Катушка зажигания бесконтактной системы зажигания


Чем отличается контактный трамблер бесконтактного по сути

Современный бесконтактный распределитель и катушка

Современная бесконтактная система зажигания или БСЗ является передовым и конструктивным решением, своеобразным продолжением старой контактно-транзисторной системы. Здесь обычный контакт-предохранитель заменен специальным и производительным регулятором. А чем же еще отличаются эти обе системы? Давайте узнаем.

КСЗ

КСЗ – первый, уже устаревший вариант зажигания, применяющийся до сих пор на редких автомоделях. В КСЗ ток и его сегрегация осуществляется трамблером с помощью контактной группы.

Включает в свой состав КСЗ такие компоненты, как мехраспределитель и мехпрерыватель, катушку зажигания, вакуум-датчик и т. д.

Мехпрерыватель или размыкатель

Контактная система зажигания схема

Это компонент, на который ложится функция осуществления разъединения звена низкого токового накала. Другими словами — тока, образующегося в первичной обмотке. Вольтаж идет на контактную группу, элементы которой защищены от обгорания специальным покрытием. Кроме того, предусмотрен конденсатор-теплообменник, подключенный симультанно контактной группе.

Катушка зажигания в КСЗ является преобразователем тока. Именно здесь ток низкого напряжения трансформируется в высокий ток. Как и в случае с БСЗ, используется два типа обмоток.

Механический распределитель или просто трамблер

Этот компонент способен обеспечить эффективную подачу высокого тока к СЗ. Сам трамблер состоит из множества элементов, но основными являются крышка и ротор или бегунок (народ.).

Крышка изготовлена так, что с внутренней стороны оснащена соединителями основного и дополнительного типа. Высокий ток принимается центральным контактом, а рассредотачивается по свечам – через боковые (дополнительные).

Мехпрерыватель и распределить – это единый тандем, как и датчик холла с коммутатором в БСЗ. Они приводятся в действие приводом коленвала. В просторечье оба элемента называют единым словом «трамблер».

ЦРОЗ – регулятор, служащий для изменения УОЗ в зависимости от количества оборотов коленвала силовой установки. Априори состоит из 2-х грузиков, воздействующих на пластинку.

Настройка УОЗ

УОЗ другими словами, это угол поворота коленвала, такой при котором происходит непосредственная передача тока с высоким вольтажом на СЗ. Для того чтобы горючая смесь без остатков сгорела, зажигание осуществляется с опережением.

УОЗ в КСЗ выставляется с помощью спецприспособления.

ВРОЗ или вакуумный датчик

Он обеспечивает изменение УОЗ в зависимости от нагрузки на мотор. Другими словами, этот показатель – прямое следствие степени открытия дроссзаслонки, зависящей от силы нажатия педали акселератора. ВРОЗ находится за дроссзаслонкой, и способен изменять УОЗ.

Бронепровода – обязательные элементы, своеобразные коммуникации, служащие для передачи тока с высоким вольтажом к трамблеру и от последнего к свечам.

Функционирование КСЗ осуществляется следующим образом.

  • Контакт-прерыватель замкнут – в катушке задействован ток с низким вольтажом.
  • Контакт разомкнут – уже во вторичной обмотке задействуется ток, но с высоким вольтажом. Он подается на верхнюю часть трамблера, а затем растекается по бронепроводам дальше.
  • Увеличивается число вращений коленвала – одновременно повышается количество оборотов вала прерывателя. Грузики под воздействием расходятся, подвижная пластина перемещается. УОЗ увеличивается за счет размыкания контактов прерывателя.
  • Обороты коленвала силовой установки сокращаются – УОЗ автоматически уменьшается.

Вакуумный регулятрор трамблер

Контактно-транзисторная система зажигания – это дальнейшая модернизация старой КСЗ. Отличие в том, что стал применяться уже коммутатор. В результате этого увеличился срок службы контактной группы.

Катушка

В КСЗ одним из обязательных, важных элементов выступает катушка. Она включает линейку очень значимых компонентов, таких как обмотки, трубка, резистор, сердечник и т. д.

Отличие низковольтной и высоковольтной обмотки заключается не только в характере напряжения. В первичной обмотке сделано меньшее количество витков, чем во вторичной. Разница достигать может очень большого количества. Например, 400 и 25000 витков, но размер этих самых витков будет в разы меньше.

Из каких элементов состоит БСЗ

БСЗ – это модернизированная трансформация КСЗ. В ней механический прерыватель заменен датчиком. Сегодня таким зажиганием оснащается большинство отечественных моделей и иномарок.

Примечание. БСЗ может выступать, как дополнительный элемент КСЗ или функционировать полностью автономно.

Использование БСЗ позволяет значительно увеличить мощностные показатели силовой установки. Особенно важно, что снижается топливный расход, а также выбросы СО2.

Катушка зажигания БСЗ

Одним словом, БСЗ включает целый ряд компонентов, среди которых особое место занимает выключатель, регулятор импульсов, коммутатор и т. д.

БСЗ – устройство, которое аналогично контактной системе зажигания, имеет целый ряд положительных сторон. Однако, как утверждают некоторые эксперты, не лишено и минусов.

Рассмотрим основные элементы БСЗ, чтобы составить более обзорное представление.

Датчик Холла

Регулятор импульсов или ДЭИ* — данный компонент предназначен для создания электроимпульсов низкого напряжения. В современной технопромышленности принято использовать 3 типа ДЭИ, но в автомобильной сфере широкое применение нашел лишь один из них – датчик Холла.

Как известно, Холл – гениальный ученый, которому первому пришла в голову идея рационально и эффективно применять магнитное поле.

Состоит регулятор этого типа из магнита, пластины-полупроводника с чипа и затвором с выемками, которые собственно и пропускают магнитное поле.

Примечание. Обтюратор имеет прорези, но помимо этого, еще и стальной экран. Последний ничего не просеивает, и таким образом, создается чередование.

ДЭИ – датчик электроимпульсов

Датчик Холла

Регулятор конструктивным образом соединяется с трамблером, тем самым способом, образуется устройство единого типа – регулятор-трамблер, внешне схожий во многих функциях с прерывателем. Например, оба имеют аналогичный привод от коленвала.

КТТ

Коммутатор транзисторого типа (КТТ) – полезнейший компонент, служащий для прерывания электричества в цепи катушки зажигания. Конечно же, КТТ функционирует в соответствие с ДЭИ, составляя вместе с последним единый и практичный тандем. Прерывается электрический заряд за счет отпирания/запирания выходного транзистора.

Катушка

И в БСЗ катушка выполняет те же функции, что и на КСЗ. Отличия, безусловно, имеются (подробно представлены ниже). Кроме этого, здесь применяется электрокоммутатор, осуществляющий прерывание цепи.

БСЗ-катушка надежнее и лучше во всех отношениях. Улучшается пуск силовой установки, эффектнее становится работа мотора на разных режимах.

Как функционирует БСЗ

Вращение коленвала силовой установки воздействует на тандем трамблер-регулятор. Таким образом формируются импульсы напряжения, передающиеся на КТТ. Последний создает ток в катушке зажигания.

Примечание. Следует знать, что в автоэлектрике принято говорить о двух типах обмоток: первичной (низкой) и вторичной (высокой). Импульс тока создается в низкой, а большой вольтаж – в высокой.

Схема функционирования БСЗ

Далее высокое напряжение передается из катушки на трамблер. В распределителе его принимает центральный контакт, от которого ток и передается по всем бронепроводам на свечи. Последние осуществляют воспламенение горючей смеси, и ДВС запускается.

Как только увеличиваются обороты коленвала, ЦРОЗ* осуществляет регулирование УОЗ**. А если нагрузка на силовую установку меняется, то за УОЗ отвечает уже вакуумный датчик.

ЦРОЗ – центробежный регулятор опережения зажигания

УОЗ – угол опережения зажигания

Безусловно, трамблер сам по себе, будь он старого или нового образца, является обязательным элементом системы зажигания автомобиля, способствующий появлению качественного искрообразования.

В трамблере нового образца устранены все недочеты распределителя контактного. Правда, новый распределить стоит на порядок дороже, но это окупается, как правило, впоследствии.

Как и было написано выше, при эксплуатации БСЗ применяется новый распределитель, не имеющий контактную группу. Здесь роль прерывателя и соединителя выполняют КТТ и датчик Холла.

ЭСЗ

Система зажигания, в которой распределение высокого напряжения по двигательным цилиндрам осуществляется с помощью электроустройств, называется ЭСЗ. В некоторых случаях данную систему принято называть также «микропроцессорной».

Отметим, что обе прежние системы – КСЗ и БСЗ тоже включали некоторые элементы электроустройств, но ЭСЗ вообще не подразумевает использование каких бы то ни было механических составляющих. По сути, это та же БСЗ, только более модернизированная.

Электронная система зажигания

На современных автомашинах ЭСЗ – это обязательная часть управляющей системы ДВС. А на более новых машинах, вышедших совсем недавно, ЭСЗ работает в группе с выпускной, впускной и охладительной системами.

Моделей таких систем на сегодняшний день немало. Это и всемирно известные Бош Мотроник, Симос, Магнетик Марелли, и менее именитые аналоги.

Отличия:

  1. В контактном зажигании прерыватели или контакты смыкаются механическим путем, а в БСЗ – электронным. Другими словами, в КСЗ применяются контакты, в БСЗ – датчик Холла.
  2. БСЗ – это больше стабильности и сильнее искра.

Отличия имеются и между катушками. У обоих систем разная маркировка и разные катушки зажигания. Так, у катушки БСЗ больше витков. Кроме того, катушка БСЗ считается надежнее и мощнее.

Таким образом, мы выяснили, что на сегодняшний день в применении 3 варианта зажигания. Используются, соответственно, и разные трамблеры.

Как платить за БЕНЗИН В ДВА РАЗА МЕНЬШЕ

  • Цены на бензин растут с каждым днем, а аппетит автомобиля только увеличивается.
  • Вы бы рады сократить расходы, но разве можно в наше время обойтись без машины!?
Но есть совершенно простой способ сократить расход топлива! Не верите? Автомеханик с 15-летним стажем тоже не верил, пока не попробовал. А теперь он экономит на бензине 35 000 рублей в год! Подробнее об этом по ссылке.

загрузка...

ozapuske.ru

Бесконтактные системы зажигания

На автомобилях УАЗ более поздних сроков выпуска установлены бесконтактные системы зажигания. Их применение повышает топливную экономичность двигателя, уменьшает нагарообразование и токсичность отработавших газов, а также облегчает пуск двигателя зимой. Кроме того, бесконтактные системы зажигания обладают повышенной надежностью и стабильностью в работе, значительно реже требуют технического обслуживания, т. к., вследствие отсутствия подвижных контактов прерывателя отпадает необходимость в периодической их очистке и регулировке зазора между ними. Бесконтактные системы зажигания содержат датчик-распределитель, коммутатор, катушку зажигания, свечи зажигания со свечными наконечниками и выключатель зажигания (таблица 15.2).

Таблица 15.2 -Состав бесконтактных систем зажигания автомобилей УАЗ

Наименование элементов Тип элементов
Катушка зажигания Б 116
Датчик-распределитель 33.3706 (19.3706)
Коммутатор 13.3734
Добавочный резистор 14.3729
Свечи зажигания А 11
Аварийный вибратор 5102.3747

 

Катушка зажигания.

Конструкция катушки зажигания Б 116 аналогична конструкции катушки Б 115-Б, но первичная обмотка катушки Б 116 имеет малое внутреннее сопротивление (0,43 Ом), поэтому максимальная сила тока в первичной цепи может достигать 8 - 9 А, что обеспечивает более высокие величину вторичного напряжения и энергию искрового разряда. Дополнительный резистор 14.3729 установлен отдельно от катушки зажигания Б 116.

