто срезает половину мощности тока переменного напряжения. Такая потеря мощности — главный недостаток выпрямления тока одним диодом.

Вышеописанную ситуацию исправляет диодный мост схема которого разрабатывалась специально для того, чтобы отрицательную полуволну перевернуть. Получиться вторая положительная полуволна и вся мощность электрического тока будет сохранена. В результате диодный мост подает постоянный ток, с напряжением, пульсирующем в два раза большей частотой, чем частота сети переменного тока.

Уверен, схема в особом описании не нуждается, главное помнить, куда подключать переменное напряжение, а откуда получают постоянный ток. Теперь давайте посмотрим на работу диода и диодного моста на практике. На корпусе диода, практически любого производителя, катод помечен точкой или полоской. Для безопасности экспериментов используем трансформатор, выдающий двенадцать вольт.

На осциллографе видно, что максимальная амплитуда 16 с половиной вольт, следовательно, простые расчеты (делим на корень из двух максимальное амплитудное значение) говорят, что действующее напряжение имеет значение 11.8 В.

Теперь припаяем к проводу обмотки (вторичной, естественно) трансформатора диод и измеряем осциллографом. Видно, как диод срезал нижнюю, отрицательную часть графика напряжения. Соответственно, потерялась и половина мощности.

Теперь возьмем еще три таких же диода и собираем диодный мост. Подключаем к обмотке трансформатора диодный мост, там, где вход для переменного тока, а с двух оставшихся точек снимаем щупами прибора постоянное напряжение. Смотрим на осциллограф и видим на экране пульсирующее напряжение, но без потери мощности.

Как сделать диодный мост видео

Для того чтобы не возиться с диодами и пайкой, промышленность выпускает готовые диодные мосты в одном корпусе с четырьмя контактами, отечественные — побольше, а импортные покомпактнее. На диодных мостах советского производства промаркированы и контакты постоянного тока, и контакты для переменного напряжения.

Если подключить импортный диодный мост к переменному напряжению и осциллографу, вы увидите, что эта радиодеталь отлично работает, выдавая пульсирующий постоянный ток. Сам диодный мост если проверять, то только прозвонив каждый из четырех диодов.

Итак, теперь вы знаете для чего нужен в радиоэлектронике диодный мост схема и принцип действия которого описаны в данной статье. Следует отметить, что это весьма популярная деталь, широко применяемая в самой разнообразной радиоаппаратуре, подключаемой к электрической сети. Магнитофон, телевизор, зарядное устройство для мобилки — везде используется диодный мост.

sdelaj-sam.com

Диодный мост :: Практическая электроника

24.11.2012 20:52

 

 

Мост бывает через реку, через овраг, а также через дорогу. Но приходилось ли Вам слышать словосочетание "диодный мост"? Что  за такой мост? А вот на этот вопрос мы с вами попробуем найти ответ.

Словосочетание "диодный мост" образуется от слова "диод". Получается, диодный мост  должен состоять из диодов. Но если в диодном мосту есть диоды, значит, в одном направлении диод будет пропускать электрический ток, а в другом нет. Это свойство диодов мы использовали, чтобы определить их работоспособность. Кто не помнит, как мы это делали, тогда вам сюда.  Поэтому мост из диодов используется, чтобы из переменного напряжение получать постоянное напряжение.

 

       

А вот  и схема диодного моста:

Иногда в схемах его обозначают и так:

Как мы с вами видим, схема состоит из четырех диодов. Но чтобы схемка диодного моста заработала, мы должны правильно соединить диоды, и правильно подать на них переменное напряжение. Слева мы видим два значка "~".  На эти два вывода мы подаем переменное напряжение, а снимаем постоянное напряжение с других двух выводов: с плюса и минуса.

