Как повысить крутящий момент двигателя


Что такое крутящий момент двигателя? :: SYL.ru

Когда автолюбители выбирают себе автомобиль, читают характеристики новинок в различных изданиях, то в первую очередь им интересно, сколько же "лошадей" уместилось под капотом новинки, какие у двигателя аппетиты, какова его максимальная скорость. А вот об одном важном параметре забывают чуть ли не все, даже опытные автолюбители. Это крутящий момент двигателя. Данный параметр может рассказать о характеристиках моторов значительно больше. Почему? Давайте узнаем.

Момент – не мощность

Возможности силовых агрегатов по мощности оценивали еще с того самого момента, когда появились первые самоходные механизмы. Но мощность позволяет лишь частично охарактеризовать силу тяги того или иного мотора. Это легко заметно на ДВС одного класса. Так, на разных авто можно наблюдать, что динамические характеристики могут различаться. То есть одна машина ведет себя довольно резво уже на малых оборотах, а на другой, чтобы добиться такого же эффекта, нужно раскрутить маховик до почти максимальных оборотов.

Что такое крутящий момент двигателя автомобиля?

Если говорить по науке, то это физическая величина. Это произведение силы, которая прилагается к рычагу длиной в 1 м, и расстояния от оси, в которой вращается этот рычаг до точки, куда прилагается сила.

В школьном курсе физики эту величину называли "момент силы", а в курсах механики – "крутящий момент". Измеряется данная сила количеством Ньютонов на метр.

Крутящий момент двигателя – это такая величина, которая показывает силу тяги агрегата. Чем больше значение крутящего момента пройдет от двигателя на колеса, тем лучше и тем больший вес этот мотор может сдвинуть, и тем большее ускорение сможет развить этот автомобиль. Так, грузовые авто, тракторы, различные бульдозеры, спортивные машины очень нуждаются в моторах с высоким крутящим моментом.

Но эта сила, которая приходит с мотора к колесам, больше зависит даже не от характеристик двигателя. В большей степени зависимость здесь наблюдается от передаточных чисел трансмиссии. Так, чем выше передаточные числа, тем больший момент будет отдаваться на колеса при оборотах двигателя. Такая машина станет обладать более высокими динамическими характеристиками.

Где и как рождается момент?

Для того чтобы выяснить, откуда формируется такое явление, нужно вспомнить принцип работы ДВС. Не требуется рассматривать весь процесс, рассмотрим цилиндры.

Вначале цикла в полость цилиндра впрыскивается топливо. Затем поршень поднимается вверх, а смесь воздуха и топлива сжимается. После этого в дело вступает свеча зажигания. При помощи искры смесь воспламеняется, а затем расширяется. Поршень при этом опускается вниз и заставляет вращаться коленчатый вал.

Когда водитель жмет на педаль акселератора, то объем впрыскиваемой смеси увеличивается, поршень будет двигаться быстрее. Естественно, что и коленвал станет тоже вращаться на более высоких оборотах. Так появляется крутящий момент двигателя.

Что зависит от величины крутящего момента?

Максимальная скорость зависит от динамических характеристик. Если двигатель выдает лучшую динамику, то максимальной скорости он сможет достигнуть быстрее. На процесс ускорения влияет в большинстве лишь мощность. Это постоянная сила, она может регулироваться оборотами. Больше обороты – больше мощность. С какой скоростью машина будет набирать обороты, зависит от количества этих самых оборотов.

А вот та скорость, с которой агрегат наберет обороты, уже полностью зависит от крутящего момента. А сам крутящий момент двигателя зависит от количества оборотов.

Как считать эту величину?

В этих целях существует формула из курса физики. Это Мкр= F * L, где F – сила, с которой вращается коленчатый вал, а L – длина плеча.

Но выполнить точные расчеты по этой формуле довольно трудно. Сила вращения коленвала – штука непостоянная. Когда поршень направляется вниз, в цилиндре появляется свободное место, и сила, которая действует на поршень, теряет мощность.

Поэтому для того, чтобы рассчитать крутящий момент двигателя, формула дает лишь приблизительные значения. Момент проще определить по количеству оборотов двигателя. Но не думайте, что он будет постоянным вместе с оборотами. Эта сила склонна расти с ростом оборотов, а когда обороты достигнут пикового порога, крутящий момент спадает. Это можно легко заметить, если разогнать автомобиль.

Каждый водитель замечал, что на старте авто идет на разгон медленнее, однако через некоторое время скорость, с которой машина ускоряется, вырастает. Затем через время она снова снижается.

Мощность и момент

Мощность измеряют в лошадиных силах. Однако в большинстве среднестатистических авто вся мощность будет использована лишь на максимуме оборотов. В городе при 2000 об. двигатель сможет задействовать лишь половину "стада". В полную силу агрегат себя покажет лишь при обгоне на высоких оборотах. При этом чем больше растет момент, тем быстрее повышаются обороты. Здесь есть зависимость между моментом и длиной шатуна. Длиннее шатун – сильнее момент.

Когда двигатель отдает максимум мощности на 6000 об., для ускорения требуется поднять обороты с 2000 об. На это требуется определенное время, которые очень важны при выполнении обгона. В случае мотора с высоким крутящим моментом максимум мощности может появиться уже на 2000 об.

К таким моторам можно причислить большинство с невысокими объемами. Также выше, чем у бензинового, крутящий момент дизельного двигателя, причем даже при меньшей мощности и низких оборотах.

Именно те, кто владеет подобными авто, пишут на форумах, что сила – далеко не в мощности, а в моменте.

Момент в 200 Нм при низких оборотах будет значительно лучше, чем тот же момент при 4000 об. Лучший вариант – это мотор, в котором на всем диапазоне оборотов значения момента будут практическими пиковыми. Но это стоит очень дорого.

Дизель или бензин?

Зная, что такое крутящий момент двигателя, можно сравнить бензиновые ДВС и дизельные. Так, момент в ДВС на бензине невелик, а достигнуть его можно на 3000 об. Однако такие моторы легко набирают максимальные обороты.

Дизельные моторы не любят высокие обороты, зачастую там максимум – 5000 об. Но момент дизелей значительно выше, и использовать его можно даже на холостом ходу.

Например, можно взять два 2-литровых агрегата. Первый – дизель в 140 лс. и 320 Нм момента и инжекторный мотор в 150 л.с. Номинальный крутящий момент двигателя составит 200 Нм. Даже без проведения испытаний видна разница в моменте при минимальном количестве оборотов.

Если испытать оба агрегата, то дизель уже на 1-4 тыс. об. покажет мощность выше на 40 л.с. Это серьезная разница.

Не нужно доверять высокой мощности. Момент также важен при выборе автомобиля. Высокий крутящий момент – это высокие динамические характеристики. Также высокий момент на низких оборотах экономит топливо.

К примеру, крутящий момент двигателей ВАЗа достигается уже на средних оборотах, и позволяет этим автомобилям уверенно чувствовать себя в условиях города.

Эластичность двигателей

Раз уж затронули тему крутящего момента, то нужно поговорить и об этой характеристике. Эластичность – возможность набора оборотов в нагруженном состоянии.

Это выражается, к примеру, в разгоне с 60 до 100 км на четвертой передаче. Иногда так случается, что современные технологичные двигатели с высоким моментом на небольших оборотах позволяет ощущать хорошую динамику в городе, а вот на трассе окажется хуже любого среднестатистического агрегата.

Как увеличить момент?

Если нужно улучшить динамику автомобиля, можно применить несколько способов. Это увеличение объема, установка наддува, а также изменения газодинамики.

Рабочий объем мотора можно увеличить заменой коленчатого вала с большим эксцентриком либо при помощи расточки цилиндров. Замена коленвала зачастую требует определенных затрат, и нужную модель очень трудно подобрать.

Гораздо выгоднее расточить цилиндры. Стенки вполне допускают такое мероприятие. При этом можно даже обойтись серийными поршнями. Однако не факт, что такая замена обойдется дешевле, нежели замена коленчатого вала.

Дополнительный наддув можно применить лишь там, где уже стоит турбина. Этот способ требует дополнительных изменений. Изменить наддув можно поднятием планки для стравливания давления. Также вместе с этим придется дополнительно усовершенствовать камеры сгорания, менять систему охлаждения, радиаторы, воздухозаборники.

Можно обойтись и менее радикальным чип-тюнингом. Так, при помощи перепрошивки электронного блока вполне реально легко и просто изменить множество важных параметров и характеристик автомобиля.

Электродвигатели

Мы живем в современном мире и все чаще наблюдаем рождение новых технологий. Так, все, кто интересуется автомобилями, знают компанию Tesla, которая выпускает электрокары. Фото их последней модели представлено ниже.

В качестве мотора там используется асинхронный электрический. А крутящий момент асинхронного двигателя в зависимости от модели составляет от 420 Нм до 600. Это огромные цифры. С такими техническими характеристиками имеющийся мотор может разогнать автомобиль до 100 километров в час за 6,5 секунды при минимальной комплектации.

Подводя итог

Итак, мы знаем, что такое крутящий момент двигателя внутреннего сгорания. Если мощность агрегатов помогает увеличить продажи автомобилей, то момент помогает машине двигаться вперед.

Но мощность и сила момента связаны. Мощность – это объем работы, а момент – это возможность двигателя такую работу выполнить. Это сопротивление, которое нужно преодолеть агрегату.

Вот что такое крутящий момент на самом деле. Это важная характеристика в паре с мощностью.

www.syl.ru

Что Дает Крутящий Момент Двигателя. Некоторые Рекомендации. 1km-auto

что дает крутящий момент двигателя

Крутящий момент двигателя – как сделать мощнее свой автомобиль?