Датчик-распределитель

Датчики-распределители 33.3706 и 19.3706 (рисунок 15.8) содержат распределитель, октан- корректор, центробежный и вакуумный регуляторы опережения зажигания обычной конструкции, а вместо контактов прерывателя установлен магнитоэлектрический датчик импульсов.

1 – муфта распределителя; 2 – опорная пластина; 3 – корпус датчика- распределителя; 4 – пресс- масленка; 5 – вывод; 6 – вакуумный регулятор; 7 – крышка распределителя, 8 – центральный угольный электрод с пружиной; 9 – боковой электрод; 10 – токоразносная пластина ротора; 11 – ротор; 12 19 – втулки; 13 –магнитоэлектрический датчик; 14 – регулировочные шайбы; 15, 17 – подшипники; 16 – центро-бежный регулятор; 18 – валик распределителя; 20 – установочные метки; 21 – ротор датчика; 22, 24 – пластины; 23 – обмотка; 25, 27 – полюсные наконечники; 26 – кольцевой постоянный магнит

 

Рисунок 15.8 - Датчик-распределитель 33.3706

 

В корпусе 3 на подшипнике 15 установлен статор магнитоэлектрического датчика импульсов 13. Ротор 11 напрессован на латунную втулку 12, которая своей подковообразной пластиной связана с центробежным регулятором 16 угла опережения зажигания. Статор состоит из обмотки 23 и двух стальных пластин 22 и 24. Один конец обмотки соединяется с корпусом, а второй – с выводом 5 датчика распределителя.

Ротор состоит из кольцевого постоянного магнита 26 и двух полюсных наконечников 25 и 27, расположенных по обоим торцам постоянного магнита. Один наконечник имеет северный полюс, а другой – южный. Зубцы наконечника с северным полюсом входят в пространство между зубцами наконечника с южным полюсом.

Для установки зажигания на статоре и роторе нанесены метки 20, которые совмещаются при положении поршня первого цилиндра двигателя в ВМТ конца такта сжатия.

Свеча зажигания

Свеча зажигания А11 по конструкции аналогична свече А11У.

Добавочный резистор

Добавочный резистор 14.3729 имеет двухсекционный с тремя клеммами: «+», С и К. Величина сопротивления между клеммами «+» и ВК – 0,71 Ом, а между клеммами ВК и К – 0,52 Ом. Во время пуска первая закорачивается секция.

Выключатель зажигания

Комбинированный выключатель зажигания и стартера устанавливается на панели приборов, имеет три положения, из которых два фиксированных. Положение ключа на пуск двигателя стартером не фиксируется. Нейтральное положение - все выключено, первое правое – включено зажигание, второе правое - включены зажигание и стартер.

Транзисторный коммутатор

Транзисторный коммутатор предназначен для коммутации (размыкания и замыкания) первичной цепи системы зажигания в соответствии с поступающими к нему сигналами от датчика распределителя (рисунок 15.9).

а – общий вид; б – принципиальная электрическая схема

 

Рисунок 15.9 - Коммутатор 13.3734

 

Коммутатор 13.3734 представляет собой трехкаскадное транзисторное реле. Формирующий каскад VT1 и каскад предварительного усиления VT2 выполнены на транзисторах средней мощности, а выходной каскад VT3 содержит мощный транзистор. Между выходом и входом коммутатора включена цепочка положительной обратная связь R8, С5, обеспечивающая стабильную работу коммутатора на пусковых частотах вращения валика распределителя (20 ¸ 30 об/мин-1). Защита транзисторов от нарушения полярности (неправильного подключения) осуществляется диодом VD1, а от сетевого перенапряжения – с помощью стабилитрона VD4.

При включенном зажигании и неработающем двигателе (на выходе датчика нет импульсов) транзистор VT1 закрыт, а транзисторы VT2 и VT3 открыты. В первичной обмотке катушки зажигания существует ток I.

При вращении коленчатого вала двигателя вращается ротор датчика. На выходе датчика появляется сигнал, положительная полуволна которого через однополупериодный выпрямитель VD3 и токоограничивающий резистор R2 открывает транзистор VT1. Напряжение на коллекторе VT1 уменьшается, транзисторы VT2 и VT3 закрываются. Ток в первичной обмотке катушки зажигания прерывается, а во вторичной обмотке индуцируется высокое напряжение.

При частотах вращения коленчатого вала менее 500 об/мин (пуск двигателя) коммутатор обеспечивает подачу серию искр на свечу в один цилиндр, что обеспечивает надежный пуск двигателя.

При повышении сетевого напряжения до 16 - 17 В (неисправность генераторной установки) происходит пробой стабилитрона VD4 и транзистор VT1 открывается, а транзисторы VT2 и VT3 закрываются. В таком состоянии транзисторы находятся постоянно в течение всего времени действия импульса повышенного напряжения. В результате прекращается процесс искрообразования, и двигатель снижает обороты до уменьшения напряжения вырабатываемого генератором до 15 - 16 В.

Для обеспечения помехоподавления в бесконтактных системах зажигания применяются экранированные наконечники свечей со встроенными резисторами сопротивлением (5600± 560) Ом.

Аварийный вибратор

Аварийный вибратор 5102.3747 используется при выходе из строя коммутатора или датчика-распределителя и представляет собой электромагнитное реле, размыкающиеся контакты которого шунтированы конденсаторами (рисунок 15.10). Благодаря этому, при переключении провода с клеммы "КЗ" транзисторного коммутатора на клемму вибратора, его контакты размыкаются и замыкаются с определенной частотой, прерывая ток в первичной обмотке катушки зажигания.

1 – обмотка реле, 2 – контакты реле; 3 – конденсаторы

 

Рисунок 15.10 - Электрическая принципиальная схема аварийного вибратора

Схема бесконтактной системы зажигания приведена на рисунке 15.11.

1 – аккумуляторная батарея; 2 – выключатель зажигания; 3 – добавочный резистор; 4 – датчик импульсов; 5 – коммутатор; 6 – катушка зажигания; 7 – распределитель; 8 – свечи зажигания; 9 – аварийный вибратор

 

Рисунок 15.11 - Схема бесконтактной системы зажигания

 

Работа системы зажигания в аварийном режиме

В случае выхода из строя транзисторного коммутатора или катушки статора датчика-распределителя в пути возможно обеспечить работоспособность системы с аварийным вибратором, для чего необходимо отсоединить провод от вывода «КЗ» транзисторного коммутатора и подсоединить его к выводу аварийного вибратора.

Срок службы аварийного вибратора ограничен (30 ч), включать его в работу рекомендуется только в аварийных случаях и при первой возможности заменять неисправный блок.

Схема соединений приборов бесконтактной системы зажигания на автомобиле УАЗ с ЭПХХ приведена на рисунке 15.12.

1 – свечи зажигания; 2 – датчик- распределитель; 3 – микропереключатель; 4 – аварийный вибратор; 5 – коммутатор; 6 – электромагнитный клапан; 7 – блок управления ЭПХХ; 8 – дополнительный резистор; 9 – катушка зажигания; 10 – выключатель зажигания; 11 – блок предохранителей

 

Рисунок 15.12 - Схема соединений приборов бесконтактной системы

зажигания и ЭПХХ УАЗ-31512

 

При наличии на автомобиле системы экономайзера принудительного холостого хода (ЭПХХ) необходимо отключить систему ЭПХХ карбюратора, для чего соединить одним из шлангов штуцеры между собой, минуя электромагнитный клапан. В противном случае возможна остановка двигателя при полностью отпущенной педали управления дроссельной заслонкой карбюратора.

После восстановления работоспособности системы (замены коммутатора или датчика-распределителя) необходимо восстановить прежние соединения на карбюраторе.

 

Похожие статьи:

poznayka.org

Бесконтактная система зажигания.

Бесконтактная система зажигания



Дальнейшим шагом в развитии систем зажигания индуктивного типа было создание бесконтактных систем, в которых конструкторы полностью отказались от разрыва электрической цепи первичной обмотки катушки зажигания механическим способом. Функцию генерирования управляющего сигнала на базу транзистора передали магнитоэлектрическому датчику, использующему в своей работе принцип, основанный на эффекте Холла. Отказ от механических контактов позволил существенно повысить надежность и стабильность работы системы зажигания, поэтому они быстро вытеснили контактные и контактно-транзисторные системы, применявшиеся на автомобильных двигателях.

На рисунке 1 представлена схема системы зажигания с магнитоэлектрическим генераторным датчиком, предназначенная для восьмицилиндровых двигателей. Она содержит электронный коммутатор, датчик распределитель, добавочный резистор и катушку зажигания. Магнитоэлектрический датчик конструктивно объединён с высоковольтным распределителем.

Работает бесконтактная система зажигания (БСЗ) следующим образом (рис. 1). При включенном выключателе 5 и неработающем двигателе транзистор VT1 (К.Т630Б) закрыт, так как его база и эмиттер имеют одинаковый потенциал. При закрытом транзисторе VT1 потенциал базы транзистора VT2 (К.Т630Б) выше потенциала эмиттера. По переходу база-эмиттер протекает ток управления по цепи: положительный вывод аккумуляторной батареи - контакты выключателя зажигания - положительный вывод добавочного резистора - положительный вывод коммутатора - дроссель-диод VD6 - резисторы R5 и R6 - переход база-эмиттер транзистора VT2 - резисторы R10 и R11 - корпус автомобиля - отрицательный вывод аккумуляторной батареи.

Ток управления открывает транзистор VT2, что в свою очередь приводит к появлению тока управления транзистора VT3 (К.Т809А), открывается транзистор VT4 (КТ808А). При этом через коллектор-эмиттер транзистора VT4 пойдет ток по цепи: положительный вывод аккумуляторной батареи - контакты выключателя зажигания - добавочный резистор - первичная обмотка катушки зажигания - диод VD7 - коллектор-эмиттер транзистора VT4 - «масса» - отрицательный вывод аккумуляторной батареи. При этом в магнитном поле катушки зажигания накапливается электромагнитная энергия.

При прокручивании коленчатого вала двигателя стартером в магнитоэлектрическом датчике вырабатывается переменное напряжение, которое поступает на вывод «Д» коммутатора. С вывода «Д» сигнал датчика через диод VD1 (КД102А) и цепь R1C3 поступает на базу транзистора VT1. Диод VD1 пропускает с датчика импульсы только положительной полярности. Цепь R1C3 служит для исключения электрического угла опережения зажигания, присущего магнитоэлектрическим датчикам при изменении частоты вращения.

Поступивший на базу транзистора VT1 положительный импульс вызывает увеличение потенциала базы относительно эмиттера. В результате в транзисторе VT1 будет протекать ток управления по цепи: обмотка датчика - диод VD1 - цепь R1C3 - переход база-эмиттер транзистора VT1 - «масса» - обмотка датчика. Транзистор VT1 откроется и зашунтирует переход база-эмиттер транзистора VT2, что вызовет закрытие транзистора VT2, а затем и закрытие транзисторов VТЗ и VT4.

Запирание транзистора VT4 приводит к резкому прекращению первичного тока в катушке зажигания и возникновению высокого напряжения во вторичной обмотке катушки зажигания, которое через распределитель подводится к соответствующей свече зажигания. Затем после исчезновения импульса с датчика транзистор VT1 закроется, а транзисторы VT2, VT3 и VT4 откроются, и в магнитном поле катушки зажигания будет опять накапливаться электромагнитная энергия.

Транзисторный коммутатор содержит целый ряд дополнительных элементов, служащих для защиты и улучшения условий работы схемы. Стабилитрон VD5 (КС980А) и конденсатор С7 защищают схему от напряжения, индуктируемого в первичной обмотке катушки зажигания.

Диод VD3 (КД102А) ограничивает амплитуду импульса с датчика и, таким образом, защищает переход база-эмиттер транзистора VT1 от пробоя. Диод VD7 защищает транзистор VT4 от обратной полярности источника питания.