 

Для того, чтобы превратить переменное напряжение в постоянное можно использовать один диод для выпрямления, но не желательно. Давайте рассмотрим  рисунок:

Переменное напряжение изменяется со временем. Диод пропускает через себя напряжение только тогда, когда напряжение выше нуля, когда же оно становится ниже нуля, диод запирается. Думаю все элементарно и просто. Диод срезает отрицательную полуволну, оставляя только положительную полуволну, что мы и видим на рисунке выше.  А вся прелесть этой немудреной схемки состоит в том, что мы получаем постоянное напряжение из переменного. Вся проблема в том, что мы теряем половину мощности переменного напряжения. Ее тупо срезает диод.

 

       

Чтобы исправить эту ситуацию, была разработана схемка диодного моста. Диодный мост "переворачивает" отрицательную полуволну, превращая ее в положительную полуволну. Тем самым мощность у нас сохраняется. Прекрасно не правда ли?

На выходе  диодного моста у нас появляется постоянное пульсирующее напряжение с частой в два раза больше, чем частота сети: 100 Гц.

 

Думаю, не надо писать, как работает схема, Вам все равно это не пригодится, главное запомнить, куда цепляется переменное напряжение, а откуда выходит постоянное пульсирующее напряжение.

 

Давайте же на практике рассмотрим, как работает диод и диодный мост.

 

Для начала возьмем диод.

Я его выпаял из блока питания компа. Катод можно легко узнать по полоске. Почти все производители показывают катод полоской или точкой.

 

 

Чтобы наши опыты были безопасными, я взял понижающий трансформатор, который из 220 Вольт трансформирует 12 Вольт. Кто не знает как он это делает, можете прочитать статью устройство трансформатора.

 

 

 

На первичную обмотку цепляем 220 Вольт, со вторичной снимаем 12 Вольт. Мультик показывает чуть больше, так как  ко вторичной обмотке  не подцеплена никакая нагрузка. Трансформатор работает на  так называемом "холостом ходу".

 

 

 

Давайте же расмотрим осциллограмму, которая идет со вторичной обмотки транса. Максимальную амплитуду напряжение  нетрудно посчитать. Если не помните как расчитать, можно глянуть статейку Осциллограф. Основы эксплуатации. 3,3х5= 16.5В  - это максимальное значение напряжения.  А если разделить максимальное значение амплитуда на корень из двух, то получим где то 11.8 Вольт. Это и есть действующее значение напряжения. Осцилл не врет, все ОК.

Еще раз повторюсь, можно было использовать и 220 Вольт, но 220 Вольт  - это не шутки, поэтому я и понизил переменное напряжение.

 

 

 

Припаяем к одному концу  вторичной обмотки транса наш диод.

 

 

Цепляемся снова щупами осцилла

 

 

 

Смотрим на осцилл

А где же нижняя часть изображения? Ее срезал диод. Диод оставил только верхнюю часть, то есть та, которая положительная. А раз он срезал нижнюю часть, то он следовательно срезал и мощность.

 

 

 

Находим еще  три таких диода и спаиваем диодный мост.

 

 

 

Цепляемся ко вторичной обмотке транса по схеме диодного моста.

 

 

 

С двух других  концов снимаем постоянное пульсирующее напряжение щупами осцилла и смотрим на осцилл.

Вот, теперь порядок, и мощность у нас никуда не пропала :-).

 

Чтобы не замарачиваться с диодами, разработчики все четыре диода вместили в один корпус. В результате получился очень компактный и удобный диодный мост.  Думаю, вы догадаетесь, где импортный, а где советский ))).

 

 

 

 

А  вот и советский:

А как Вы догадались? :-) Например, на советском диодном мосте, показаны контакты,  на которые  надо подавать переменное напряжение ( значком " ~ "), и показаны контакты, с которых  надо снимать постоянное пульсирующее напряжение ("+" и "-").

 

 

 

Давайте проверим импортный диодный мост. Для этого цепляем два его контакта к переменке, а с двух других контактов снимаем показания на осцилл.

 

 

А вот  и осциллограмма:

Значит импортный диодный мостик работает чики-пуки.