Содержание
    Что такое крутящий момент двигателя? Увеличение крутящего момента двигателя – приемы модернизации Крутящий момент дизельного двигателя – нюансы этого вида моторов

1 Что такое крутящий момент двигателя?

2 Увеличение крутящего момента двигателя – приемы модернизации

Какие существуют способы улучшения динамики автомобиля, что дает и как увеличить крутящий момент двигателя? Можно прибегнуть к простым и недорогим методам:

К затратным, но эффективным методам увеличения крутящего момента относятся:

  • фрезерная расточка блока, то есть увеличение объема цилиндров (так называемый форсированный двигатель)
  • установка распределительного вала с измененными газораспределительными фазами
  • установка системы питания с оксидом азота
  • установка турбокомпрессора, что значительно увеличивает крутящий момент любого мотора.

На серийных автомобилях для увеличения этого показателя силовой агрегат оборудуют тремя и даже пятью клапанами на каждый цилиндр, изменяют выпускные тракты, на турбокомпрессорах устанавливают керамические крыльчатки с изменяемым углом наклона.

Цель всех подобных модернизаций – совершенствование процесса наполнения цилиндров мотора воздушно-топливной смесью.

3 Крутящий момент дизельного двигателя – нюансы этого вида моторов

Как же осуществить расчет и увеличение крутящего момента двигателя? В качестве исходных данных используют величину давления газов в цилиндрах, площадь днища поршней и радиус кривошипно-шатунного механизма. Но наиболее точные результаты можно получить лишь экспериментальным путем на специальных опытных стендах.

На современных автомобилях устанавливают два типа моторов: дизельные и работающие на бензине. Далее подробно остановимся на характеристиках дизелей, как более мощных силовых агрегатах. Достоинства дизельных двигателей:

  • вследствие низкого расхода топлива существенно снижаются затраты, связанные с эксплуатацией автомобиля, так как у дизельного двигателя степень сжатия находится на уровне 20 единиц
  • высокий КПД, который достигает более 30 %
  • выхлопные газы дизельного двигателя содержат гораздо меньший процент окиси углерода, чем бензиновые
  • дизельное топливо отличается низкой летучестью
  • масса впрыскиваемого топлива в цилиндры в полтора раза меньше, чем у бензиновых двигателей
  • высокое значение, которое приобретает крутящий момент дизельного двигателя на небольших оборотах, позволяет более эффективно использовать его мощность, поэтому на большинстве внедорожников устанавливают данный тип силового агрегата.

К сожалению, получить увеличение крутящего момента мотора на любых оборотах практически невозможно, поскольку у разных агрегатов его наивысшее значение достигается на различных режимах. Это связано с различиями в механизмах впускного тракта, а также фаз газораспределения, что оказывает существенное влияние на эффективность наполнения цилиндров воздушно-топливной смесью при различных оборотах двигателя.

Че такое крутящий момент и че он дает?

tom 120 Гуру (4858), закрыт 7 лет назад

Alex Мудрец (11663) 7 лет назад

Что такое мощность, знают все автомобилисты. И неплохо в этом pазбиpаются. Любой водитель скажет, что 100 л. с. вполне достаточно для компактного хэтчбека и маловато для тяжелого седана. И что 400 л. с. — это очень много для автомобиля любого типа. Но когда речь идет про кутящий момент и про «ньютон-метpы». в которых он измеряется, возникает заминка. Например, 100 Нм — это много или мало? И почему «…очень хорошо, что мотор развивает 200 Hм всего при 1750 об/мин». Итак, речь пойдет о величине непонятной большинству водителей. Крутящий момент. Что это такое?

Для начала вернемся к «лошадиным силам». То есть к мощности. Этот показатель характеризует силу мотора. Однако запас силы зависит от оборотов. Наибольшую мощность современные моторы выдают в среднем при 5000–6500 об/мин. Но кто ездит в таких режимах? В обычной городской езде тахометр показывает 2000–3000 об/мин. Получается, если двигатель вашего автомобиля развивает порядка 100 л. с. почти на предельном режиме, то, двигаясь в городском потоке на средних оборотах, вы имеете в запасе около 40–50 сил.

Теперь представим, что нужно обогнать грузовик. Сейчас вам потребуются все 100 л. с. мотора. Но их нельзя вот так сразу собрать в единый табун. Только постепенно: сначала двигатель раскрутится до 4000 об/мин — и поголовье под капотом увеличится примерно до 70 л. с. Затем стрелка тахометра доберется до отметки 5000 об/мин — в вашем распоряжении окажутся 90 лошадей. И только когда мотор достигнет пика, скажем в 6000 об/мин, педаль акселератора будет повелевать полноценными, обещанными по паспорту 100 лошадиными силами.

В таких ситуациях и вступает в игру крутящий момент (далее КМ). Это «пастух». который на разгоне «сгоняет» в единую упряжку все лошадиные силы мотора. Чем больше КМ, тем быстрее двигатель набирает обороты. И тем скорее собирается в единый кулак вся мощь мотора. И соответственно, тем лучше ускоряется автомобиль.

Второй важный нюанс — обороты, на которых мотор развивает максимальный КМ. Скажем максимум выдается при 4000 об/мин. До них и нужно раскрутить двигатель, чтобы рассчитывать на приличное ускорение. А разгоняться придется с тех самых 2000–3000 об/мин, которые поддерживаются при нормальной езде. Здесь-то и теряется время, столь драгоценное при том же обгоне.

Другое дело, если максимальный КМ двигатель выдает, скажем, при 2000 об/мин. Тогда нет проблем. Вы просто давите на газ, и машина сразу напористо набирает ход, не теряя времени на раскрутку мотора. Теперь ясно, почему выгодно, чтобы двигатель выдавал много КМ на низких оборотах? И почему «…очень хоpошо, что мотор развивает максимальные 200 Hм всего пpи 1750 об/мин». В последнем контексте упор делается не столько на КМ как таковой, сколько на завидно малые обороты, при которых он развивается. Такие двигатели называют «тяговитыми».

Кстати, КМ впрямую зависит от литража. Наименее тяговиты моторы малолитражек. Например, на ВАЗ 2108 с объемом двигателя 1,5 л и ниже хороший КМ не получишь. Их водители часто переключаются на более низкие передачи, чтобы искусственно поддерживать высокие обороты. В противном случае мотор, как говорят автомобилисты, не тянет. Чтобы здесь получить «момент на низах». необходимо увеличивать объем двигателя.

Остальные ответы

Крутящий момент, что это и зачем он нужен?

Каждый двигатель внутреннего сгорания рассчитан на определенную максимальную мощность, которую он может выдавать при наборе определенного количества оборотов коленчатого вала. Однако помимо максимальной мощности существует еще и такая величина в характеристике двигателя, как максимальный крутящий момент, достигаемый на оборотах отличных от оборотов максимальной мощности.

Что же означает понятие крутящий момент?

Говоря научным языком, крутящий момент равен произведению силы на плечо ее применения и измеряется в ньютон #8212 метрах. Значит если к гаечному ключу длиной 1 метр (плечо), приложить силу в 1 Ньютон (перпендикулярно на конце ключа), то мы получим крутящий момент равный 1 Нм.

Для наглядности. Если гайка затянута с усилием 3 кгс, то для ее откручивания придется к ключу с длиной плеча в 1 метр приложить усилие 3 кг. Однако, если на ключ длиной 1 метр надеть дополнительно 2-х метровый отрезок трубы, увеличив тем самым рычаг до 3 метров, то тогда для отворачивания этой гайки потребуется лишь усилие в 1 кг. Так поступают многие автолюбители при откручивании колесных болтов: либо добавляют отрезок трубы, а за неимением такового просто надавливают на ключ ногой, увеличив тем самым силу приложения к баллонному ключу.

Так же если на рычаг метровой длины повесить груз равный 10 кг, то появится крутящий момент равный 10 кгм. В системе СИ это значение (перемножается на ускорение свободного падения #8212 9,81 м/см2) будет соответствовать 98,1 Нм.

Результат всегда един #8212 крутящий момент, это произведение силы на длину рычага, стало быть, нужен либо длиннее рычаг, либо большее количество прикладываемой силы.

Все это хорошо, но для чего нужен крутящий момент в автомобиле и как его величина влияет на его поведение на дороге?

Мощность двигателя лишь косвенно отражает тяговые возможности мотора, и ее максимальное значение проявляется, как правило, на максимальных оборотах двигателя. В реальной жизни в таких режимах практически никто не ездит, а вот ускорение двигателю требуется всегда и желательно с момента нажатия на педаль газа. На практике одни автомобили уже с низких оборотов (с низов) ведут себя достаточно резво, другие напротив предпочитают лишь высокие обороты, а на низах показывают вялую динамику.

Так у многих возникает масса вопросов, когда они с авто с бензиновым мотором мощностью 105-120 л.с. пересаживаются на 70-80 – сильный дизель, то последний с легкостью обходит машину с бензиновым мотором. Как такое может быть?

Связано это с величиной тяги на ведущих колесах, которая различна для этих двух автомобилей. Величина тяги напрямую зависит от произведения таких показателей как, величины крутящего момента, передаточного числа трансмиссии, ее КПД и радиуса качения колеса.

Как создается крутящий момент в двигателе

В двигателе нет метровых рычагов и грузов, и их заменяет кривошипно-шатунный механизм с поршнями. Крутящий момент в двигателе образуется за счет сгорания топливо #8212 воздушной смеси, которая расширяясь в объеме с усилием толкает поршень вниз. Поршень в свою очередь через шатун передает давление на шейку коленчатого вала. В характеристике двигателя нет значения плеча, но есть величина хода поршня (двойное значение радиуса кривошипа коленвала).