Конденсатор С6 и резистор R7 образуют цепь обратной связи, по которой положительная полуволна ЭДС самоиндукции с первичной обмотки катушки зажигания поступает на базу транзистора VT1, ускоряя его отпирание, что способствует обеспечению бесперебойности искрообразования на низких частотах вращения.



Конденсаторы С4 и С5 защищают переходы база-эмиттер транзисторов VT2 и VT3 от всплесков напряжения и исключают ложные срабатывания транзисторов VT2 и VT3. Резисторы R8, R10 и R11, включенные между эмиттерами и базами транзисторов VT2, VT3 и VT4, служат для повышения предельно допустимого напряжения между коллектором и эмиттером транзисторов.

Резистор R12 и конденсатор С8 уменьшают мощность, выделяемую в транзисторе VT4 при его закрытии, во время переходного процесса. Конденсаторы С1 и С2 и дроссель уменьшают пульсации напряжения в цепи питания коммутатора, а диод VD6 (КД212Б) защищает от обратной полярности.

Защита транзисторного коммутатора от перенапряжений питания осуществляется схемой, состоящей из стабилитрона VD2 (КС515А), стабилитрона VD4 (КС119А) и резисторов R2 и R3. При повышении напряжения питания до 18 В напряжение на стабилитроне VD2 будет больше напряжения стабилизации и на базу транзистора VT1 поступит положительное смещение относительно эмиттера. Независимо от импульсов датчика транзистор VT1 откроется, а транзисторы VT2, VT3 и VT4 закроются, и двигатель остановится.

Транзисторный коммутатор 13.3734 размещен в ребристом корпусе, отлитом из алюминия (см. рисунок вверху страницы). Коммутатор имеет три вывода:

  • вывод «Д» - для соединения с низковольтным выводом датчика-распределителя;
  • вывод «КЗ» - для соединения с выводом катушки зажигания;
  • вывод «+» - для соединения с выводом «+» добавочного резистора.

Катушка зажигания Б116 выполнена с электрически разделенными обмотками, как и катушка Б114 для контактно-транзисторной системы зажигания, и отличается от последней обмоточными параметрами. Добавочный резистор 14.3729 состоит из двух нихромовых спиралей, которые размещены в металлическом корпусе. Выводы, к которым присоединены концы спиралей, имеют маркировку «+», «С», «К». Величина сопротивления спирали между выводами «С» и «+» составляет 0,71 Ом, а спирали между выводами «С» и «К» - 0,52 Ом.

Датчик-распределитель 24.3706 (на схеме рис. 1) предназначен для управления работой транзисторного коммутатора, распределения импульсов высокого напряжения по свечам зажигания в необходимой последовательности, для автоматического регулирования момента искрообразования в зависимости от частоты вращения коленчатого вала и нагрузки двигателя.

***

Дальнейшее развитие системы питания бензиновых двигателей связано с широким внедрением компьютерных технологий. Последним словом техники в этом плане являются микропроцессорные системы зажигания, управляемые бортовым компьютером автомобиля. Электронный блок управления (ЭБУ), собирающий информацию от многочисленных датчиков, позволяет эффективно управлять не только системой зажигания, но и другими системами двигателя - питания, охлаждения, контроля над отработавшими газами. Комплексное управление работой двигателя позволило максимально использовать экономические и динамические свойства двигателя при соблюдении установленных экологических норм. Ведутся работы и над повышением эффективности системы зажигания путем внедрения многокатушечных модуляторов высокого напряжения, а также в других перспективных направлениях.

***

Свечи зажигания



k-a-t.ru

Бесконтактная система зажигания

Строительные машины и оборудование, справочник

Категория:

   Техническое обслуживание автомобилей

Бесконтактная система зажигания

Система зажигания с магнитоэлектрическим генераторным датчиком, предназначенная для 8-цилиндровых двигателей, содержит электронный коммутатор 13.3704, датчик-распределитель 24.3706, добавочный резистор 14.3729 и катушку зажигания Б116. Магнитоэлектрический датчик конструктивно объединен с высоковольтным распределителем.

Работает система зажигания следующим образом. При включенном выключателе S и неработающем двигателе транзистор VT1 (КТ630Б) закрыт, так как его база и эмиттер имеют одинаковый потенциал. При закрытом транзисторе VT1 потенциал базы транзистора VT2 (КТ630Б) выше потенциала эмиттера и по переходу база-эмиттер протекает ток управления по цепи: положительный вывод аккумуляторной батареи — контакты выключателя зажигания — положительный вывод добавочного резистора — положительный вывод коммутатора — дроссель-диод VD6 — резисторы R5 и R6 — переход база-эмиттер транзистора VT2 — резисторы R10 и R11 — корпус автомобиля — отрицательный вывод аккумуляторной батареи. Протекающий ток управления открывает транзистор VT2, что в свою очередь приводит к появлению тока управления транзистора VT3 (КТ809А) и его открытию, а затем и к открытию транзистора VT4 (КТ808А). При этом через коллектор-эмиттер транзистора VT4 пойдет ток по цепи: положительный вывод аккумуляторной батареи — контакты выключателя зажигания — добавочный резистор — первичная обмотка катушки зажигания — диод VD7 — коллектор-эмиттер транзистора VT4 — корпус автомобиля — отрицательный вывод аккумуляторной батареи. При этом в магнитном поле катушки зажигания накапливается электромагнитная энергия.

Рис. 1. Принципиальная схема бесконтактной системы зажигания с магнитоэлектрическим датчиком

При прокручивании коленчатого вала двигателя стартером в магнитоэлектрическом датчике вырабатывается переменное напряжение, которое поступает на вывод Д коммутатора. С вывода Д сигнал датчика через диод VD1 (КДЮ2А) и цепь R1C3 поступает на базу транзистора VTl. Диод VD1 пропускает с датчика импульсы только положительной полярности. Цепь R1C3 служит для исключения электрического угла опережения зажигания, присущего магнитоэлектрическим датчикам при изменении частоты вращения. Поступивший на базу транзистора VT1 положительный импульс вызывает увеличение потенциала базы по отношению к эмиттеру. В результате в транзисторе VT1 будет протекать ток управления по цепи: обмотка датчика — диод VD1 — цепь R1C3 — переход база-эмиттер транзистора VT1 — корпус автомобиля — обмотка датчика. Транзистор VT1 откроется и зашун-тирует переход база-эмиттер транзистора VT2, что вызовет закрытие транзистора VT2, а затем и закрытие транзисторов VT3 и VT4.

Запирание транзистора VT4 приводит к резкому прекращению первичного тока в катушке зажигания и возникновению высокого напряжения во вторичной обмотке катушки зажигания, которое через распределитель подводится к соответствующей свече зажигания.

Затем после исчезновения импульса с датчика транзистор VT1 закроется, а транзисторы VT2, VT3 и VT4 откроются, и в магнитном поле катушки зажигания будет опять накапливаться электромагнитная энергия.

Транзисторный коммутатор содержит целый ряд дополнительных элементов, служащих для защиты и улучшения условий работы схемы. Стабилитрон VD5 (К.С980А) и конденсатор С7 защищают схему от напряжения, индуктируемого в первичной обмотке катушки зажигания. Диод VD3 (КД102А) ограничивает амплитуду импульса с датчика и, таким образом, защищает переход база-эмиттер транзистора VT1 от пробоя. Диод VD7 защищает транзистор VT4 от обратной полярности источника питания. Конденсатор С6 и резистор R7 образуют цепь обратной связи, по которой положительная полуволна э. д. с. самоиндукции с первичной обмотки катушки зажигания поступает на базу транзистора VT1, ускоряя его отпирание, что способствует обеспечению бесперебойности искрообразования на низких частотах вращения. Конденсаторы С4 и С5 защищают переходы база-эмиттер транзисторов VT2 и VT3 от всплесков напряжения и исключают ложные срабатывания транзисторов VT2 и VT3. Резисторы R8, R10 и R11, включенные между эмиттерами и базами транзисторов VT2, VT3 и VT4, служат для повышения предельно допустимого напряжения между коллектором и эмиттером транзисторов. Резистр R12 и конденсатор С8 уменьшают мощность, выделяемую н транзисторе VT4 при его закрытии, во время переходного процесса. Конденсаторы С1 и С2 и дроссель уменьшают пульсации напряжения в цепи питания коммутатора, а диод VD6 (КД212Б) защищает от обратной полярности.

Защита транзисторного коммутатора от перенапряжений питания осуществляется схемой, состоящей из стабилитрона VD2 (КС515А), стабилитрона VD4 (КС 119А) и резисторов R2 и R3. При повышении напряжения питания до 17—18 В напряжение на стабилитроне VD2 будет больше напряжения стабилизации и на базу транзистора VT1 поступит положительное смещение относительно эмиттера. Независимо от импульсов датчика транзистор VT1 откроется, а транзисторы VT2, VT3 и VT4 закроются и двигатель внутреннего сгорания остановится.

Транзисторный коммутатор 13.3734 размещен в ребристом корпусе, отлитом из алюминия.

Коммутатор имеет три вывода:— вывод Л — для соединения с низковольтным выводом датчика-распределителя;— вывод КЗ — для соединения с выводом катушки зажигания; вывод «)» — для соединения с выводом «f» добавочного резистора.

Катушка зажигания Б116 по схеме выполнена с электрически разделенными обмотками, как и катушка Б114 для контактно-транзисторной системы зажигания, и отличается от последней обмоточными данными.

Добавочный резистор 14.3729 состоит из двух секций из нихро-мовых спиралей, которые размещены в металлическом корпусе. Выводы, к которым присоединены концы секций, имеют маркировку « + ». Величина сопротивления секции между выводами « + » и С составляет 0,71 Ом, а секции между выводами С и К — 0,52 Ом.

Датчик-распределитель 24.3706 (рис. 2) предназначен для управления работой транзисторного коммутатора, распределения импульсов высокого напряжения по свечам зажигания в необходимой последовательности, для автоматического регулирования момента искрообразования в зависимости от частоты вращения коленчатого вала и нагрузки двигателя, а также для установки начального момента зажигания.

В корпусе датчика-распределителя расположены следующие основные узлы: магнитоэлектрический генераторный датчик со статором и ротором, центробежный регулятор, вакуумный регулятор. Корпус отлит из алюминиевого сплава, в хвостовой его части расположена пластина октан-корректора, предназначенного для ручной регулировки начального момента искрообразования и крепления датчика-распределителя на двигателе.

Привод датчика-распределителя осуществляется через присоединительный шип, который закреплен на валике. Для смазки подшипника валика упорного подшипника в корпусе установлена пресс-масленка.

Датчик состоит из ротора и статора. Ротор представляет собой кольцевой постоянный магнит с плотно прижатыми к нему сверху и снизу 8-полюсными обоймами. Обоймы жестко закреплены на втулке, на верхнюю часть которой установлен бегунок высоковольтного распределительного устройства. В нижней части втулки имеется паз, в который входит выступ втулки, жестко закрепленной на поводковой пластине ротора.

Рис. 2. Датчик-распределитель 24.3706

Статор датчика представляет собой обмотку, заключенную в 8-полюсные пластины. Соединены пластины между собой заклепками. Статор имеет один изолированный вывод, расположенный на корпусе распределителя. Второй конец обмотки электрически связан с корпусом. Статор посредством опор установлен на подвижной пластине, жестко закрепленной во внутренней обойме подшипника. Внешняя обойма подшипника закреплена неподвижно относительно корпуса. Подвижная пластина шарнирно связана с тягой вакуумного регулятора.

Таким образом, центробежный регулятор обеспечивает изменение опережения зажигания, поворачивая ротор датчика относительно статора, а вакуумный регулятор, — поворачивая статор относительно ротора.