 

В заключении хотелось бы добавить, что диодный мост используется почти во всей радиоаппаратуре, которая кушает напряжение из сети, будь то простой телевизор или даже зарядка для сотового телефона. Проверяются диодный мост исправностью всех его диодов.

 

www.ruselectronic.com

ДИОДЫ

   Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:

Пример односторонней проводимости диода

   На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь. 

Иллюстрация прямой обратный ток диода

   Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

Вольт-амперная характеристика диода

   В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Диод полупроводниковый

   Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.  

 

Плоскостной и точечный диод

Какие бывают типы диодов ?

Схематическое изображение диодов

Фото выпрямительного диода

   А) На фото изображен рассмотренный нами выше диод.

Стабилитрон изображение на схеме

   Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.

Двуханодный стабилитрон - изображение на схеме

   В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.

Туннельный диод

   Г) Туннельный диод, может использоваться в качестве усилительного элемента.

Обращенный диод

   Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.

Варикап

   Е) Варикап, применяется как конденсатор переменной ёмкости.

Фотодиод

   Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок. 

 

Светодиоды

   З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только. 

   Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое - это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:

Схема диодного моста

   Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:

Фото диодный мост

   А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.

Светодиодная лампа фото

   Светодиоды существуют в разных корпусах, в том числе и SMD.

smd светодиод фото

   Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный - Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.

Подключение RGB ленты

   Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:

Контроллер rgb

   Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил - AKV.

   Форум по радиодеталям

   Обсудить статью ДИОДЫ

radioskot.ru

ВЫПРЯМИТЕЛИ

   В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

   Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фотография трансформатора

   Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

   Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

   На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

    Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

   Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

   И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

   Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому. 

Объяснение работы диодного моста

   Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

   При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

   Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

   На фото далее изображен отечественный диодный мост КЦ405.

Фото диодный мост кц405

Трехфазные выпрямители

   Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Фото трехфазного трансформатора

   Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича, имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Схема Миткевича

   Вторая схема, известная как Схема Ларионова, нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова

   Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи - AKV.

   Форум

   Обсудить статью ВЫПРЯМИТЕЛИ

radioskot.ru

Схема диодного моста 12 вольт — инструкция и сборка

Оглавление: [скрыть]

  • Плоскостные полупроводниковые диоды
  • Простейший выпрямитель
  • Схема диодного моста

В блоках питания радио- и электроаппаратуры почти всегда используются выпрямители, предназначенные для преобразования переменного тока в постоянный. Связано это с тем, что практически все электронные схемы и многие другие устройства должны питаться от источников постоянного тока. Выпрямителем может служить любой элемент с нелинейной вольт-амперной характеристикой, другими словами, по-разному пропускающий ток в противоположных направлениях. В современных устройствах в качестве таких элементов, как правило, используются плоскостные полупроводниковые диоды.

Схема полупроводникового диода.

Плоскостные полупроводниковые диоды

Наряду с хорошими проводниками и изоляторами существует очень много веществ, занимающих по проводимости промежуточное положение между двумя этими классами. Называют такие вещества полупроводниками. Сопротивление чистого полупроводника с ростом температуры уменьшается в отличие от металлов, сопротивление которых в этих условиях возрастает.

Добавляя к чистому полупроводнику небольшое количество примеси, можно в значительной степени изменить его проводимость. Существует два класса таких примесей:

Рисунок 1. Плоскостной диод: а. устройство диода; б. обозначение диода в электротехнических схемах; в. внешний вид плоскостных диодов различной мощности.

  1. Донорные — превращающие чистый материал в полупроводник n-типа, содержащий избыток свободных электронов. Проводимость такого типа называют электронной.
  2. Акцепторные — превращающие такой же материал в полупроводник p-типа, обладающий искусственно созданным недостатком свободных электронов. Проводимость такого полупроводника называют дырочной. «Дырка» — место, которое покинул электрон, ведет себя аналогично положительному заряду.

Слой на границе полупроводников p- и n-типа (p-n переход) обладает односторонней проводимостью — хорошо проводит ток в одном (прямом) направлении и очень плохо в противоположном (обратном). Устройство плоскостного диода показано на рисунке 1а. Основа — пластинка из полупроводника (германий) с небольшим количеством донорной примеси (n-типа), на которую помещается кусочек индия, являющегося акцепторной примесью.