Для любого мотора крутящий момент рассчитывается следующим образом. Когда поршень с усилием 200 кг двигает шатун на плечо 5 см, появляется крутящий момент 10 кГс или 98,1Нм. В данном случает для увеличения крутящего момента нужно либо увеличить радиус кривошипа, или же увеличить давление расширяющихся газов на поршень.

До определенной величины можно увеличить радиус кривошипа, но будут расти и размеры блока цилиндров как в ширину, так и в высоту и увеличивать радиус до бесконечности невозможно. Да и конструкцию двигателя придется значительно упрочнять, так как будут нарастать силы инерции и другие отрицательные факторы. Следовательно, у разработчиков моторов остался второй вариант – нарастить силу, с которой поршень передает усилие для прокручивания коленвала. Для этих целей в камере сгорания нужно сжечь больше горючей смеси и к тому же более качественно. Для этого меняют величину и конфигурацию камеры сгорания, делают «вытеснители» на головках поршней и повышают степень сжатия.

Однако максимальный крутящий момент доступен не на всех оборотах мотора и у различных двигателей пик момента достигается на различных режимах. Одни моторы выдают его в диапазоне 1800- 3000 об/мин, другие на 3000-4500 об/мин. Это зависит от конструкции впускного коллектора и фаз газораспределения, когда эффективное наполнение цилиндров рабочей смесью происходит при определенных оборотах.

Наиболее простое решение для увеличения крутящего момента, а следовательно и тяги, это применение турбо или механического наддува, либо применение их в комплексе. Тогда крутящий момент можно уже использовать с 800-1000 об/мин, т.е. практически сразу при нажатие на педаль акселератора. К тому же это закрывает такую проблему, как провалы при наборе скорости, так как величина крутящего момента становится практически одинакова во всем диапазоне оборотов двигателя. Достигается это различными путями: увеличивают количество клапанов на цилиндр, делают управляемыми фазы газораспределения для оптимизации сгорания топлива, повышают степень сжатия, применяют выпускной коллектор по формуле 1-4 -2-3, в турбинах применяют крыльчатки с изменяемым и регулируемым углом атаки лопаток и т.д.

Alex- › Блог › Крутящий момент и лошадиные силы .

Краснодар, Россия

Интересная познaвательная статья для любителей ездить на автомобилях с дизельным двигателем.

Лошадиные силы решают всё – такой вывод можно сделать, читая иные автомобильные издания, а также рекламные буклеты и техпаспорта. Так ли это? Зачем тогда в технических характеристиках указывают еще и крутящий момент?

Что определяют ньютон-метры? Что важнее – «лошади» или «ньютоны»?

ТЕОРИЯ

Для начала стоит разобраться с определениями. Вспоминаем школьный учебник физики. Крутящий момент

– это произведение силы на плечо рычага, к которому она приложена, Мкр = F х L. Сила измеряется в ньютонах, рычаг – в метрах. 1 Нм – крутящий момент, который создает сила в 1 Н, приложенная к концу рычага длиной 1 м.

В двигателе внутреннего сгорания роль рычага исполняет кривошип коленвала. Сила, рождаемая при сгорании топлива, действует на поршень, через который и создает крутящий момент. Выходит, что главная характеристика двигателя – величина крутящего момента на коленчатом валу. Понятно, что момент создается не постоянно, а только в период действия силы – то есть, только во время рабочего хода.

Разберемся теперь с мощностью. Все там же – в школьном пособии и про нее сказано предельно ясно. Мощность – это работа, совершенная в единицу времени. Формула банальная – Р = A/t. А так как работу в двигателе совершает именно та сила, которая создает крутящий момент, то мощность, говоря простыми словами, показывает, сколько раз в единицу времени двигатель создает крутящий момент. Не надо быть семи пядей во лбу, чтобы понять – количество «крутящих моментов», то есть мощность, зависит от количества оборотов двигателя. Чтобы нам было уже совсем просто, физики-математики напряглись и вывели наглядную формулу: P = Mкр*n/9549, где Mкр – крутящий момент двигателя (Нм), n – обороты коленвала двигателя (об./мин.). (Мощность получается в киловаттах. Чтобы преобразить ее в «скакунов», умножаем результат на 1,36).

Вроде бы с печкой все понятно. Попробуем от нее станцевать. На что влияет мощность, а на что – крутящий момент? Начнем с мощности. Мощность двигателя при движении автомобиля расходуется на преодоление различных сил сопротивления – это силы трения в трансмиссии и качения колес, силы аэродинамического сопротивления и т.д. Чем больше мощность, тем большее сопротивление автомобиль может преодолеть и большей скорости достичь. Повторимся, мощность мотора – величина не постоянная, а зависящая, прежде всего, от оборотов двигателя. Рядом со значениями максимальной мощности всегда указываются обороты, на которых она достигается. На других оборотах мощность иная – более низкая. Какая именно – можно узнать, взглянув на график внешних скоростных характеристик того или иного мотора. Важно другое – при разгоне двигатель не развивает оборотов максимальной мощности сразу (во всяком случае в обычных условиях). Машина стартует обычно с оборотов чуть выше холостого хода. Поэтому, чтобы мобилизовать весь «табун», мотору нужно время на раскрутку. Вот здесь-то и играет решающую роль крутящий момент. Именно от него зависит время достижения двигателем максимальной мощности, а значит и вожделенная динамика разгона. И получается, что забытые некоторыми ньютон-метры значат не меньше, чем хваленые лошадиные силы.

Противостояние «л.с. – Нм»

логично выливается в противостояние «бензин – дизель». Серийные бензиновые двигатели развивают не самый большой крутящий момент. К тому же максимального значения он достигает только на средних оборотах (обычно 3000-4000). Зато эти моторы могут раскручиваться до 7-8 тыс. об./мин. что позволяет им развивать довольно большую мощность. Ведь согласно приведенной выше формуле, мощность численно от оборотов зависит гораздо больше, чем от момента.

По этой же причине тихоходные дизели (развивают не более 5 000 об./мин.), обладая внушительным моментом, доступным практически с самых «низов», в максимальной мощности проигрывают бензиновым.

Однако мощность важна не только максимальная. Как уже было сказано, мощность, которую развивает двигатель на оборотах ниже предельных, как правило, так же далека от максимальной заявленной. Ключом к пониманию характера любого мотора являются кривые его характеристик: мощности и момента.

Приводим графики двух двигателей марки Mercedes-Benz. Один – объемом 1,8 л, дизельный (с турбонаддувом). Другой – двухлитровый бензиновый. Заявленные мощности – 109 л.с. и 136 л.с. соответственно. Моменты – 250 и 185 Нм. Мы сравнили мощность этих моторов во всем диапазоне оборотов, а не только максимальную. И получилось, что от 1000 до 4000 об./мин. (а это практически весь «городской» спектр) дизель мощнее «бензина» максимум на 34 л.с. а в среднем – на 17. О превосходстве в моменте даже говорить не стоит.

Ради интереса мы сравнили также характеристики аналогичных двухлитровых моторов Volkswagen: 2,0 TDI (140 л.с. и 320 Нм) и 2,0 FSI (150 л.с. и 200 Нм). Результат тот же – выигрыш в максимальной мощности оборачивается проигрышем до отметки в 4 500 об./мин. Интересная картина.

Конь-огонь

Измерение мощности в лошадиных силах широко распространено только в автомобильной сфере. Причина – неоднозначное определение этой единицы. Мерить мощь моторов по поголовью рысаков впервые предложил Джеймс Уатт (в специальной литературе для этих целей используют его фамилию). Он предположил, что лошадь может поднимать 33 000 фунтов груза (14 968,55 кг) со скоростью 1 фут (30 см) в минуту, что равняется 745,7 Вт. Именно эту единицу до сих пор применяют в Англии (обозначение BHP). В остальных европейских странах лошадиная сила определяется как 735,49875 Вт и обозначается pferdestarke – PS (нем.), cheval – ch (фр.) или просто – л.с.

Цель и средства

Наращивать мощность моторов можно по-разному. Самый «примитивный» способ – увеличение рабочего объема – слава богу, свое, похоже, отжил. Теперь в чести более продвинутые методы.

Увеличение максимального числа оборотов позволяет поднять мощность без серьезного изменения крутящего момента. Пример – BMW M5/M6, двигатель которых крутится до 8250 об./мин.

Турбо- и механический наддув резко повышают крутящий момент мотора. К примеру, двигатель 2,0 FSI (VW, Audi) выдает 150 л.с. и 200 Нм. Он же, но с турбиной (2,0 TFSI) – 200 л.с. 280 Нм.

Изменение фаз газораспределения (VTEC, VVTi, bi-VANOS) позволяет поднять момент и сдвинуть его в зону «нужных» оборотов. Самый изощренный способ – возможность изменения степени сжатия. Так, на 1,6-литровом турбо-двигателе SAAB, благодаря подвижной головке блока, она варьируется от 8:1 до 14:1. Результат – 308 Нм и 225 л.с.

ПРАКТИКА

Понять, что значат на практике «лишние» ньютон-метры и лошадиные силы, мы решили на примере двух новейших Volkswagen Passat с упомянутыми двухлитровыми моторами – турбо-дизелем и бензиновым атмосферником. У первого – 140 л.с. и 320 Нм, у второго – 150 л.с. и 200 Нм. Для кристальной чистоты эксперимента обе машины были с шестиступенчатыми механическими коробками (разницу передаточных отношений главной пары в данном случае считаем несущественной).