Высоковольтное распределительное устройство содержит крышку с девятью выводами. С внутренней стороны в центральном выводе размещен подвижной комбинированный уголек типа ДСНК, обеспечивающий электрический контакт между центральным выводом и электродом бегунка. Далее через электроды высокое напряжение последовательно поступает на восемь высоковольтных выводов, расположенных по окружности крышек и служащих для присоединения проводов высокого напряжения от свечей зажигания. Уголек 8 обладает активным сопротивлением 6—15 кОм и, кроме коммутации тока высокого напряжения, служит для подавления радиопомех.

Для установки начального угла опережения зажигания на роторе и статоре датчика нанесены метки 20. Метки должны совпадать при положении коленчатого вала двигателя, соответствующем моменту искрообразования в первом цилиндре.

Система зажигания с датчиком Холла, предназначенная для 4-цилиндровых двигателей, содержит электронный коммутатор 36.3734, датчик-распределитель 40.3706 и катушку зажигания высокой энергии 27.3705.

Основное отличие этой системы зажигания от других отечественных бесконтактных и контакт-нотранзисторных систем состоит в том, что в ее катушке зажигания накапливается в 1,5— 2 раза большая электромагнитная энергия. При этом рассеиваемая мощность уменьшена в 2—3 раза, что позволило разработать электронный коммутатор в интегральном исполнении с меньшими габаритами и улучшить удельные показатели катушки зажигания. В данной системе энергия искрового разряда увеличена до 50 мДж по сравнению с 20—35 мДж в других применяемых системах зажигания. Основная цель, которая преследуется при разработке высокоэнергетических систем зажигания, — обеспечение работы двигателя на сильно обедненных рабочих смесях, что в конечном итоге приводит к уменьшению расхода топлива.

Рис. 3. Вторичное напряжение, развиваемое системой зажигания с полупроводниковым датчиком

Развиваемое системой зажигания вторичное напряжение имеет коэффициент запаса 1,5—2,3, что соответствует современным требованиям к системам зажигания.

Указанные преимущества системы зажигания с датчиком Холла достигнуты благодаря регулированию времени накопления энергии в катушке зажигания в зависимости от частоты вращения двигателя и напряжения бортовой сети. Принципиальная схема этой системы зажигания показана на рис. 4, а, а диаграмма, поясняющая принцип ее работы,— на рис. 4, б.

Рис. 4. Принципиальная схема бесконтактной системы зажигания с полупроводниковым датчиком (а) и диаграмма (б), поясняющая принцип ее работы

Датчик Холла имеет щелевую конструкцию. С одной стороны щели расположен чувствительный элемент со схемой, а с другой — постоянный магнит. В щели движется шторка цилиндрической формы. Благодаря имеющимся в ней окнам шторка периодически перекрывает магнитный поток, действующий на чувствительный элемент. Шторка расположена на одном валу с распределительным механизмом. Привод вала осуществляется от коленчатого вала двигателя.

Сигнал с датчика поступает в электронный коммутатор, который регулирует время протекания тока в первичной цепи катушки зажигания по заданному закону в функции частоты вращения двигателя и напряжения бортовой сети; ограничивает импульсы напряжения в первичной цепи катушки зажигания; обеспечивает необходимую величину тока в первичной цепи для получения заданных выходных параметров системы зажигания; ограничивает ток первичной цепи при достижении им максимального значения; прерывает первичный ток при замкнутых контактах выключателя зажигания S и неработающем двигателе.

Коммутатор содержит:— входной инвертор, выполненный на транзисторе 1/77; узел защиты от протекания тока в катушке зажигания при замкнутых контактах выключателя зажигания и неработающем двигателе, выполненный на усилителе А1.Г, интегратор, выполненный на усилителе А 1.2; компаратор, выполненный на усилителе А 1.3; логический узел, выполненный на транзисторе VT2 и резисторах R23, R24, R25, R26, R28;— ограничитель тока, выполненный на усилителе А 1.4 и индикаторных резисторах R36 и R37;— выходной усилитель, выполненный на транзисторах VT3 и VT4; стабилизатор напряжения питания, выполненный на резисторе R30 и стабилитроне VD4\— стабилизатор напряжения питания компараторов А1.3 и А1.4, выполненный на резисторе R18 и стабилитроне VD3.

При вращении коленчатого вала и замкнутых контактах S с датчика Холла (точка а на рис. 5.12, а) на базу транзистора VT1 поступают импульсы прямоугольной формы (диаграмма а на рис. 5.12, б). Транзистор VT1 инвертирует поступающие импульсы, формируя на выходе (точка б на рис. 5.12, а) сигнал б (диаграмма б на рис. 5.12,6), который управляет процессом заряда-разряда интегратора, собранного на усилителе А1.2. Включение конденсатора СЗ в цепь обратной связи усилителя обеспечивает линейный характер зарядно-разрядного процесса. На второй вход усилителя А 1.2 с делителя напряжения R6—R7 через резистор R9 подается опорный сигнал U0ni, знак которого противоположен-знаку сигнала б. Пока с инвертора на вход интегратора поступает сигнал б, происходит заряд конденсатора. Максимальный уровень напряжения заряда зависит от параметров цепочки R4—R5—R8— СЗ. Резистор R5 является подстроечным при регулировании максимального уровня напряжения заряда. Процесс заряда конденсатора СЗ заканчивается в момент, соответствующий спадающему фронту управляющего сигнала б и нарастающему фронту сигнала а датчика. Процесс разряда определяется цепочкой R6—R7— gg—СЗ, параметры которой подбираются таким образом, чтобы он закончился раньше, чем проходит новый управляющий сигнал на заряд.

Сигнал г с компаратора поступает на вход схемы сравнения, в которую входит транзистор VT2 и резисторы R23, R24, R25, R26, R28, на который поступает также сигнал б с инвертора. Эти сигналы формируют начало и конец сигнала е на выходе логической схемы. Продолжительность сигнала е определяет угол замкнутого состояния выходного транзистора VT4. Пока сигнал б или г поступает на базу транзистора VT2, он открыт, а потенциал в точке е равен нулю, так как она через цепь коллектор-эмиттер открытого транзистора VT2 связана с корпусом. Когда управляющие сигналы исчезают, транзистор VT2 закрывается и на базе транзистора VT3 через резистор R28 появляется управляющий сигнал е.

Появление сигнала е приводит к открытию выходного каскада VT3—VT4, вследствие чего происходит нарастание тока /к в первичной цепи катушки зажигания. В случае если ток в первичной цепи достигает предельной величины, например при малых частотах вращения, начинает работать схема ограничения тока. Функцию ограничителя тока выполняют усилитель А1.4 и резисторы R36 и R37, включенные параллельно, с суммарным сопротивлением 0,05 Ом. Возрастающий первичный ток, протекая по резисторам R36 и R37, создает на них падение напряжения, уровень которого сравнивается компаратором на усилителе А1.4 с опорным напряжением Uonз, которое определяется делителем напряжения R13—R15 и резистором R17. Опорное напряжение t/onз соответствует заданному току ограничителя. Для более точного задания опорного напряжения параллельно резистору R15 включен подстроечный резистор R16. Когда напряжение, поступающее с резисторов R36 и R37 через резистор R12 на компаратор, становится равным сигналу иопз, происходит срабатывание компаратора А 1.4 и с его выхода в точке д появляется сигнал д. Появление сигнала д через резистор R26 на базе транзистора VT2 вызывает его приоткры-вание, уменьшая при этом величину сигнала е (диаграмма е на рис. 5.12, б). Другими словами, приоткрытый транзистор VT2 шунтирует вход (базу) транзистора VT3, уменьшая при этом ток базы транзистора. Это приводит к переходу транзистора VT3 из режима насыщения (полностью открыт) в активный режим. При этом транзистор VT4 также переходит в активный режим, на его переходе коллектор-эмиттер создается падение напряжения, благодаря которому фиксируется заданный уровень тока первичной цепи.

Узел защиты от протекания тока в катушке зажигания при замкнутых контактах S и неработающем двигателе выполнен с использованием усилителя А1.У, являющегося интегратором. Если в состоянии покоя с датчика Холла поступает импульс, то в точке б импульс отсутствует, и конденсатор С4 узла защиты начинает заряжаться внутренними паразитными токами схемы, что достигается специальным включением схемы усилителя. Через 2—5 с на выходе усилителя формируется напряжение, которое, поступая через резистор R25 на вход транзистора VT2, приводит к его открытию и, как следствие, к выключению выходного каскада, который обесточивает первичную цепь катушки зажигания. Время заряда конденсатора С4 выбирается таким большим, что при минимальной частоте двигателя напряжение на выходе интегратора не превышает 0,15 В за время отсутствия сигнала в точке б, что не влияет на работу логической схемы. Когда же появляется нарастающий фронт нового импульса б, конденсатор начинает разряжаться по цепи резисторы R0—R11 — диод VD2. Параметры цепи разряда подбираются так, что конденсатор С4 разряжается очень быстро.

Регулирование времени накопления энергии в катушке зажигания происходит следующим образом. Как видно из диаграммы в с увеличением частоты вращения двигателя (п0гР> ri\> по) напряжение на выходе интегратора А 1.2 в функции угла поворота коленчатого вала двигателя а нарастает медленно. Это объясняется тем, что с увеличением частоты вращения коленчатого вала увеличивается частота вращения шторок и становится меньше продолжительность заряда конденсатора СЗ. По указанной причине в момент перехода конденсатора СЗ из режима заряда в режим разряда напряжение на нем будет уменьшаться с увеличением частоты вращения. Следовательно, как видно из диаграммы в, с увеличением частоты вращения разрядная ветвь раньше (по углу поворота) уменьшится до величины опорного напряжения Uопг, раньше исчезает сигнал г, появится сигнал д, откроется выходной каскад и начнет протекать ток /к в первичной цепи катушки зажигания.

Регулирование времени накопления начинается с частоты по, соответствующей минимальной частоте вращения коленчатого вала, до частоты вращения п0Гр. При дальнейшем увеличении частоты напряжение заряда конденсатора не превышает напряжения Uоп2- При этом компаратор на усилителе А1.3 блокируется и сигнал е на выходе схемы сравнения совпадает по фазе с сигналом датчика а и инвертированным сигналом б.

Кроме нормирования времени накопления энергии в функции частоты вращения коленчатого вала осуществляется регулирование в функции напряжения питания. Это осуществляется за счет включения на входы компаратора А 1.3 резисторов смещения R21 и R22. При этом опорный уровень компаратора также является функцией напряжения питания. Чем выше уровень напряжения питания, тем ниже опорный уровень компаратора А1.3.

В схему коммутатора 36.3734 входит также ряд дополнительных элементов. Диод VD7 защищает выходной транзистор от пе-реполюсовки источника питания. Стабилитрон VD5 и делитель напряжения R31—R35 защищают выходной транзистор от импульсов перенапряжения, возникающих в первичной обмотке катушки зажигания. Если импульс перенапряжения превышает допустимый уровень, то на делителе R31—R35 формируется напряжение, при котором стабилитрон VD5 пробивается. Выходной транзистор VT4 при этом открывается на время действия импульса, а напряжение, приложенное между коллектором и эмиттером транзистора VT4, не превышает допустимого.

Схема содержит источник стабилизированного питания на резисторе R30 и стабилитроне VD4, стабилизатор напряжения R18—VD3 компараторов А1.3 и А1.4, диод VD6 защиты от пере-полюсовки источника питания и конденсаторы С1, С2, С3 в цепи питания для защиты схемы и датчика от паразитных импульсов, возникающих в бортовой сети.

Схема коммутатора 36.3734 реализована на дискретных элементах с применением специально разработанной микросхемы К14014Д1, в которую входят четыре усилителя. В качестве выходного применен также специально разработанный транзистор КТ848А. Коммутатор имеет шесть рабочих выводов, которые не маркируются. Три вывода предназначены для присоединения к датчику и по одному — на корпус автомобиля, к катушке зажигания и для питания коммутатора.