После нагрева индий диффундирует в прилегающие области полупроводника, превращая их в полупроводник p-типа. На границе областей с двумя типами проводимости и возникает p-n переход. Вывод, соединенный с полупроводником p-типа, называют анодом получившегося диода, противоположный — его катодом. Изображение полупроводникового диода на принципиальных схемах приведено на рис. 1б, внешний вид плоскостных диодов различной мощности — на рис. 1в.

Вернуться к оглавлению

Простейший выпрямитель

Рисунок 2. Характеристики тока в различных схемах.

Ток, протекающий в обычной осветительной сети, является переменным. Его величина и направление меняются 50 раз в течение одной секунды. График зависимости его напряжения от времени показан на рис. 2а. Красным цветом показаны положительные полупериоды, синим — отрицательные.

Поскольку величина тока изменяется от нуля до максимального (амплитудного) значения, вводится понятие действующего значения тока и напряжения. Например, в осветительной сети действующее значение напряжения 220 В — во включенном в эту сеть нагревательном приборе за одинаковые промежутки времени выделяется столько же тепла, сколько в том же устройстве, в цепи постоянного тока напряжением 220 В.

Но на самом деле напряжение в сети меняется за 0,02 с следующим образом:

  • первую четверть этого времени (периода) — увеличивается от 0 до 311 В;
  • вторую четверть периода — уменьшается от 311 В до 0;
  • третью четверть периода — уменьшается от 0 до 311 В;
  • последнюю четверть периода — возрастает от 311 В до 0.

В этом случае 311 В — амплитуда напряжения Uо. Амплитудное и действующее (U) напряжения связаны между собой формулой:

Uo = √2 *U.

Рисунок 3. Диодный мост.

При включении в цепь переменного тока последовательно соединенных диода (VD) и нагрузки (рис. 2б), ток через нее протекает только во время положительных полупериодов (рис. 2в). Происходит это благодаря односторонней проводимости диода. Называется такой выпрямитель однополупериодным — одну половину периода ток в цепи есть, во время второй — отсутствует.

Ток, протекающий через нагрузку в таком выпрямителе, не постоянный, а пульсирующий. Превратить его практически в постоянный можно, включив параллельно нагрузке конденсатор фильтра Cф достаточно большой емкости. В течение первой четверти периода конденсатор заряжается до амплитудного значения, а в промежутках между пульсациями разряжается на нагрузку. Напряжение становится почти постоянным. Эффект сглаживания тем сильнее, чем больше емкость конденсатора.

Вернуться к оглавлению

Схема диодного моста

Более совершенной является двухполупериодная схема выпрямления, когда используются и положительный, и отрицательный полупериод. Существует несколько разновидностей таких схем, но чаще всего используется мостовая. Схема диодного моста приведена на рис. 3в. На ней красная линия показывает, как протекает ток через нагрузку во время положительных, а синяя — отрицательных полупериодов.

Рисунок 4. Схема выпрямителя на 12 вольт с использованием диодного моста.

И первую, и вторую половину периода ток через нагрузку протекает в одном и том же направлении (рис. 3б). Количество пульсации в течение одной секунды не 50, как при однополупериодном выпрямлении, а 100. Соответственно, при той же емкости конденсатора фильтра эффект сглаживания будет более ярко выражен.

Как видно, для построения диодного моста необходимо 4 диода — VD1-VD4. Раньше диодные мосты на принципиальных схемах изображали именно так, как на рис. 3в. Ныне общепринятым считается изображение, показанное на рис. 3г. Хотя на ней только одно изображение диода, не следует забывать, что мост состоит из четырех диодов.