На дизельном Passat мы уже ездили, а потому хорошо знакомы с его неординарной натурой. На холостых и малых оборотах мотор не проявляет особого энтузиазма, но по достижении 1750 об./мин. (уже с этой отметки водителю доступны все 320 Нм момента) в корне преображается. На кривой хорошо видно, что амплитуда крутящего момента составляет 110 Нм, больше трети максимального значения! Эту разницу двигатель успевает преодолеть в промежутке между 1000 и 2000 об./мин. Уже под конец второй тысячи мотор мощно бросает Passat вперед. Ускорение не ослабевает вплоть до максимальных 4500 об./мин. следует переключение – и вновь изобилие тяги до самого верха. Еще переключение – все повторяется. Словно невидимый силач-великан тащит машину тросом, потом перехватывает руки и тащит снова – бурный разгон идет на каждой передаче, даже на пятой и шестой он остается впечатляющим. Если не мешкать при переключениях и не выпадать из диапазона 2000-4000 оборотов (а это не сложно благодаря исключительно точному приводу переключения), то дизельный Passat позволяет перемещаться в пространстве очень и очень интенсивно. Спортивно. Единственный минус, он же плюс – при разгоне «в пол» стрелка тахометра в мгновения пролетает короткую шкалу. Только успевай работать ручкой КПП.

Пора пересаживаться в бензиновую машину. Ее характер спокойнее. Passat реагирует на действия акселератора точно и отзывчиво. Мотор тянет уверенно с самого низа и до максимальных оборотов, но без подхватов и волнующих ускорений. Посмотрите, разница между моментом на холостом ходу и максимальным – всего 50 Нм, так что подхватам взяться просто неоткуда. Но управляться с такой динамикой удобнее – передачи длинные, с прогнозируемой тягой во всем рабочем диапазоне. Пока мотор перегоняет стрелку тахометра из левого нижнего угла в правый нижний, можно немного передохнуть, не надо строчить рычагом коробки. Ага, есть 6 500 – переключаемся. Но эмоции, эмоции от разгона: Они есть, но не такие, как в случае с дизелем. Здесь уже не чудо-силач тянет машину, а какой-то механический робот-ускоритель, с постоянным, точно тарированным усилием. Теперь самое сладкое. Машины стоят бок о бок на одной линии. Напомним, что у бензинового Passat превосходство в максимальной мощности на 10 л.с. Но проявляется оно только после 4 500 оборотов. А у дизеля превосходство в моменте, которое проявляется во всем диапазоне. Ну, любители дрэг-рэйсинга, ваши ставки?

Синхронный старт. Первые секунды машины идут ноздря в ноздрю. Затем дизель уступает четверть корпуса – мотор быстро выкрутился, надо менять передачу. Из-за более редких переключений бензиновый Passat выходит вперед почти на корпус. С набором скорости этот отрыв уменьшается. По паспорту в упражнении «до сотни» дизель проигрывает своему противнику всего 0,4 секунды. Это разница в пределах водительской погрешности. И максимальная скорость меньше лишь чуть-чуть – 209 км/ч против 213.

Но это на зачетной прямой. Там водители бросают сцепление, уже раскрутив моторы. А в городе, чтобы угнаться за дизелем, «бензину» приходится постоянно держать обороты близко к красной зоне. Вспомните графики – там, где дизельный двигатель уже почти набрал свои 140 л.с. (3500 об./мин.), у бензинового под педалью пока только сотня. Чтобы набрать столько же, ему нужно еще 1 500 оборотов. При этом первый набирает обороты максимальной мощности почти моментально (вот оно, превосходство момента!), а второй – значительно дольше. И на шоссе, двигаясь со скоростью 120 км/ч, «дизелю» для ускорения не потребуется переключение, а бензиновый Passat попросит передачу пониже.

В общем, на практике все получилось так, как предсказывала теория. Максимальная мощность двигателя прежде всего определяет максимальную скорость автомобиля. А крутящий момент – быстроту достижения мотором этой максимальной мощности. Таким образом, при сопоставимой мощности пресловутый разгон до «сотни» будет даваться более «моментному» двигателю меньшей кровью – он требует меньшей раскрутки перед стартом машины. В «мирных» условиях повседневного вождения это весомый фактор. Но и мощность крайне важна: момент не может разгонять автомобиль бесконечно – только до определенной скорости, которая, естественно, ограничивается мощностью. Вот и получается, что «лошади» и «ньютоны» тесно взаимосвязаны, и разить ими по отдельности оппонента в споре о моторах – дилетантство.

Как бы то ни было, практический итог этого противостояния противоречит общепринятому автолюбительскому мировоззрению. Мы однозначно признаем победителем турбо-дизель. Именно он больше подойдет водителям, ценящим динамику и азарт разгона. К тому же на его стороне экономичность и дешевизна топлива. А педанты, оценивающие превосходство динамики по голым цифрам, и любители ровных характеристик найдут свою правду в более привычном пока для России «бензине». И еще – у него правильный звук, если для кого-то это имеет большое значение.

Между прочим, результат нашего небольшого исследования отвечает мировым тенденциям автопрома – современные турбо-дизели, догнав бензиновые моторы по мощности, склонили чашу весов в свою сторону, благодаря большему моменту. Так что от солярки россиянам, похоже, все равно не уйти.

В выводе напишим старую поговорку: Покупаем лошадиные силы, а ездим на моменте.

четыре года назад Метки: дизельный двигатель

Источники: http://carnovato.ru/krutjashhij-moment-dvigatel-moshhnost-raschet/, http://otvet.mail.ru/question/14058980, http://avtoexperts.ru/article/krutyashhij-moment-chto-e-to-i-zachem-on-nuzhen/, http://www.drive2.ru/b/288230376151994009/

Комментариев пока нет!

www.1km-auto.ru

Как Поднять Крутящий Момент Двигателя. Перспективы Авто-Развития. 1km-auto

как поднять крутящий момент двигателя

Увеличиваем крутящий момент двигателя своими силами

April 24,

У каждого двигателя есть какие-то характеристики. У какого-то они больше, у другого меньше. Все известно, что для лучшей динамики автомобилю требуется большая мощность, но мало кто знает, что такое крутящий момент двигателя. Говоря простым языком, - это момент силы, который прилагается к коленчатому валу для того, чтобы провернуть его в полный оборот. Логично предположить, что если это сила, то измеряется она в Нм. Таким образом, чем выше этот показатель, тем динамичнее автомобиль.

Но если мощность растет примерно до 5500-6000 оборотов, то максимальный крутящий момент двигателя развивается на средних оборотах. Что касается дизельных моторов, то у них такая характеристика серьезно превосходит бензиновые, поскольку степень сжатия в них почти в два раза больше, следовательно, к поршню прилагается большая энергия, которая, впоследствии, передается на коленчатый вал.

Как ни крути, самым распространенным двигателем является четверка . Их объем варьируется, но производители придерживаются именно такой конструкции, поскольку ее удобно размещать поперечно, кроме того, она не так дорога в производстве, как, скажем, шестерка . Но неоспоримым фактом является тот момент, что увеличение количества цилиндров, без изменения других характеристик, приводит к пропорциональному увеличению крутящего момента. К примеру, если крутящий момент двигателя, который имеет 4 цилиндра и 2 литра объема, составляет 150 Нм, то увеличение количества цилиндров до 6 поднимет его до 225 Нм. Естественно, нужно учесть потери на трение и прочие сторонние силы, таким образом, чистая прибавка составляет примерно треть, то есть конечный результат – 200 Нм.

Крутящий момент и мощность постоянно стараются увеличить. Самый простой способ это сделать – уменьшить объем камеры сгорания либо другими путями повысить степень сжатия. В этом случае стоит помнить о запасе двигателя, потому что головку блока цилиндров попросту может сорвать со шпилек или болтов крепления.

Второй способ – это установка коленчатого вала с большим коленом. В таком случае упадет оборотистость двигателя, кроме того, нужно менять и цилиндры, потому что изменится ход поршня. Фактически – это простое увеличение рабочего объема.

Теперь – немного теории. Вернемся к нашему увеличению количества цилиндров. Чем же оно так эффективно? Дело в том, что в первом случае (4) взрыв в камере сгорания происходит каждые 180 градусов. Это значит, что на всей длине хода поршня используется энергия одного цилиндра. В шестицилиндровом моторе этот взрыв происходит каждые 90 градусов вращения коленчатого вала. В этом случае, пока поршень проходить половину рабочего хода, происходит еще один взрыв в другом цилиндре, теперь коленвал вращают уже два поршня. Когда первый дойдет до нижней мертвой точки, второй пройдет половину хода, произойдет взрыв в третьем и так далее. Очевидно, что такая конструкция эффективнее.

Крутящий момент двигателя – это довольно важная характеристика, которая способна выделить агрегат из общего ряда. В заключение стоит добавить, что более объемные двигатели обладают большим крутящим моментом и большей мощностью.

Как увеличить крутящий момент двигателя

Многие автолюбители, привыкая к мощности своего автомобиля, остаются недовольными динамическими характеристиками. Кондиционер, гидроусилитель также влияют на суммарную тяговитость двигателя. Владельцы малолитражек испытывают дискомфорт при работающем кондиционере, что даже увеличивает вероятность попасть в дорожно-транспортное происшествие при обгоне или подобных манёврах. Ресурс такого двигателя заметно меньше, чем на более тяговитых двигателях, потому что трудиться малолитражке приходится больше. Постоянная увеличенная нагрузка и влияет на износ основных узлов агрегата. Все эти факторы наталкивают на мысль: как увеличить крутящий момент двигателя и его мощность?

Крутящий момент.