Датчик-распределитель 40.3706 горизонтального типа имеет корпус, отлитый из алюминиевого сплава. Привод датчика-распределителя осуществляется через муфту и валик, на противоположном конце которого установлен ротор. Распределение высокого напряжения по свечам зажигания осуществляется посредством пяти выводов, расположенных на крышке. Крышка крепится к корпусу тремя винтами. Высоковольтная часть устройств отделена от остальной конструкции перегородкой. Валик вращается во втулке и шаровом вкладыше. Сальник препятствует попаданию масла во внутреннюю часть корпуса. Шаровой вкладыш установлен в неподвижной пластине. Подвижная пластина, к которой присоединена тяга от вакуумного регулятора, может поворачиваться вместе с внутренней обоймой подшипника, наружная обойма которого закреплена в неподвижной пластине. На подвижной пластине закреплен полупроводниковый датчик с магнитом. Три вывода датчика проводами соединены с выводами штекера. В прорези датчика вращается замыкатель (шторка), которая втулкой жестко соединена с поводковой пластиной центробежного регулятора.

Рис. 5. Датчик-распределитель 40.3706

Таким образом, при работе центробежного регулятора поводковая пластина поворачивает замыкатель относительно датчика, а при работе вакуумного регулятора датчик вместе с подвижной пластиной поворачивается относительно замыкателя.

Катушка зажигания 27.3705 аналогична по конструкции катушке зажигания контактной системы зажигания. Соединение обмоток выполнено по автотрансформаторной схеме. Особенностью конструкции является относительно низкое сопротивление первичной обмотки (0,5 Ом), что позволяет получать стабильные выходные характеристики при уменьшении напряжения питания до 6 В. В конструкции предусмотрена защита катушки зажигания от взрыва при выходе из строя электронного коммутатора.

Все высоковольтные детали системы изготовлены из специальной пластмассы типа стеклонаполненного полибутилентерефтала-та, дугостойкой, выдерживающей с большим запасом развиваемое системой высокое напряжение.

В бесконтактных системах зажигания момент подачи искры определяется моментом подачи сигнала, который вырабатывает бесконтактный датчик. Таким датчиком может быть любой преобразователь угла поворота коленчатого вала двигателя в какой-либо электрический сигнал. На отечественных автомобилях нашли применение бесконтактные системы зажигания с магнитоэлектрическим или полупроводниковым датчиком.

Рис. 6. Схема бесконтактной системы зажигания

Принципиальная схема бесконтактной системы зажигания с магнитоэлектрическим датчиком показана на рис. 6. Датчик состоит из постоянного магнита и обмотки. При вращении магнита в обмотке датчика индуктируется переменная э. д. с. При положительном значении напряжения появляется ток управления транзистором, проходящий по цепи: обмотка датчика — переход база Б — эмиттер Э — обмотка датчика. Транзистор открывается и от аккумуляторной батареи через первичную обмотку катушки зажигания и переход коллектор К — эмиттер Э транзистора будет проходить ток. При отрицательном значении напряжения транзистор закрывается, ток в первичной обмотке W1 прерывается и во вторичной обмотке W2 индуктируется э. д. с. большой величины, создавая искру между электродами свечи.

Таким образом, за один оборот магнита датчика в обмотке индуктируются один положительный и один отрицательный импульсы э. д. с. и транзистор один раз откроется и один раз закроется, т. е. в катушке зажигания создастся один импульс высокого напряжения. Для многоцилиндрового двигателя число пар полюсов магнита датчика должно соответствовать числу цилиндров двигателя. Выключатель обеспечивает включение и выключение системы зажигания.

На легковых автомобилях семейства ВАЗ-2108, -2109 бесконтактная система зажигания получила практическое применение, и в ближайшее время она будет устанавливаться на грузовых автомобилях ЗИЛ-4314-10, ГАЗ-53-12, УАЭ-3151 и др.

Читать далее: Система электропуска

Категория: - Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум

stroy-technics.ru

Бесконтактная система зажигания двигателя — Мегаобучалка

 

Бесконтактная система зажигания (рис.142) включает в себя ка­тушку зажигания 6, свечи зажигания 2, провода высокого 11 и ни­зкого 7 напряжения, электронный коммутатор 3, датчик-распреде­литель 1, выключатель зажигания 9, а также источники тока.

Принцип действия бесконтактной системы зажигания заключается в следующем. Электронно-механичес­кое устройство датчика-распределителя 1 при включенном зажига­нии и вращающемся коленчатом вале двигателя выдает импульсы напряжения на электронный коммутатор 3, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания 6. В момент прерывания тока в первичной обмотке ин­дуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения от катушки зажигания по проводу 11 под­ается на центральную клемму крышки распределителя и далее че­рез угольный контакт, токоразносную пластину ротора, боковую клемму крышки распределителя подается на соответствующую свечу 2 зажигания и осуществляет воспламенение рабочей смеси в ци­линдре двигателя.

Принципиальным отличием бесконтактной системы зажигания от контактной системы является подача импульсов тока низкого напряжения на катушку зажигания электронным коммутатором, получающим управляющие импульсы от электронно-механичес­кого устройства датчика-распределителя, который вместо контак­тов имеет бесконтактный датчик. Это обусловливает следующие преимущества бесконтактной системы зажигания по сравнению с контактной системой: значительно повышается надежность в свя­зи с отсутствием подвижных контактов и необходимости система­тической их зачистки и регулировки зазора; на равномерность мо­мента искрообразования по свечам зажигания не оказывают отри­цательного влияния вибрация и биение ротора-распределителя; повышается надежность пуска и работы двигателя при разгонах автомобиля благодаря более высокой электронной энергии разря­да, обеспечивающего надежное воспламенение горючей смеси в цилиндрах двигателя независимо от частоты вращения коленчато­го вала; упрощается техническое обслуживание системы зажига­ния в целом.

Конструктивные особенности элементов бесконтактных систем зажигания состоят в следующем.

Катушка зажигания типа 27.3705, устанавливаемая в бескон­тактных системах зажигания двигателей переднеприводных авто­мобилей (ВАЗ-2108, МеМЗ-245) имеет такое же устройство, как и у катушек в контактных системах, но они не взаимозаменяемы. Вследствие большой силы тока (до 10 А вместо 3...5 А) в катушке бесконтактной системы зажигания при ее установке в контактной системе будут быстро выгорать контакты прерывателя.

Свечи зажигания отличаются увеличенными зазорами между электродами (см. табл. и толщиной электродов, что повышает их надежность при более высоких напряжениях.

Провода высокого напряжения отличаются увеличенным сопро­тивлением и имеют более надежную изоляцию и, соответственно, увеличенную толщину (около 8 мм). В бесконтактных системах зажигания применяются провода типа ПВВП-8 красного цвета, отличающиеся от проводов ПВВП более толстой изолирующей оболочкой, а также ПВВП-40 синего цвета с двухслойной изоля­цией и сопротивлением 2550 Ом.

Электронный коммутатор служит для преобразования управля­ющих импульсов от датчика-распределителя в импульсы тока в первичной обмотке катушки зажигания. Электронные коммутато­ры, устанавливаемые в системах зажигания изучаемых двигателей устроены и функционируют аналогично.

Бесконтактные системы зажигания рассматриваемых автомоби­лей отличаются, в основном, конструкцией датчиков-распредели­телей и компоновкой отдельных элементов системы.

Бесконтактная система зажигания двигателя ВАЗ-2108 соединя­ется со всей системой электрооборудования посредством монтаж­ного блока 8 с разъемами Ш1 и Ш8.

В системе зажигания этого двигателя могут использоваться све­чи отечественного производства типа А17ДВ-10 или А12ДВР или свечи зарубежного производства с аналогичными характеристика­ми, например: FE-65PR или FE-65GPR (производства Югославии). При установке свечей зажигания типа А17ДВ-10 провода высокого напряжения комплектуются надеваемыми на свечи наконечника­ми с помехоподавительными резисторами сопротивлением 5, 6 кОм. При установке свечей А17ДВР, FE-65PR или других, имеющих встроенные помехоподавительные резисторы, провода комплекту­ются наконечниками без резисторов.

Датчик-распределитель (рис.143) выдает управляющие импуль­сы тока высокого напряжения, получает привод через муфту 15 от заднего конца распределительного вала. Он состоит из датчика, центробежного, вакуумного регуляторов опережения зажигания и распределителя зажигания. Отличается от распределителей зажи­гания, рассмотренных в контактной системе зажигания, отсутствием контактного прерывателя, который заменен бесконтактным дат­чиком. Электронно-механический датчик при включенном выклю­чателе зажигания 9 (см. рис.142) и вращающемся коленчатом вале двигателя выдает импульсы напряжения на коммутатор 3, который преобразует их в прерывистые импульсы тока в первичной обмот­ке катушки зажигания 6. В моменты прерывания тока в первичной обмотке во вторичной обмотке индуктируется ток высокого на­пряжения до 25000 В. Импульсы тока высокого напряжения от катушки зажигания по проводу 11 и далее через угольный контакт 3 (см. рис.143) передаются на токоразносную пластину 22 ротора 5, боковую клемму 4 крышки 1 и по проводу высокого напряжения, в наконечник которого установлен помехоподавительный резис­тор, на соответствующую свечу зажигания 2 (см. рис.142), воспла­меняя рабочую смесь в цилиндре. Далее ток высокого напряжения поступает на «массу», через аккумуляторную батарею и генератор на контакты выключателя зажигания, на зажим +Б катушки зажи­гания и во вторичную обмотку, замыкая электрическую цепь.

Центробежный регулятор опережения зажигания состоит из при­водного валика 4 (рис.144) датчика-распределителя с ведущей плас­тиной 1, грузиков 2, установленных на осях 5, и ведомой пластины 3 с оттяжными пружинами 6. С увеличением частоты вращения ко­ленчатого вала двигателя и соответственно приводного валика 4 гру­зики под действием центробежных сил проворачиваются на своих осях, преодолевая упругость пружин. При этом они упираются в ведомую пластину 3 и поворачивают ее вместе с экраном 9 (см. рис.143), приклепанным к втулке пластины, в направлении враще­ния приводного валика на определенный угол А (см. рис.144). В результате этого датчик будет выдавать импульсы тока высокого на­пряжения раньше, т.е. с увеличением угла опережения зажигания. При снижении частоты вращения коленчатого вала центробежные силы уменьшаются, и пружины поворачивают ведомую пластину с экраном 9 (см. рис.143) в обратную сторону, уменьшая угол опере­жения зажигания. Вакуумный регулятор опережения зажигания 16 устроен аналогично рассмотренному в контактной системе зажи­гания. Он соединен тягой 19 диафрагмы 18 с опорной пластиной 8 датчика. При малой нагрузке на двигатель тяга 19 перемещается и поворачивает опорную пластину датчика против направления вра­щения приводного валика датчика-распределителя, увеличивая опе­режение зажигания. По мере увеличения нагрузки пружина через тягу поворачивает опорную пластину в направлении вращения приводного валика — опережение зажигания уменьшается.

Бесконтактная система зажигания двигателя МеМЗ-245 (рис.145) имеет аналогичное устройство и отличается отсутствием мон­тажного блока, а также установкой датчика-распределителя типа 5301.3706, который крепится на двух шпильках гайками 4 и имеет привод от распределительного вала при помощи шестерни.

       
   
 
 
Бесконтактные системы зажигания автомобилей АЗЛК-2141 и -21412 в целом имеют одинаковые параметры и отличаются лишь некоторыми конструктивными особенностями, в том числе устрой­ством датчиков-распределителей, а также установкой на двигателе 331 свечей зажигания типа А20Д-2, а на двигателе 2106 — типа А17ДВ-10 или А17ДВР.