Мостовая схема чаще всего собирается из отдельных диодов, но иногда применяются и монолитные диодные сборки. Их проще монтировать на плате, но зато при выходе из строя одного плеча моста, заменяется вся сборка. Выбирают диоды, из которых монтируется мост, исходя из величины протекающего через них тока и величины допустимого обратного напряжения. Эти данные позволяет получить инструкция к диодам или справочники.

Полная схема выпрямителя на 12 вольт с использованием диодного моста приведена на рис. 4. Т1 — понижающий трансформатор, вторичная обмотка которого обеспечивает напряжение 10-12 В. Предохранитель FU1 — нелишняя деталь с точки зрения техники безопасности и пренебрегать им не стоит. Марка диодов VD1-VD4, как уже говорилось, определяется величиной тока, который будет потребляться от выпрямителя. Конденсатор С1 — электролитический, емкостью 1000,0 мкФ или выше на напряжение не ниже 16 В.

Напряжение на выходе — фиксированное, величина его зависит от нагрузки. Чем больше ток, тем меньше величина этого напряжения. Для получения регулируемого и стабильного выходного напряжения требуется более сложная схема. Получить регулируемое напряжение от схемы, приведенной на рис. 4 можно двумя способами:

  1. Подавая на первичную обмотку трансформатора Т1 регулируемое напряжение, например, от ЛАТРа.
  2. Сделав от вторичной обмотки трансформатора несколько отводов и поставив, соответственно, переключатель.

Остается надеяться, что описания и схемы, приведенные выше, окажут практическую помощь в сборке простого выпрямителя для практических нужд.

moiinstrumenty.ru

ДИОДНЫЙ МОСТ

 Функция Модель Напряжение,В Ток,А диодный мост BR610 1000 6 диодный мост KBPC2510 1000 25 диодный мост GBJ25M 1000 25 диодный мост RS2510 1000 25 диодный мост BR2510 1000 25 диодный мост 2W10M 1000 2 диодный мост KBPC35-10 1000 35 диодный мост RS407 1000 4 диодный мост RS407-1 1000 4 диодный мост KBPC1510 1000 15 диодный мост KBPC50A-10 1000 50 диодный мост QL100A 1000 100 диодный мост KBU6M 1000 6 диодный мост KBU6M-1 1000 6 диодный мост KBU6M-2 1000 6 диодный мост RS407-2 1000 4 диодный мост KBU10M 1000  диодный мост BR1010 1000  диодный мост RS1010 1000 10 диодный мост KBU10M 1000  диодный мост GBU15M 1000 15 диодный мост BR1010-1 1000 10 диодный мост KBU10M-1 1000  диодный мост КЦ402Е 100 1 диодный мост КЦ405Е 100 1 диодный мост KBPC5012 1200 50 диодный мост КЦ405Д 200 1 диодный мост КЦ405Г 300 1 диодный мост КЦ405В 400 1 диодный мост KBP210 500 2 диодный мост КЦ405И 500 0.6 диодный мост D4SB80 600 4 диодный мост D2SBA60 600 2 диодный мост B6S 600 0.5 диодный мост B6S-1 600 0.5 диодный мост RS207 700 2 диодный мост RS207-1 700 2 диодный мост RB157 700 1.5 диодный мост КД906А 75 0.2 диодный мост КД906Б 75 0.2 диодный мост RS206 800 2 диодный мост RS206-1 800 2 диодный мост MS40 80 0.5 диодный мост MS80 160 0.5 диодный мост MS125 250 0.5 диодный мост MS250 600 0,5 диодный мост MS380 800 0,5 диодный мост MS50 1000 0,5 диодный мост B40S2A 80 2.3 диодный мост B80S2A 160 2,3 диодный мост B125S2A 250 2,3 диодный мост B250S2A 600 2,3 диодный мост B250S2A 800 2,3 диодный мост B40S 80 1 диодный мост B80S 160 1 диодный мост B125S 250 1 диодный мост B250S 600 1 диодный мост B380S 800 1 диодный мост B500S 1000 1 диодный мост KBPC601 100 4 диодный мост KBU12M 1000 8 диодный мост KBU8M 1000 5.5

elwo.ru