Крутящий момент – это физическая величина равная произведению силы на плечо рычага, к которому она приложена. В двигателе она играет немаловажную роль и показывает, как быстро двигатель может набрать максимальную мощность. Проще говоря, имея хорошие показатели крутящего момента, автомобиль будет лучше разгоняться с низов . Есть два подхода для повышения этих показателей. Первый и наиболее быстрый – это не вмешиваясь глубоко в двигатель, установить внешние наиболее производительные детали, такие как воздушный фильтр, распределительные валы, система выпуска и дроссельная заслонка. При правильном подходе суммарная мощность может возрасти до 20-30%. С этим подходом вы не затратите много времени и средств, но и прирост не столь существенен. Второй способ заключается в более глубокой доработке двигателя - увеличение объёма сгораемой камеры, доработка головки блока цилиндров. Стоит заметить, что эти два способа пересекаются , и дополняют друг друга. Доработав двигатель глубоко, придётся модернизировать или ставить более производительные внешние детали. Рассмотрим эти способы подробнее.

Чип тюнинг двигателя. Эта модификация возможна на инжекторных автомобилях. Суть этой модификации заключается в изменении управляющих сигналов машины, которые подает чип основным устройствам. Изменяются текущие характеристики двигателя, тщательная диагностика должна дать идеальные результаты - это является обязательным условием чип тюнинга. В результате программной модификациимы можем получить прирост крутящего момента порядка 5-20%, если воспользоваться хорошо сбалансированной прошивкой, увеличение расхода топлива будет сведено к минимуму, а в некоторых случаях и к снижению аппетита вашего автомобиля.

Увеличить крутящий момент.

Головка блока цилиндров – что мы можем выжать из этого узла? Как обеспечить более производительную работу и увеличить момент? Основная задача головки блока цилиндров это впуск сгораемой смеси и выпуск сгоревших газов, как раз подача в камеру сгорания большего объема способствует повышению момента. Некоторые автолюбители турбируютдвигатели, т. е. воздушная масса не всасывается тактом, а нагнетается турбиной, следовательно, не затрачивается энергия на забор воздуха. Но такие модернизации дороги, и очень сложны, не каждый двигатель получится модифицировать, но прирост при этом будет ощутимый. Приемлемым вариантом видится увеличение пропускной способности впускного клапана. Подбирается клапан с большим диаметром тарелки, после дорабатывается сам клапан на токарном станке и подгоняется под него посадочное место для как можно плотного прилегания клапана и последующего надежного запирания камеры сгорания. В этом вопросе для каждого двигателя будут свои нюансы. Увеличить крутящий момент можно также заменой распределительного вала на спортивный вариант с регулируемым шкивом и измененной программой управления. Отличие спортивного распределительного вала от стокового в измененном профиле кулачков, т. е. фазами газораспределения, это позволяет более эффективно наполнять рабочую камеру смесью. А большее количество рабочей смеси при сгорании лучше давит на поршень, и, следовательно увеличивает крутящий момент двигателя.

Еще одним способом увеличения крутящего момента является увеличение степени сжатия путем уменьшения объема камеры сгорания. За счет малого объема большей компрессии достигнуть легче. Уменьшая объем камеры сгорания, путем фрезеровки плоскости головки блока цилиндров, либо установка поршней сдругой формой верхней части занимающей больший объём, но такие модификации вряд ли возможны на 16 клапанных двигателях, так как в таких моторах поршень вплотную приближается к клапанам. При обрыве ремня газораспределительного механизма поршень врезается в открытые клапана и приводит их в негодность. Что чревато дорогостоящим ремонтом головки блока цилиндров и возможно узлов самого блока цилиндров.

Следующим основным шагом является увеличение рабочего объёма. Для этого необходимо заменить каленчатый вал, шатуны и поршни. Увеличение рабочего объема способствует основной нашей задаче, а именно увеличить крутящий момент в интервале между низкими и средними оборотами двигателя. С таким мотором для хорошего разгона его не придется крутить до высоких 5-6 тысяч. Далее модифицируем поршни, установкой облегченных собратьев. Уменьшая массу поршня, мы снимаем часть нагрузки на коленчатый вал и коренные шейки также уменьшается инерция поршня и в мертвых точках поршню легче остановиться. Все эти модификации должны сопровождаться изменением углов зажигания, настройки подачи топлива и воздуха. Для инжекторных двигателей это прошивка электронного блока управления (ЭБУ), для карбюраторных тщательная настройка карбюратора. Еще одним вариантом повышения динамических характеристик может служить расточка блока цилиндров и установка поршней большего диаметра, но стоит отметить, что расточка также практикуется в ремонтных целях, и может отрицательно сказаться на ресурсе двигателя.

Проделав некоторые модификации, вы приятно удивитесь новым способностям вашего автомобиля, прирост в наборе скорости и тяговитости в целом будет ощутимымым. Но следует быть готовым к большему расходу топлива, ведь двигатель стал объёмнее и прожорливее!

25-10-, 18:40 | Зинченко Владимир Александрович

Крутящий момент двигателя

Крутящий момент и мощность двигателя - два разных и порой несовместимых понятия.

Он важен как в тюнинге, так и в обычной гражданской эксплуатации автомобилей.

Например, при обгоне на трассе. Его особенно нехватает старым моторам ВАЗ, с 8-ми клапанной ГБЦ. А как мы знаем, при обгоне дорога каждая секунда, особенно когда перед тобой длинная фура .

Для сравнения возмём стоковые движки и сравним их характеристики:

ВАЗ 2101 карбюратор (1300) - 87,3 Н*м

ВАЗ 2107 карбюратор (1500) - 105,9 Н*м

ВАЗ 2109 карбюратор (1500) - 106,4 Н*м

ВАЗ 2109 инжектор (1500) - 118 Н*м

ВАЗ 2110 инжектор (1600/8V) - 120 Н*м

ВАЗ 2112 инжектор (1600/16V) - 131 Н*м

ВАЗ 2170 Priora (двиг.21126) - 145 Н*м.

Также важно, при каких оборотах крутящий момент будет максимальным, например для Приоры и ВАЗ 2112 (1600/16V) - это 4000 об/мин, а для десятки 8V - это 2700.

Как увеличить крутящий момент?

Из простых и недорогих способов:

1. Установка фильтра нулевого сопротивления + прямоточный глушитель. Рассчитывать на большой эффект не стоит.

2. Прошивка мозгов (чип-тюнинг), как дополнение к первому пункту. После этого эффект заметен.

Самый эффективный вариант:

Расточка блока, т.е. увеличение рабочего объёма цилиндров.

C движка ВАЗ 21124, при объёме 1,8 л можно снять около 200 Н*м, при этом крутящий момент в 100 - 110 (который у десятки ) будет уже на 1500 об/минуту.

Тема крутящего момента

Ведущий показатель, по которому судят о возможностях и применимости мотора, это МОЩНОСТЬ ДВИГАТЕЛЯ. Уже потом идут его экономичность, моторесурс, массогабаритные показатели и пр.

Мощность в свою очередь складывается из произведения двух главных параметров:

- частота (скорость) вращения вала двигателя

- крутящий момент на этом валу

Чем выше значение каждого их этих параметров - тем больше мощность мотора. Рассмотрим возможность повышения мощности двигателя при неизменном объеме рабочих камер. Следовательно, повышать мощность не увеличивая рабочий литровый объем, возможно лишь двумя путями:

– увеличивая частоту вращения вала и скорость движения главного рабочего органа

nbsp - увеличивая значение крутящего момента на валу мотора

Рассмотрим перспективы увеличения каждого из этих параметров:

Возможно, ли все выше и выше поднимать значение скорости вращения вала? Нет, нельзя – и вообще, для большинства потребителей мощности значение приводных оборотов должно быть невелико – для автомобиля в городском и в стартовом цикле- это сотни, а то и десятки оборотов в минуту, для гребных винтов больших и малых судов нужно лишь несколько большее значение. Даже для винтов самолетов это значение не должно превышать 1000-1200 оборотов в минуту, а для вертолетов это значение заметно ниже… Но современные поршневые моторы начинают развивать более или менее приемлемую мощность при оборотах от 1500 в минуту. Т.е. для таких моторов в качестве посредников между колесами-винтами и моторами приходится ставить сложные, дорогостоящие и тяжелые редукторы, либо вариаторы… Но если для повышения мощности мы решим повысить обороты вала мотора, то редукторы потребуются еще более сложные и тяжелые, с большим количеством передаточных ступеней. Т.е. – повышение мощности за счет увеличения числа оборотов вала - весьма малоэффективный путь. Тем более, что поршневые двигатели с кривошипно-шатунным механизмом и сложным механизмом газораспределения чисто по конструктивным особенностям не могут давать бороты выше 7-8 тысяч в минуту. Двигатель Ванкеля заметно мощнее, так как его рабочие частоты вращения несколько выше – до 10-12 тыс. оборотов

Существует, правда возможность ставить десмодромный механизм приводов впускных-выпускных клапанов. Такой механизм позволяет заметно поднять обороты поршневого двигателя. Но он очень сложный и дорогой. Поэтому находит лишь применение в экзотической технике, типа спорткаров Формулы-1 или мотоциклов Ducati.

Следовательно, для повышения мощности мотора более выгоден и эффективен иной путь – путь увеличения значения крутящего момента. В двигателях крутящий момент является важнейшим динамическим показателем и характеризует тяговые возможности двигателя.

Но вначале кратко разберем и вспомним само основное понятие - что такое крутящий момент.

Коротко это физическое понятие можно определить так: крутящий момент (момент силы) - это вращающая сила, которую создает главный рабочий орган двигателя и передает ее на вал двигателя.

Представить суть понятия крутящего момента, можно на примере обычного рычага в виде гаечного ключа. Если мы накинем ключ на туго затянутую гайку, и для того, чтобы сорвать её с места, с силой нажмем на рукоятку ключа, то на гайку начнет воздействовать крутящий момент (Мкр). Крутящий момент равен силе, приложенной к рычагу – рукояти гаечного ключа, умноженной на длину плеча силы. В цифрах это будет описываться так: если на рукоять ключа длиной один метр подвесить 10-килограммовый груз, то на гайку будет воздействовать крутящий момент величиной 10 кг•м. В системе измерения СИ этот показатель (умножается на значение ускорения свободного падения – 9,81 м/с2) будет равен 98,1 Н•м.