На двигателе УЗАМ-331 в датчике-распределителе (рис.146, а) вместо контактов устанавливается магниточувствительный микро­электронный переключатель 15. Подача импульсов тока высокого напряжения в порядке работы цилиндров двигателя осуществляется при помощи вращающегося ротора 8 с токоразносной пласти­ной, как и в распределителе контактной системы зажигания. Для автоматического изменения угла опережения зажигания служат центробежный и вакуумный регуляторы, имеющие такое же ус­тройство, как и в контактной системе зажигания (см. рис.140), уста­навливаемой на этом двигателе.

На двигателе 2106 в датчике-распределителе (рис.146, б) вместо контактов имеется бесконтактный датчик 27, а вместо кулачка пре­рывателя на приводном валике 24 укреплен стальной экран 36 с четырьмя прорезями. Через прорези датчик при вращении приво­дного валика 24 выдает импульсы высокого напряжения. Эти им­пульсы по угольку 10 центрального электрода поступают на наружный контакт 33 ротора и далее через клемму бокового элек­трода 30 по проводу на соответствующую свечу зажигания.

Бесконтактная система зажигания двигателя ВАЗ-2104 имеет те же элементы, что и на двигателе ВАЗ-2106, но датчик-распредели­тель типа 38.3706-01 отличается более коротким приводным вали­ком 24, не имеющим кольцевой отличительной канавки 38 около шлицевого конца (см. рис.146, б).

       
   
 
 
Бесконтактная электронная система зажигания двигателя ВАЗ-2111-80 с системой распределенного впрыска топлива включает в себя модуль зажигания, свечи зажигания 6, высоковоль­тные провода 3, а также ЭБУ 15 и датчики 5 и 10 детонации и положения коленчатого вала.

Модуль зажигания состоит из коммутатора и двух катушек зажи­гания, каждая из которых обеспечивает высоковольтным импуль­сом две свечи зажигания цилиндров, поршни которых находятся в противоположных по тактам фазах. Например, если поршень пер­вого цилиндра находится в ВМТ такта сжатия, а поршень четвер­того цилиндра находится в конце такта выпуска, то основная энергия импульса от катушки, обеспечивающей высоковольтные импуль­сы в этих цилиндрах, будет направлена на свечу первого цилиндра, и лишь небольшая часть энергии импульса будет подаваться на свечу четвертого цилиндра.

При пуске двигателя, когда частота вращения коленчатого вала менее 400 мин-1 моментом искрообразования управляет коммута­тор модуля зажигания. При более высоких оборотах управление зажиганием осуществляется ЭБУ, который оптимизирует угол опе­режения зажигания с учетом режимов работы двигателя, информа­ция о которых поступает от датчиков детонации, положения ко­ленчатого вала и др.

В данной системе зажигания применяются свечи А17ДВРМ с зазорами между электродами 1,0...1,13 мм.

Раздел 19. Система электрического пуска двигателя.

 

megaobuchalka.ru

2.11 Система зажигания двигателя - Блог по ремонту автомобиля

Система зажигания карбюраторного двигателя служит для воспламенения рабочей смеси в цилиндрах в определенный момент. Воспламенение происходит в конце такта сжатия электрической искрой, которая образуется между электродами свечи зажигания. Промежуток сжатой рабочей смеси между электродами свечи имеет большое электрическое сопротивление, поэтому между ними необходимо создать высокое напряжение, чтобы вызвать искровой разряд. Искровые разряды должны появляться при определенном положении поршней в цилиндрах и чередоваться в соответствии с установленным порядком работы двигателя.

 

На двигателях ВАЗ-2105, -2106, УЗАМ-331 и 412 устанавливается контактная система зажигания.

 

На двигателях ВАЗ-2108, МеМЗ-245 устанавливается электронная бесконтактная система зажигания. Бесконтактная система зажигания может устанавливаться также и на части двигателей ВАЗ-2105, -2106 и УЗАМ -331.

 

Рис. 61. Схема контактной системы батарейного зажигания:

1 — аккумуляторная батарея; 2 — свеча зажигания; 3 и 4 — соответственно токоразносная пластина ротора и боковая клемма распределителя; 5 — провод высокого напряжения; 6 — конденсатор; 7 — кулачок прерывателя; 8 — прерыватель; 9 — подвижный и неподвижный контакты прерывателя; 10 — провода низкого напряжения; 11 — катушка зажигания; 12 и 13 — соответственно вторичная и первичная обмотки; 14 — добавочный резистор; 15 — выключатель зажигания; 16 — реле стартера; 17 — контактная пластина реле; 18 — пружинный контакт; 19 — провод низкого напряжения от резистора; 20 — распределитель тока высокого напряжения

 

Контактная система зажигания (рис. 61) включает в себя катушку зажигания 11, конденсатор 6, распределитель зажигания с прерывателем 8 тока низкого напряжения и распределителем 20 тока высокого напряжения, свечи 2, выключатель (замок) зажигания 15, провода 10 и 19 низкого и 5 высокого напряжения, а также источники тока (аккумуляторная батарея и генератор). В систему зажигания могут быть также включены реле 16 стартера и добавочный резистор 14 катушки зажигания (кроме двигателей ВАЗ и МеМЗ).

 

Принцип действия контактной системы зажигания следующий. При включении зажигания поворотом ключа выключателя зажигания 15 по часовой стрелке и замкнутых конттактов 9 прерывателя 8 по цепи низкого напряжения пойдет электрический ток в такой последовательности: с плюсовой клеммы аккумуляторной батареи 1 на клемму стартера, далее по проводу 10 низкою напряжения через выключатель 15, резистор 14, первичную обмотку 13 катушки зажигания 11 на клемму прерывателя 8, через замкнутые контакты 9 на «массу» автомобиля и через «массу» на минусовую клемму аккумуляторной батареи. С увеличением частоты вращения коленчатого вала двигателя ток в первичную цепь будет поступать в таком же порядке, но уже от генератора.

 

Проходящий по первичной обмотке катушки зажигания ток низкого напряжения создает вокруг нее сильное магнитное поле и, когда вращающийся кулачок 7 прерывателя своим выступом размыкает контакты 9, ток в первичной цепи прекращается, магнитное поле первичной обмотки мгновенно исчезает и пересекает большое число витков вторичной обмотки 12, индуктируя в ней ток высокого напряжения (до 24 тыс. В), необходимый для получения искрового разряда на свечах зажигания, воспламеняющих рабочую смесь в цилиндрах.

 

Путь тока высокого напряжения следующий: вторичная обмотка 12 катушки зажигания, провод высокого напряжения 5, токоразносная пластина 3 ротора распределителя, боковая клемма 4 распределителя, провод высокого напряжения 5, центральный электрод свечи 2, через зазор — на боковой электрод, на «массу», «минус» аккумуляторной батареи, «плюс» батареи, провод 10, выключатель 15, резистор 14, первичную 13 и вторичную 12 обмотки катушки зажигания.

 

Кулачок 7 прерывателя за два оборота коленчатого вала четыре раза размыкает контакты 9, а ротор с разносной пластиной 3, установленный на кулачке, сделает один оборот и подаст четыре импульса тока высокого напряжения на боковые клеммы 4 четырех свечей, обеспечивая зажигание рабочей смеси в цилиндрах четырехцилиндрового двигателя в соответствии с порядком его работы.

 

Во время пуска двигателя стартером (поворот ключа по часовой стрелке во второе положение) контактная пластина 17 реле стартера замыкается с пружинным контактом 18 и ток из аккумуляторной батареи по этим контактам проходит по проводу 19 на клемму первичной обмотки катушки зажигания, минуя выключатель 15 и резистор 14. Выключение резистора способствует увеличению тока в первичной цепи и, как следствие, повышению напряжения во вторичной обмотке катушки, что облегчает пуск двигателя.

 

Катушка зажигания служит для преобразования тока низкого напряжения (поступающего от аккумуляторной батареи или генератора) в ток высокого напряжения, то есть представляет собой повышающий трансформатор, по первичной обмотке которого проходит прерывистый ток низкого напряжения, а во вторичной обмотке появляются импульсы тока высокого напряжения.

 

Рис. 62. Катушка зажигания Б-115В двигателей УЭАМ-331 и 412:

1 — трансформаторное масло; 2 — выводные клеммы; 3 — карболитовая крышка; 4 — добавочный резистор; 5 — сердечник; 6 — вторичная обмотка; 7 — первичная обмотка; 8 — изолирующая втулка; 9 — корпус с магнитопроводом; 10 — фарфоровый изолятор

 

Катушка зажигания (рис. 62) состоит из сердечника 5 с надетой на него изолирующей втулкой 8, на которую наматывается вторичная 6 и поверх нее первичная 7 обмотки, фарфорового изолятора 10, карболитовой крышки 3 с выводными клеммами 2 и корпуса с магнитопроводом 9. Внутренняя полость катушки заполняется трансформаторным маслом 1, улучшающим изоляцию обмоток и охлаждение катушки. Снаружи на корпусе катушки зажигания Б-115В двигателей УЭАМ-331 и 412 устанавливается добавочный резистор 4. Он является дополнительным сопротивлением, подключенным последовательно в цепь первичной обмотки к клеммам ВК и ВК-Б (может обозначаться буквой «Б») катушки зажигания, и уменьшает ее нагрев при работе двигателя с малой частотой вращения коленчатого вала.

 

Когда по первичной обмотке протекает ток низкого напряжения, сердечник намагничивается и вокруг обеих его обмоток создается сильное магнитное поле. При размыкании контактов прерывателя ток в первичной обмотке прекращается и исчезает созданное им магнитное поле, пересекая витки вторичной обмотки, в которой наводится электродвижущая сила (ЭДС) индукции. Величина этой ЭДС пропорциональна скорости изменения магнитного потока, пронизывающего обмотки катушки. Благодаря большому количеству витков во вторичной обмотке и большой скорости исчезновения магнитного поля напряжение на вторичной обмотке достигает 20... 24 тыс. В. Одновременно происходит пересечение магнитными силовыми линиями витков первичной обмотки, в которой индуктируется ЭДС самоиндукции величиной до 300 В и сердечника, в котором появляются вихревые токи, вызывающие его нагрев. Для уменьшения нагрева сердечник делают из отдельных тонких стальных пластин, изолированных друг от друга окалиной.

 

При работе двигателя с малой частотой вращения контакты прерывателя находятся в замкнутом состоянии более длительный период, и ток в первичной цепи успевает достигнуть своего максимума. В результате включенный в эту цепь резистор нагревается, вследствие чего увеличивается его сопротивление и общее сопротивление первичной цепи, а следовательно, сила тока в ней снижается, что уменьшает нагрев катушки зажигания. При увеличении частоты вращения коленчатого вала время замкнутого состояния контактов прерывателя уменьшается, ток в первичной обмотке не успевает достигнуть максимальной величины, поэтому температура дополнительного резистора оказывается меньше и общее сопротивление первичной цепи снижается, вследствие чего ток в первичной цепи катушки несколько усиливается.

 

Во время пуска двигателя стартером с помощью втягивающего реле стартера дополнительный резистор закорачивается, и в первичную обмотку поступает ток большей силы. Это обеспечивает увеличение магнитного потока и позволяет получить более высокое напряжение во вторичной цепи, чем облегчается пуск двигателя.

 

ЭДС самоиндукции, которая наводится в первичной обмотке катушки зажигания, при размыкании контактов прерывателя вызывает искрение между ними и повышает обгорание контактов. Кроме того, ЭДС самоиндукции препятствует быстрому исчезновению магнитного поля и тем самым уменьшает величину ЭДС, индуктируемой во вторичной обмотке.