Из этой простой формулы, описывающей механику крутящего момента, исходит следующий вывод: получить больший крутящий момент можно двумя путями –либо нарастив длину рычага, либо увеличив вес груза.

В двигателе крутящий момент представляет собой произведение сил давления рабочих газов на полезную поверхность главного рабочего органа, на плечо приложения. В случаях с поршневыми двигателями это плечо приложения равно радиусу кривошипа коленчатого вала, в случаях с двигателями Ванкеля – это плечо между центром ротора и осью эксцентрикового вала, а в случае с совершенным роторным двигателем – это плечо от центра вращения вала до средины рабочей лопасти ротора. (РИС.)

В наиболее распространенных сегодня поршневых моторах крутящий момент возникает благодаря сгоранию рабочей смеси, которая расширяясь с большим давлением, толкает поршень вниз. Поршень в свою очередь через шатун давит на «колено» коленчатого вала. Хотя в описании характеристик двигателей длину плеча не указывают, об этом позволяет судить величина хода поршня (которая является удвоенным значением радиуса кривошипа). В силе, которая влияет на плечо рычага и создает крутящий момент, так же следует учитывать силы трения и инерции.

Примерный расчет крутящего момента поршневого мотора происходит так. Рабочие газы горения топливо-воздушной смеси давят на поршень, поршень передает давление на шатун, а шатун свое движение вниз передает на кривошипный механизм. Когда поршень толкает шатун с усилием 200 кг на плечо 5 см возникает крутящий момент 10 кГ•с, или 98,1 Н•м. Но у поршневого мотора с кривошипно – шатунным механизмом есть один очень серьезный недостаток: он создает усилие крутящего момента очень небольшой период времени в рабочем цикле. Четырехтатный мотор лишь один рабочий такт из четырех развивает рабочее усилие, а двухтактный мотор – только каждый второй такт. Во время нерабочих тактов коленчатый вал и поршневая группа вращаются по инерции массивных движущихся деталей мотора. То есть график распределения приложения движущей силы на круг вращения будет выглядеть так…. (cмотри графики крутящего момента тремя абзацами ниже)

Но тут есть еще один очень важный аспект. Не стоит думать, что усилие вращающего момента полноценно и активно работает весь период рабочего такта. На самом деле даже во время осуществления именно рабочего такта сила крутящего момента не вполне полноценна и не является отображением всей мощи силы давления рабочих газов на поршень. Т.е. крутящий момент поршневого мотора связан с силой давления рабочих газов расширения на поршень не вполне прямым и совсем малоэффективной образом. Виной тому врожденные и неискоренимые пороки посредника между прямолинейным движением поршня и вращательным движением вала - кривошипно – шатунного механизма. Причем они проявляют себя во всей красе как в поршневых двигателя, так и в роторных моторах Ванкеля.

Рассмотрим кинематику кривошипно – шатунного механизма (КШМ-а) поршневого мотора.

Когда давление газов на первом этапе горения топлива максимально, т.к. в это время объем камеры сгорания минимален, и работа совершаемая газами тоже наиболее велика, то в это миг крутящий момент на валу мотора от работы таких газов равен нолю. Ибо поршень в этой фазе работы КШМ-а находится в верхней мертвой точке и плечо рычага кривошипа равно нолю. Вся кинематика мотора (если это одноцилиндровый двигатель) движется лишь под воздействием сил инерции массы движущихся частей поршневой и кривошипно-шатунной группы двигателя.

Именно для этого на поршневые моторы и ставят маховики, чтобы усилить инерционность этой части деталей двигателя. Т.е. на этом этапе работы поршневого мотора длинные осевые линии плеча кривошипа и шатуна выстроились одну прямую линию, которая параллельна вектору силы расширяющихся газов. Поэтому вся сила этих газов в данный момент тратится на деформацию конструктивных элементов поршневой и кривошипно-шатунной группы и полезная работа газов расширения в этот миг полностью отсутствует.

Далее – под действием инерции вращения вал двигателя поворачивается, и движение кривошипа приводит к постепенному увеличению плеча, которое воспринимает крутящий момент, т.е. величина полезной силы расширяющихся газов возрастает. Величина нарастания значения плеча кривошипа постепенно увеличивается до значения углового расстояния в 60 град. от положения верхней мертвой точки. (РИС.) Именно в этой позиции возможно максимально эффективная работа КШМ-а, но время получения максимально возможного крутящего усилия (крутящего момента) уже утеряно, ибо по мере углового движения вниз верхней точки плеча кривошипа, вниз движется и поршень и давление рабочих газов в камере сгорания значительно падает… То есть сила газов расширения в момент наиболее высокого КПД уже не так велика, как в верхней мертвой точке.

Далее, вал двигателя с кривошипом продолжает вращение и проекция плеча кривошипа по отношению к вектору силы расширяющихся газов снова начинает уменьшаться… При этом по мере движения поршня вниз и дальнейшего увеличения объема расширения камеры сгорания, давление газов в ней падает, а значит падает и усилие давления этих газов на поршень.

Следовательно, на линии расширения газов и угловом пути плеча кривошипа после достижения им положения в 60 град. от верхней мертвой точки, величина крутящего момент резко падает, так как к этому приводит сложение двух процессов - падение движущего поршень давления рабочих газов и резкое уменьшение воспринимающего силу этого давления плеча кривошипа. В нижней мертвой точке продольные оси шатуна и плеча кривошипа снова выстраиваются в одну линию, и давление рабочих газов снова бессмысленно тратит свою уже небольшую силу лишь на бессмысленную деформацию элементов мотора, а движущиеся детали мотора продолжают вращаться лишь под действием инерции своих масс. По сути дела КШМ выдает силу крутящего момента на вал двигателя лишь дробными, последовательными пульсациями - серией многочисленных, но кратковременных толчков.

Все автомобилисты ощущают все прелести именно такого режима работы поршневого мотора с КШМ-ом особенно в моменты, когда надо с некоторой средней скорости, если идешь на высшей передаче и теряешь инерцию движения, вдруг резко ускориться- то есть снять с мотора мощное усилие крутящего момента. Если не переходить на низшую передачу, просто резко попытаться увеличить обороты мотора на прежней передаче и нажать на педаль «газа», то получим не мощное тяговое усилие, а лишь задыхающееся тарахтение и вибрацию мотора, готового заглохнуть… Это именно проявил себя малоэффективный режим работы КШМ-а, который не способен эффективно снять крутящий момент при невысокой частоте вращения вал. Приходится в этом случае переходить на нижнюю передачу и резко нажимать педаль газа, чтобы увеличить обороты мотора, тем самым обеспечить большое количество «силовых толчков» КШМ-а в единицу времени и увеличить тяговое усилие. А вот электромоторы, которые переводят рабочую мощь электромагнитных сил в своих обмотках в простое вращательное движение без всяких малоэффективных механизмов – посредников, не страдают такой болезнью. Именно поэтому многие автомобилисты с завистью наблюдают, как легко и мощно стартуют со светофоров громоздкие и тяжелые троллейбусы, обгоняя в стартовом импульсе легкие и вроде бы мощные легковые авто. То же можно сказать и о стартовом импульсе гибридных автомобилей, где стартовый импульс (крутящий момент на старте) обеспечивает электромотор.

Итак – КШМ – это неизбежный и тяжелый порок поршневых моторов, который резко снижает их эффективность, увеличивает их громоздкость, повышает цену и уменьшает надежность. Поэтому уже не менее ста лет идет, пока еще безуспешная работа, по созданию бесшатунных схем поршневых двигателей. Работы идут сто лет, но серьезной отдачи от нее пока не видно, так как сама схема поршневого мотора давно исчерпала свои возможности в плане принципиального совершенствования. Именно поэтому почти всю историю техники осуществляются попытки создать более эффективную и инженерно совершенную конструкцию мотора без применения поршней с возвратно – поступательным движением. Именно таким направлением является линия создания роторных машин с вращательным движением главного рабочего элемента.

Роторные двигатели

Единственным на сегодня выпускаемым в промышленных масштабах роторным двигателем является двигатель Ванкеля – роторный двигатель с планетарным движением главного рабочего элемента. Как я уже писал, этот тип двигателя обладает одним неоспоримым преимуществом- это наиболее простой по количеству деталей тип конструкций. Но при этом он обладает немалыми врожденными, неизбежными для такого типа организации внутренней кинематики, недостатками. И один из основных недостатков - наличие КШМ-а. Не удивляйтесь: как это – роторный двигатель, а имеет кривошипно- шатунный механизм? А вот так- имеет. Правда двигатель Ванкеля обладает не полноценным КШМ-мом, как его поршневые конкуренты, а лишь его фрагментом. Но этот фрагмент и заключает в себе все главные недостатки и пороки классического КШМ-а, которые и играют на такую сложную судьбу этого типа двигателей. Поэтому двигатели Ванкеля и не смогли потеснить своих поршневых конкурентов – ибо у них не было преимущества в главном: не было простой и мало затратной схемы переведения давления рабочих газов во вращение рабочего вала. То есть роторный двигатель Ванкеля только лишь от части ушел от возвратно –поступательного движения поршней, но так и не смог прийти к чистому и простому вращательному движению главного рабочего элемента, поэтому в его конструкции и пришлось применять кривошипный механизм, со всеми его недостатками и потерями. (РИС.) Соответственно, надо понимать, что планетарное вращательное движение центра ротора вокруг геометрического центра рабочей камеры и вокруг оси вала есть промежуточный вариант устройства, между двумя диаметрально противоположными типами организации движения главных рабочих элементов разных типов двигателей: возвратно – поступательным и простым вращательным движением.

Рассмотрим, как работает и проявляет себя кривошипный механизм в двигателе Ванкеля, который создает самое главное в моторе - крутящий момент.

Итак, расширение рабочих газов в двигателе Ванкеля происходит только в одной зоне его камеры сгорания, форма которой называется эпитрохоидой. (РИС.) Следовательно, начала такта расширения и его завершение будет происходить в постоянно одинаковых геометрических позициях. Поэтому и суммарный вектор силы, который будет придавать планетарное, вращательно – поступательное движение ротору будет все время работать в одном направлении. А вот плечо рычага, которым обладает эксцентрично посаженый на вал мотора диск, который и будет переводить поступательное движение ротора во вращение этого вала, будет все время меняться по закону синусоиды. То есть будут две геометрические точки, когда проекция плеча рычага по отношению к направлению вектора действующей силы, будет равна нолю. (РИС.) Так же будут две точки, когда проекция плеча рычага по отношению к вектору силы будет максимальной, а во всех остальных точках проекция этого плеча будет различна по значению, меняясь по закону синусоиды. Всё совершенно так же, как и в КШМ-е поршневого мотора. Именно поэтому двигатель Ванкеля в исполнении с одной роторной секцией имеет крайне неудовлетворительную диаграмму крутящего момента – еще хуже, чем у поршневого мотора. Ведь длина рабочего хода у двигателя Ванкеля меньше, поэтому и рывки по нарастанию и падению интенсивности крутящего момента еще больше. Но к этому недостатку добавляется еще и возможность на небольшом участке вращения ротора иметь отрицательный крутящий момент, т.е. момент который работает против основного вращения ротора… Вот такого этапа в диаграмме крутящего момента в поршневых моторах точно нет. Именно по этой причине односекционные моторы Ванкеля с одним ротором имеют очень плохую диаграмму крутящего момента и нуждаются для приобретения приемлемой работоспособности в массивных маховиках. На приведенном выше схеме из старой книги Судовые роторные двигатели хорошо видно, как на первом (верхнем графике) линия значения крутящего момента в односекционном двигателе Ванкеля часть времени опускается в поле отрицательных значений. Т.е. некоторое время сила рабочих газов вращает ротор в обратном направлении. соотвественно и режим крутящего момента у такого двигателя очень плохой.

Так же надо отметить, что двигатели Ванкеля по режиму крутящего момента являются верховыми моторами- т.е. у них большая величина крутящего момента появляется только на верхах , т.е. после набора значительного количества оборотов главного вала. Т.е. чтобы резко стартовать с места автомобилю с двигателем Ванкеля надо вначале хорошо прогазоваться и набрать мощь - раскрутить двигатель до боольших оборотов и только потом выжать сцеление, иначе на малых оборотах земетной силы крутящего момента на валу не будет и авто не удастся резко сорвать с места.

***

Проведя это небольшое исследование темы крутящего момента мы увидели, что на настоящем этапе развития техники постоянным и непрерывным крутящим моментом могут похвастаться лишь газовые турбины и электромоторы- силовые машины, в которых тяговое усилие действующего силового принципа превращается во вращение главного вала непосредственно и без применения механизмов - посредников. А вот поршневые моторы и двигатели Ванкеля, которые используют для преобразования поступательного движения главных рабочих органов во вращательное движение своих главных валов конструкции – посредники, в виде кривошипных механизмов, выдают на главный вал прерывистый, пульсирующий крутящий момент плохого качества.

Именно в избавлении от этого недостатка автору этих строк и видится задача по созданию двигателя внутреннего сгорания с герметично запираемой камерой сгорания, который будет обладать простым непрерывным вращением главного рабочего элемента. Поэтому такой мотор не будет нуждаться в механизме - посреднике и будет сразу преобразовывать простое и непрерывное вращение главного рабочего элемента в непрерывное вращение рабочего вала с постоянным крутящим моментом

ПРОДОЛЖЕНИЕ СТАТЬИ О КРУТЯЩЕМ МОМЕНТЕ Опубликовано 30.06.13г.

nbsp Но - в приведённых выше рассуждениях есть одна важный уровень фактологии, который уводит нас еще дальше в теорию и практику изучения рабочих схем существующих тепловых двигателей, различных силовых машин и прочих моторов. И изучение этих вопросов, как и обобщение и исследование такой технической практики, должно привести нас к пониманию – на каком пути развития пытаться создать конструкцию совершенного теплового двигателя. Привести к осознанию – что нам делать: искать принципиально новую конструкцию совершенного теплового двигателя, или может быть обойтись поверхностным тюнингом существующих двигателей и добиться на этом пути высоких результатов?

nbsp Итак, выше мы говорили, что сам режим работы кривошипно-шатунного механизма (КШМ) поршневого мотора даёт непрерывно пульсирующий (изменяющийся) от ноля до максимума и обратно величину крутящего момента. Но – в двигателях ВНУТРЕННЕГО СГОРАНИЯ, этот недостаток накладывается на другой еще более существенный и неискоренимый порок таких моторов. А в иных типах двигателей, в которых этого второго недостатка нет, а есть только первый недостаток, обусловленный наличием в моторе КШМ, с величиной и режимом крутящего момента все обстоит не так уж плохо. Эти редкие счастливчики из большого мира моторов – паровые двигатели, т.е. двигатели внешнего сгорания. В отличие от двигателей ВНУТРЕННЕГО СГОРАНИЯ (бензиново-соляровых моторов), двигатели ВНЕШНЕГО СГОРАНИЯ (паровые двигатели) имели и имеют совершенно недостижимый для ДВС могучий крутящий момент, что позволяло паровым двигателям обходится совсем без коробки передач, этой весьма громоздкой и дорогой части любого современного автомобиля. А в магистральных дизельных железнодорожных тепловозах вместо механических коробок передач в паре с дизельным двигателем применят дорогие и сложные по устройству электрические или гидромеханические передачи. А вот старинные паровозы с примитивными паровыми двигателями на угле без всяких коробок передач легко сдвигали с места и разгоняли до высоких скоростей тысячетонные составы… Почему же так происходит? Что за загадочное явление в мире моторов, где старинные и примитивные паровые машины оказываются в какой-то своей части гораздо совершеннее и удобнее современных дизелей, газовых турбин и прочих ДВС (двигателей внутреннего сгорания)?

nbsp Оказывается – в паровых двигателях, благодаря особенностям организации их технологических циклов, внутренняя логика цепочки преобразования типов энергии гораздо более дружественна для создания высокого значения крутящего момента. Т.е. паровые машины (паровые двигатели) для создания стабильного и мощного крутящего момента, как машины для преобразования разных типов энергии, оказались гораздо более подходящими и эффективными, чем ДВС (двигатели внутреннего сгорания) с их сложной организацией технологических циклов. Правда, КПД паровых машин при этом оказывается многократно хуже, чем у бензиновых или дизельных, или даже газотурбинных ДВС (двигателей внутреннего сгорания). Зато никакого тюнинга конструкции и видоизменения механической сути паровых двигателей для повышения значения крутящего момента делать не нужно, он у них и так на предельном значении.

nbsp Итак - рассматриваем организацию и схему работы таких технологических циклов в моторах двух типов: в двигателях ВНУТРЕННЕГО СГОРАНИЯ и в двигателях ВНЕШНЕГО СГОРАНИЯ.

В двигателях ВНЕШНЕГО СГОРАНИЯ устройство для создания Рабочего Тела высокого давления обособленно от расширительной машины. Т.е. паровой котёл, который создает поток водяного пара (Рабочего Тела) отделен от самого парового двигателя - т.е. от поршневого мотора (расширительной машины). Такое разделение резко снижает КПД парового двигателя, ибо теплопередача тепловой энергии через стенку котла от горящего топлива в нагреваемому пару – резко ухудшает КПД такой силовой установки. НО – зато в итоге паровой котёл даёт стабильный по количественному весовому расходу и давлению поток Рабочего Тела - водяного пара. Т.е. от момента подачи пара в поршневой двигатель, до момента отсечки пароподачи в конце рабочего хода, пар продолжает поступать на линии расширения по ходу поршня в полость рабочего цилиндра и давление в этом цилиндре не падает весь рабочих ход (до момента отсечки). Поэтому давление пара продолжает создавать одинаково стабильное усилие на поршень весь рабочий ход. Т.е. расширение Рабочего Тела (рабочий ход) парового поршневого двигателя происходит в режиме изобарного процесса – при постоянном давлении. Для создания мотором максимального по времени и наиболее мощного по значению режима крутящего момента – это наилучшие условия.

nbsp Итак - в двигателях ВНЕШНЕГО СГОРАНИЯ Рабочего Тела хватает для того, чтобы обеспечить постоянное и вполне мощное рабочее давление на поршень по длине всего рабочего его хода. Т.е. по самой своей схеме принципиальной организации работы паровые двигатели имеют практически идеальный крутящий момент и высокую мощность и совершенно не требуют тюнинга двигателя в области совершенствования тяговой мощности. Она у паровых машин и так на предельной высоте.