 

Конденсатор служит для снижения ЭДС самоиндукции в первичной обмотке катушки зажигания и тем самым уменьшает обгорание контактов прерывателя и повышает величину тога высокого напряжения во вторичной обмотке катушки. Конденсатор (рис. 63) состоит из двух обкладок, представляющих собой тонкие слои олова и цинга, напыленного на бумажные ленты или две ленты из алюминиевой фольги 3, изолированные друг от друга лентами 2 из парафинированной бумаги 2. Обкладки с изолирующими лентами свертываются в рулон и помещаются в корпус 1. Одна обкладка через корпус конденсатора соединяется с «массой», а от другой выводится изолированный вывод 4 для присоединения к изолированной клемме подвижного контакта прерывателя. В начальный момент размыкания контактов конденсатор заряжается током самоиндукции, за счет чего уменьшается искрение между ними. При полном размыкании контактов конденсатор разряжается через первичную обмотку катушки зажигания, создавая в ней импульс тока обратного направления. При этом ускоряется уничтожение магнитного поля, создаваемого первичной обмоткой, и значительно повышается ЭДС, индуктируемая во вторичной обмотке катушки (до 24000 В).

 

Рис. 63. Конденсатор:

1 — корпус; 2 — изолирующие ленты; 3 — обкладки из алюминиевой фольги; 4 — изолированный вывод

 

Корпус конденсатора крепится к корпусу распределителя зажигания (соединяется с «массой» автомобиля), а ею изолированный вывод — к клемме низкого напряжения распределителя, к которой подводится ток низкого напряжения от клеммы катушки зажигания (см. рис. 61).

 

Распределитель зажигания служит для периодического размыкания цепи низкого напряжения и распределения тока высокого напряжения по свечам зажигания в соответствии с порядком работы цилиндров двигателя и включает в себя: прерыватель, распределитель, центробежный и вакуумный регуляторы опережения зажигания.

 

Распределитель зажигания 47.3706 (рис. 64) двигателей УЗАМ-331 и 412 имеет привод от шестерни распределительного вала.

 

Рис. 64. Распределитель зажигания 47.3706 двигателей УЭАМ-331 и 412:

а — в сборе; б — со снятой крышкой; 1 — корпус; 2 — приводной валик; 3 — капельная масленка; 4 — конденсатор; 5 — подвижный диск; 6 — клемма низкого напряжения; 7 — фетровая вставка; 8 — токоразносная пластина ротора; 9 — крышка с боковыми клеммами; 10 — контактный уголек со встроенным сопротивлением; 11 — ротор; 12 — вакуумный регулятор; 13 — неподвижный опорный диск; 14 — грузик регулятора; 15 — регулировочная шайба; 16 и 19 — винты крепления контактной группы прерывателя; 17 — рычажок подвижного контакта контактной группы прерывателя; 18 — текстолитовая подушка рычажка; 20 — кулачок прерывателя; 21 — стяжная гайка хомута привода; 22 — тяга вакуумного регулятора; 23 — неподвижный контакт; 24 — паз под отвертку для регулировки зазора между контактами

 

П р е р ы в а т е л ь состоит из корпуса 1, приводного валика с четырехгранным кулачком 20, подвижного диска 5, помещенного в верхней части корпуса на шариковом подшипнике и соединенного тягой 22 с вакуумным регулятором 12 опережения зажигания. На пластине контактной группы находятся контакты: неподвижный 23 на контактной стойке, соединенный с «массой», и подвижный — на рычажке 17, изолированный от «массы» и соединенный проводником с изолированной клеммой 6 низкого напряжения. Для регулирования зазора между контактами пластина контактной группы может перемещаться при отпущенных винтах 16 и 19 относительно кулачка 20 при помощи отвертки, устанавливаемой в специальный паз 24. На шлицах нижнего конца приводного валика 2 установлена опорная пластина с подвижными грузиками 14 центробежного регулятора опережения зажигания. Втулки приводного валика прерывателя смазываются через капельную масленку 3 маслом для двигателя.

 

Р а с п р е д е л и т е л ь состоит из ротора 11 с токоразносной пластиной 8, карболитовой крышки 9 с боковыми клеммами и центральной клеммой с контактным угольком 10 и помехоподавигельным резистором, уменьшающим помехи радиоприема. Внутри ротора имеется срез, с помощью которого он фиксируется на кулачке и вращается вместе с ним. В гнездо центральной клеммы вставляется провод высокого напряжения от катушки зажигания. Ток высокого напряжения от катушки зажигания поступает через уголек на пластину ротора, а затем через воздушный зазор (0,4...0,8 мм) на боковую клемму и по проводу на свечу зажигания. При последующем размыкании контактов ротор повернется, и токоразносная пластина расположится против очередной боковой клеммы в соответствии с порядком работы цилиндров двигателя.

 

Распределители зажигания 30. 3706 и 30. 3706-01 (рис. 65) двигателей ВАЗ-2106 и -2105 отличаются друг от друга лишь длиной приводного валика. Распределитель 30. 3706 из-за большей высоты головки цилиндров двигателя 2106 имеет более длинный валик и отличается от распределителя 30. 3706-01 наличием кольцевой канавки около шлицевого конца валика.

 

Рис. 65. Распределитель зажигания двигателей ВАЗ-2105 и -2106:

а — общий вид; б — регулировка зазора; 1 — приводной валик; 2 — контакты; 3 — фетровая вставка; 4 — вакуумный регулятор; 5 — тяга вакуумного регулятора опережения зажигания; 6 — опорная пластина; 7 — ротор распределителя; 8 и 9 — боковая и центральная клеммы крышки распределителя; 10 — контактный уголек; И — резистор; 12 — токоразносная пластина ротора; 13 — подвижные грузики центробежного регулятора опережения зажигания; 14 — четырехгранный кулачок; 15 — контактная группа прерывателя; 16 — подвижный диск; 17 — винт крепления пластины контактной группы; 18 — паз; 19 — конденсатор; 20 — корпус распределителя

 

П р е р ы в а т е л ь состоит из корпуса 20 (рис. 65), приводного валика 1 с четырехгранным кулачком 14, подвижного диска 16, помещенного в нижней части корпуса на шариковом подшипнике и соединенного тягой 5 с вакуумным регулятором 4 опережения зажигания. На подвижном диске имеются контакты 2 (неподвижный, соединенный с «массой», и подвижный — молоточек, изолированный от «массы» и соединенный проводником с изолированной клеммой низкого напряжения), а также фетровая вставка 3 для смазки кулачка 14. Для регулирования зазора между контактами 2 контактная группа 15 прерывателя при отпущенном винте 17 может перемещаться относительно кулачка 14 припомощи отвертки, устанавливаемой в специальный паз 18 (рис. 65, б). На шлице верхнего конца приводного валика под ротором 7 (см. рис. 65, а) установлена опорная пластина 6 с подвижными грузиками 13 центробежного регулятора опережения зажигания. Втулки приводного валика прерывателя смазываются через капельную масленку маслом для двигателя. К корпусу прерывателя крепится конденсатор 19.

 

Р а с п р е д е л и т е л ь состоит из ротора 7 с токоразносной пластиной 12, на которой укреплен резистор 11 для подавления радиопомех, карболитовой крышки с боковыми клеммами 8, центральной клеммой 9 и контактным угольком 10. Ротор прикреплен двумя винтами к опорной пластине 6 кулачка 14 и вращается вместе с ним. Момент воспламенения в цилиндрах рабочей горючей смеси в целях повышения мощности и экономичности двигателя должен изменяться в зависимости от частоты вращения коленчатого вала и степени нагрузки на двигатель (степени открытия дроссельной заслонки), т. е. от режима его работы.

 

Опережение зажигания в зависимости от частоты вращения коленчатого вала автоматически изменяется при помощи центробежного регулятора, а в зависимости от степени открытия дроссельных заслонок — при помощи вакуумного регулятора. Центробежные и вакуумные регуляторы опережения зажигания распределителей зажигания рассматриваемых двигателей устроены и работают аналогично.

 

Ц е н т р о б е ж н ы й  р е г у л я т о р  о п е р е ж е н и я  з а ж и г а н и я состоит из двух грузиков 2 (рис. 66, а), которые надеваются на оси 7, укрепленные на пластине 3 приводного валика 4, и стягиваются двумя пружинами 6. На грузиках имеются штифты 5, которые входят в прорези пластины кулачка 1 прерывателя.

 

Рис. 66. Устройство и работа центробежного (А) и вакуумного (Б) регуляторов опережения зажигания:

а — на малой частоте вращения коленчатого вала; б — то же на высокой; в — при малой нагрузке; г — при большой нагрузке; 1 — кулачок; 2 — грузик; 3 — пластина; 4 — приводной валик; 5 — штифт; 6 — пружина; 7 — ось грузика; 8 — смесительная камера карбюратора; 9 — подвижный диск прерывателя; 10 — контакты прерывателя; 11 — конденсатор; 12 — тяга; 13 — корпус; 14 — диафрагма; 15 — пружина диафрагмы; 16 — трубка

 

При повышении частоты вращения коленчатого вала грузики под действием центробежных сил расходятся в стороны и поворачивают пластину 3 с кулачком 1 по направлению его вращения на некоторый угол, чем и обеспечивается более раннее размыкание контактов прерывателя, т. е. увеличивается опережение зажигания (рис. 66, б). На малой частоте вращения центробежная сила уменьшается, и грузики под действием пружин сходятся, поворачивая пластину с кулачком в обратную сторону.

 

В а к у у м н ы й  р е г у л я т о р  о п е р е ж е н и я  з а ж и г а н и я состоит из корпуса, внутренняя полость которого с одной стороны диафрагмы 14 (рис. 66, в) сообщена с атмосферой, а с другой при помощи трубки 16 — с карбюратором. При закрытии дроссельной заслонки разрежение в корпусе 13 вакуумного регулятора увеличивается, диафрагма, преодолевая сопротивление пружины 15, прогибается наружу и через тягу 12 поворачивает подвижный диск 9 прерывателя навстречу вращению кулачка 1 прерывателя в сторону увеличения опережения зажигания на определенный угол. При открытии дроссельной заслонки разрежение уменьшается, пружина прерывателя перемещает диафрагму 14 вверх, и тяга 12 поворачивает диск прерывателя по ходу вращения кулачка в сторону уменьшения опережения зажигания на определенный угол (рис. 66, г).

 

Свеча зажигания (рис. 67) состоит из стального корпуса 4 (рис. 67, а) и керамического изолятора 2, внутри которого помещается центральный стержень с накаткой 3, обеспечивающий прочное его соединение с токопроводящим стеклогерметиком 5. Нижний конец стержня образует центральный электрод 9. Изолятор закрепляется развальцовкой верхней части корпуса 4 и уплотняется прокладкой 6. Для герметизации стыка с головкой цилиндра имеется уплотнительное кольцо 7. Высоковольтный провод от распределителя зажигания при помощи пластмассового наконечника 10 с подавительным резистором 11 укрепляется на контактной головке 1. Между центральным электродом и корпусом свечи имеется зазор а (рис. 67, б), который в процессе эксплуатации может регулироваться подгибанием центрального электрода.

 

Рис. 67. Устройство свечи зажигания:

а — свеча с наконечником; 6 — регулировка зазора плоским щупом (I) — неправильно и круглым щупом (II) — правильно; 1 — контактная головка стержня; 2 — изолятор; 3 — накатка на стержне; 4 — корпус; 5 — стеклогерметик; 6 и 7 — соответственно уплотнительные прокладки и кольцо; 8 и 9 — соответственно боковой и центральный электроды; 10 — наконечник; 11 — резистор; 12 — ключ; 13 — щупы; А — места маркировки свечи; а — зазор

 

Выключатель (замок) зажигания состоит из корпуса, внутри которого размещены: замочный механизм, электрическая контактная группа, а также противоугонное устройство. При повороте ключа в замке зажигания происходит поворот подвижной части контактной группы и подключение к источникам питания различных приборов электрооборудования. Контактная часть замыкает и размыкает цепь зажигания низкого напряжения, включает стартер, контрольно-измерительные приборы, а также соединяет с источниками тока приборы, имеющие свои выключатели (отопитель, стеклоочиститель, радиоприемник и др.). Действие противоугонного устройства состоит в том, что после выключения зажигания и вынимания ключа из замка выдвигается специальный стержень, который входит в паз вала рулевого управления и стопорит его. Таким образом замок зажигания препятствует включению зажигания и стартера посторонним лицом, а также «запирает» руль, усложняя тем самым угон автомобиля.