Но вот в двигателях ВНУТРЕННЕГО СГОРАНИЯ определяется совсем иная схема организации рабочих процессов в моторе. По основному своему принципу организации технологических процессов в таком моторе, поршневой ДВС испытывает крайний недостаток в полноценном наполнении рабочего пространства между поршнем и цилиндром Рабочим Телом высокого давления. В момент поджигания сжатого заряда рабочей топливно-воздушной смеси поршень стоит около Верхней Мертвой точки, но по мере течения времени, когда заряд начинает гореть и выделять тепло и поднимать давление, поршень начинает очень быстро ускоряться. Обычно последние порции сжатого заряда, которые находятся дальше всего от очага первоначального поджигания около свечи, не успевают сгореть и идут на выхлоп. Ибо фронт пламени в сжатом заряде распространяется со скоростью до 20 м/сек, а поршень на середине своего пути разгоняется до скорости 10-15 м/сек. При этом давление в горящем заряде резко падает (рабочий объём между дном цилиндра и днищем поршня быстро увеличивается), температура заметно уменьшается и последние порции топливной смеси перестают гореть…

nbsp Теоретически считается, что горение происходит только в период 40°-60° от Верхней Мертвой Точки, т.е. процесс «горение- создание рабочего тела» идет лишь 40°-60° углового расстояния из 180° общего расстояния рабочего хода поршня. Т.е. оставшиеся минимум 120° углового расстояния на поршень давит всё меньшее давление Рабочего Тела, ибо рабочее пространство между донышком цилиндра и поршнем увеличивается, а Рабочего Тела не добавляется. Вот его давление на поршень и уменьшается…

nbsp Но тут мы должны вспомнить, что рабочий ход – это только один из четырёх линейных возвратно-поступательных движений технологического цикла 4-х тактного поршневого ДВС (двигателя внутреннего сгорания). Т.е. получается очень грустная арифметика – из 720° градусов углового расстояния полного технологического цикла такого мотора (2-а оборота коленвала на полный цикл), только 180° предоставляется собственно на сам рабочий ход, но вот нарастающее (или не уменьшающееся) давление на поршень со стороны газов Рабочего Тела осуществляется лишь на угловом расстоянии не более 60°. Т.е. делим 720 на 60 и получаем 12. Т.е. полноценно и активно Рабочее Тело в поршневом ДВС (двигателе внутреннего сгорания) действует только 1/12 часть времени полного технологического цикла такого мотора, т.е. не более 8%… А в поршневом паровом двигателе двойного действия постоянное давление подводится к поршню около 85% полного технологического времени цикла такого мотора.

Теперь, я надеюсь, читателю становится понятно, почему поршневому ДВС (двигателю внутреннего сгорания) для своей работы требуются высокие обороты коленвала и громоздкая и сложно устроенная коробка передач, для создания приемлемого для потребителя крутящего момента. А вот паровая машина (двигатель ВНЕШНЕГО СГОРАНИЯ) может выдавать могучий крутящий момент на частоте всего в пару десятков оборотов главного вала в минуту и без всякой коробки передач.

nbsp А если добавить сюда еще и синусоидальный, пульсирующий режим выдачи крутящего момента кривошипно-шатунным механизмом любого поршневого мотора, то становится ясным, что в поршневом ДВС (двигателе внутреннего сгорания), реально мощный импульс крутящего момента на коленчатом валу поршневого ДВС создается еще в меньшем промежутке времени, чем 8% примерно на треть – т.е. около 6%. Как говорится печальная картина, и никакое совершенствование механизмов моторов, никакое обвешивание электроникой малоэффективного железа, никакой чип-тюнинг не могут изменить этого принципиального недостатка поршневых ДВС (двигателей ВНУТРЕННЕГО СГОРАНИЯ).

nbsp Так что же нам делать, чтобы произвести реальное улучшение положения дел с тепловыми силовыми машинами и тяговыми моторами на ископаемом топливе? Какую создать совершенную конструкцию, какую произвести ревизию существующих моделей двигателей и какой совершить тюнинг (т.е. модернизацию) самой идеи теплового двигателя? Ответ на такой вопрос о тюнинге самой идеи двигателя есть у автора статьи, и он изложит его в следующей части такой статьи.

Смотрите продолжение, которое скоро здесь появится.

Источники: http://fb.ru/article/58718/uvelichivaem-krutyaschiy-moment-dvigatelya-svoimi-silami, http://www.autoshcool.ru/2925-kak-uvelichit-krutyaschiy-moment-dvigatelya.html, http://www.ladatuning.net/tyuning-dvigatelya-vaz/478-krutyashchij-moment-dvigatelya, http://www.rotor-motor.ru/page07.htm

Комментариев пока нет!

www.1km-auto.ru

Как увеличить крутящий момент двигателя

Многие автолюбители, привыкая к мощности своего автомобиля, остаются недовольными динамическими характеристиками. Кондиционер, гидроусилитель также влияют на суммарную тяговитость двигателя. Владельцы малолитражек испытывают дискомфорт при работающем кондиционере, что даже увеличивает вероятность попасть в дорожно-транспортное происшествие при обгоне или подобных манёврах. Ресурс такого двигателя заметно меньше, чем на более тяговитых двигателях, потому что трудиться малолитражке приходится больше. Постоянная увеличенная нагрузка и влияет на износ основных узлов агрегата. Все эти факторы наталкивают на мысль: как увеличить крутящий момент двигателя и его мощность?

Крутящий момент.

Крутящий момент – это физическая величина равная произведению силы на плечо рычага, к которому она приложена. В двигателе она играет немаловажную роль и показывает, как быстро двигатель может набрать максимальную мощность. Проще говоря, имея хорошие показатели крутящего момента, автомобиль будет лучше разгоняться с «низов». Есть два подхода для повышения этих показателей. Первый и наиболее быстрый – это не вмешиваясь глубоко в двигатель, установить внешние наиболее производительные детали, такие как воздушный фильтр, распределительные валы, система выпуска и дроссельная заслонка. При правильном подходе суммарная мощность может возрасти до 20-30%. С этим подходом вы не затратите много времени и средств, но и прирост не столь существенен. Второй способ заключается в более глубокой доработке двигателя - увеличение объёма сгораемой камеры, доработка головки блока цилиндров. Стоит заметить, что эти два способа «пересекаются», и дополняют друг друга. Доработав двигатель глубоко, придётся модернизировать или ставить более производительные внешние детали. Рассмотрим эти способы подробнее.

Чип тюнинг двигателя. Эта модификация возможна на инжекторных автомобилях. Суть этой модификации заключается в изменении управляющих сигналов машины, которые подает чип основным устройствам. Изменяются текущие характеристики двигателя, тщательная диагностика должна дать идеальные результаты - это является обязательным условием чип тюнинга. В результате программной модификациимы можем получить прирост крутящего момента порядка 5-20%, если воспользоваться хорошо сбалансированной прошивкой, увеличение расхода топлива будет сведено к минимуму, а в некоторых случаях и к снижению «аппетита» вашего автомобиля.

Увеличить крутящий момент.

Головка блока цилиндров – что мы можем «выжать» из этого узла? Как обеспечить более производительную работу и увеличить момент? Основная задача головки блока цилиндров это впуск сгораемой смеси и выпуск сгоревших газов, как раз подача в камеру сгорания большего объема способствует повышению момента. Некоторые автолюбители турбируютдвигатели, т. е. воздушная масса не всасывается тактом, а нагнетается турбиной, следовательно, не затрачивается энергия на забор воздуха. Но такие модернизации дороги, и очень сложны, не каждый двигатель получится модифицировать, но прирост при этом будет ощутимый. Приемлемым вариантом видится увеличение пропускной способности впускного клапана. Подбирается клапан с большим диаметром тарелки, после дорабатывается сам клапан на токарном станке и подгоняется под него посадочное место для как можно плотного прилегания клапана и последующего надежного запирания камеры сгорания. В этом вопросе для каждого двигателя будут свои нюансы. Увеличить крутящий момент можно также заменой распределительного вала на спортивный вариант с регулируемым шкивом и измененной программой управления. Отличие спортивного распределительного вала от стокового в измененном профиле кулачков, т. е. фазами газораспределения, это позволяет более эффективно наполнять рабочую камеру смесью. А большее количество рабочей смеси при сгорании лучше давит на поршень, и, следовательно увеличивает крутящий момент двигателя.

Еще одним способом увеличения крутящего момента является увеличение степени сжатия путем уменьшения объема камеры сгорания. За счет малого объема большей компрессии достигнуть легче. Уменьшая объем камеры сгорания, путем фрезеровки плоскости головки блока цилиндров, либо установка поршней сдругой формой верхней части занимающей больший объём, но такие модификации вряд ли возможны на 16 клапанных двигателях, так как в таких моторах поршень вплотную приближается к клапанам. При обрыве ремня газораспределительного механизма поршень врезается в открытые клапана и приводит их в негодность. Что чревато дорогостоящим ремонтом головки блока цилиндров и возможно узлов самого блока цилиндров.

Следующим основным шагом является увеличение рабочего объёма. Для этого необходимо заменить каленчатый вал, шатуны и поршни. Увеличение рабочего объема способствует основной нашей задаче, а именно увеличить крутящий момент в интервале между низкими и средними оборотами двигателя. С таким мотором для хорошего разгона его не придется «крутить» до высоких 5-6 тысяч. Далее модифицируем поршни, установкой облегченных собратьев. Уменьшая массу поршня, мы снимаем часть нагрузки на коленчатый вал и коренные шейки также уменьшается инерция поршня и в мертвых точках поршню легче остановиться. Все эти модификации должны сопровождаться изменением углов зажигания, настройки подачи топлива и воздуха. Для инжекторных двигателей это прошивка электронного блока управления (ЭБУ), для карбюраторных тщательная настройка карбюратора. Еще одним вариантом повышения динамических характеристик может служить расточка блока цилиндров и установка поршней большего диаметра, но стоит отметить, что расточка также практикуется в ремонтных целях, и может отрицательно сказаться на ресурсе двигателя.

Проделав некоторые модификации, вы приятно удивитесь новым способностям вашего автомобиля, прирост в наборе скорости и тяговитости в целом будет ощутимымым. Но следует быть готовым к большему расходу топлива, ведь двигатель стал объёмнее и прожорливее!

 

  • < Назад
  • Вперёд >

auto-tuner.ru