 

Бесконтактная система зажигания (рис. 68) включает в себя катушку зажигания 6, свечи зажигания 2, провода высокого 11 и низкого 7 напряжения, электронный коммутатор 3, датчик-распределитель 1, выключатель зажигания 9, а также источники тока.

 

Рис. 68. Схема бесконтактной системы зажигания двигателя ВАЗ-2108:

1 — датчик-распределитель; 2 — свеча зажигания; 3 — электронный коммутатор; 4 — аккумуляторная батарея; 5 — генератор; 6 — катушка зажигания; 7 и 11 — провода соответственно низкого и высокого напряжения; 8 — монтажный блок;9 — выключатель зажигания; 10 — штекерный разъем датчика-распределителя; +Б — плюсовая клемма катушки зажигания

 

Принцип действия бес контактной системы зажигания заключается в следующем. Электронно-механическое устройство датчика-распределителя 1 при включенном зажигании и вращающемся коленчатом вале двигателя выдает импульсы напряжения на электронный коммутатор 3, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания 6. В момент прерывания тока в первичной обмотке индуктируется ток высокого напряжения во вторичной обмотке. Ток высокого напряжения от катушки зажигания по проводу 11 подается на центральную клемму крышки распределителя и далее через угольный контакт, токоразносную пластину ротора, боковую клемму крышки распределителя подается на соответствующую свечу 2 зажигания и осуществляет воспламенение рабочей смеси в цилиндре двигателя.

 

Принципиальным отличием бесконтактной системы зажигания от контактной системы является подача импульсов тока низкого напряжения на катушку зажигания электронным коммутатором, получающим управляющие импульсы от электронно-механического устройства датчика-распределителя, который вместо контактов имеет бесконтактный датчик. Это обусловливает следующие преимущества бесконтактной системы зажигания по сравнению с контактной системой: значительно повышается надежность в связи с отсутствием подвижных контактов и необходимости систематической их зачистки и регулировки зазора; на равномерность момента искрообразования по свечам зажигания не оказывают отрицательного влияния вибрация и биение ротора-распределителя; повышается надежность пуска и работы двигателя при разгонах автомобиля благодаря более высокой электронной энергии разряда, обеспечивающего надежное воспламенение горючей смеси в цилиндрах двигателя независимо от частоты вращения коленчатого вала; упрощается техническое обслуживание системы зажигания в целом.

 

Конструктивные особенности элементов бесконтактных систем зажигания состоят в следующем. Катушка зажигания типа 27. 3705, устанавливаемая в бесконтактных системах зажигания двигателей переднеприводных автомобилей (ВАЗ-2108, МеМЗ-245) имеет такое же устройство, как и у катушек в контактных системах, но они не взаимозаменяемы. Вследствие большой силы тока (до 10 А вместо 3... 5 А) в катушке бесконтактной системы зажигания при ее установке в контактной системе будут быстро выгорать контакты прерывателя.

 

Свечи зажигания отличаются увеличенными зазорами между электродами (см. табл. 4) и толщиной электродов, что повышает их надежность при более высоких напряжениях.

 

Провода высокого напряжения отличаются увеличенным сопротивлением и имеют более надежную изоляцию и, соответственно, увеличенную толщину (около 8 мм). В бесконтактных системах зажигания применяются провода типа ПВВП-8 красного цвета, отличающиеся от проводов ПВВП более толстой изолирующей оболочкой, а также ПВВП-40 синего цвета с двухслойной изоляцией и сопротивлением 2550 Ом.

 

Электронный коммутатор служит для преобразования управляющих импульсов от датчика-распределителя в импульсы тока в первичной обмотке катушки зажигания. Электронные коммутаторы, устанавливаемые в системах зажигания изучаемых двигателей (см. табл. 4) устроены и функционируют аналогично.

 

Бесконтактные системы зажигания рассматриваемых автомобилей отличаются, в основном, конструкцией датчиков-распределителей и компановкой отдельных элементов системы.

 

Бесконтактная система зажигания двигателя ВАЗ-2108 соединяется со всей системой электрооборудования посредством монтажного блока 8 с разъемами Ш1 и 1П8.

 

В системе зажигания этого двигателя могут использоваться свечи отечественного производства типа А17ДВ-10 или А12ДВР или свечи зарубежного производства с аналогичными характеристиками, например: FE-65PR или FE-65GPR (производства Югославии). При установке свечей зажигания типа А17ДВ-10 провода высокого напряжения комплектуются надеваемыми на свечи наконечниками с помехоподавительными резисторами сопротивлением 5, 6 кОм. При установке свечей А17ДВР, FE-65PR или других, имеющих встроенные помехоподавительные резисторы, провода комплектуются наконечниками без резисторов.

 

Рис. 69. Датчик-распределитель зажигания 40.3706 двигателя ВАЗ-2108:

1 — крышка распределителя; 2 и 4 — соответственно центральная и боковая клеммы; 3 — угольный контакт; 5 — ротор; 6 — защитный экран; 7 — держатель переднего подшипника валика; 8 — опорная пластина; 9 — экран; 10 и 12 — соответственно ведомая и ведущая пластины центробежного регулятора; 11 — грузик; 13 и 16 — корпусы соответственно датчика и вакуумного регулятора; 14 и 15 — валик и муфта привода; 17 — штуцер подвода разрежения; 18 — диафрагма; 19 — тяга вакуумного ре1улятора; 20 — бесконтактный датчик; 21 — колодка штекерного разъема; 22 — токоразносная пластина

 

Датчик-распределитель (рис. 69) выдает управляющие импульсы тока высокого напряжения, получает привод через муфту 15 от заднего конца распределительного вала. Он состоит из датчика, центробежного, вакуумного регуляторов опережения зажигания и распределителя зажигания. Отличается от распределителей зажигания, рассмотренных в контактной системе зажигания, отсутствием контактного прерывателя, который заменен бесконтактным датчиком. Электронно-механический датчик при включенном выключателе зажигания 9 (см. рис. 68) и вращающемся коленчатом вале двигателя выдает импульсы напряжения на коммутатор 3, который преобразует их в прерывистые импульсы тока в первичной обмотке катушки зажигания 6. В моменты прерывания тока в первичной обмотке во вторичной обмотке индуктируется ток высокого напряжения до 25000 В. Импульсы тока высокого напряжения от катушки зажигания по проводу 11 и далее через угольный контакт 3 (см. рис. 69) передаются на токоразносную пластину 22 ротора 5, боковую клемму 4 крышки 1 и по проводу высокого напряжения, в наконечник которого установлен помехоподавительный резистор, на соответствующую свечу зажигания 2 (см. рис. 68), воспламеняя рабочую смесь в цилиндре. Далее ток высокого напряжения поступает на «массу», через аккумуляторную батарею и генератор на контакты выключателя зажигания, на зажим + Б катушки зажигания и во вторичную обмотку, замыкая электрическую цепь.

 

Рис. 70. Схема работы центробежного регулятора опережения зажигания ВАЗ-2108:

а — при малой частоте вращения коленчатого вала; б — при уменьшении частоты вращения; 1 — ведущая пластина; 2 — грузик; 3 — ведомая пластина; 4 — приводной валик; 5 — ось грузика; 6 — опяжная пружина; А — увеличение угла опережения зажигания при увеличении частоты вращения коленчатого вала двигателя

 

Центробежный регулятор опережения зажигания состоит из приводного валика 4 (рис. 70) датчика-распределителя с ведущей пластиной 1, грузиков 2, установленных на осях 5, и ведомой пластины 3 с оттяжными пружинами 6. С увеличением частоты вращения коленчатого вала двигателя и соответственно приводного валика 4 грузики под действием центробежных сил проворачиваются на своих осях, преодолевая упругость пружин. При этом они упираются в ведомую пластину 3 и поворачивают ее вместе с экраном 9 (см. рис. 69), приклепанным к втулке пластины, в направлении вращения приводного валика на определенный угол А (см. рис. 70). В результате этого датчик будет выдавать импульсы тока высокого напряжения раньше, т. е. с увеличением угла опережения зажигания. При снижении частоты вращения коленчатого вала центробежные силы уменьшаются, и пружины поворачивают ведомую пластину с экраном 9 (см. рис. 69) в обратную сторону, уменьшая угол опережения зажигания. Вакуумный регулятор опережения зажигания 16 устроен аналогично рассмотренному в контактной системе зажигания. Он соединен тягой 19 диафрагмы 18 с опорной пластиной 8 датчика. При малой нагрузке на двигатель тяга 19 перемещается и поворачивает опорную пластину датчика против направления вращения приводного валика датчика-распределителя, увеличивая опережение зажигания. По мере увеличения нагрузки пружина через тягу поворачивает опорную пластину в направлении вращения приводного валика — опережение зажигания уменьшается.

 

Бесконтактная система зажигания двигателя МеМЗ-245 (рис. 71) имеет аналогичное устройство и отличается отсутствием монтажного блока, а также установкой датчика-распределителя типа 5301.3706, который крепится на двух шпильках гайками 4 и имеет привод от распределительного вала при помощи шестерни.

 

Рис. 71. Бесконтактная система зажигания двигателя МеМЗ-245:

а — датчик-распределитель; б — схема присоединения приборов; 1 — крышка распределителя; 2 — контактный уголек; 3 — токоразносная пластина ротора; 4 — гайка крепления распределителя; 5 — свеча зажигания; 6 — датчик-распределитель; 7 — катушка зажигания; 8 — коммутатор; 9 — аккумуляторная батарея; 10 — выключатель зажигания; 11 — резистор; 12 — светодиод; 13 — штекерная колодка датчика-распределителя; К и +Б — клеммы катушки зажигания

 

Бесконтактные системы зажигания автомобилей A3ЛK-2141 и -21412 в целом имеют одинаковые параметры и отличаются лишь некоторыми конструктивными особенностями, в том числе устройством датчиков-распределителей, а также установкой на двигателе 331 свечей зажигания типа А20Д-2, а на двигателе 2106 — типа А17ДВ-10 или А17ДВР.

 

На двигателе Y3AM-331 в датчике-распределителе (рис. 72, а) вместо контактов устанавливается магниточувствительный микроэлектронный переключатель 15. Подача импульсов тока высокого напряжения в порядке работы цилиндров двигателя осуществляется при помощи вращающегося ротора 8 с токоразносной пластиной, как и в распределителе контактной системы зажигания. Для автоматического изменения угла опережения зажигания служат центробежный и вакуумный регуляторы, имеющие такое же устройство, как и в контактной системе зажигания (см. рис. 66), устанавливаемой на этом двигателе.

 

Рис. 71. Бесконтактная система зажигания двигателя МеМЗ-245:

а — датчик-распределитель; б — схема присоединения приборов; 1 — крышка распределителя; 2 — контактный уголек; 3 — токоразносная пластина ротора; 4 — гайка крепления распределителя; 5 — свеча зажигания; 6 — датчик-распределитель; 7 — катушка зажигания; 8 — коммутатор; 9 — аккумуляторная батарея; 10 — выключатель зажигания; 11 — резистор; 12 — светодиод; 13 — штекерная колодка датчика-распределителя; К и +Б — клеммы катушки зажигания опорная и ведомая пластины центробежного регулятора; 13 и 14 — винты крепления высоковольтной крышки и датчика; 15 — микроэлектронный переключатель; 17 — опорная шайба; 18 — муфта; 19 — вакуумный регулятор; 20 — шлицевый паз; 21 — низковольтный разъем; 22 — риска на опорной/пластине; 23 — тяга вакуумного регулятора; 24 — валик; 25 — маслоотражательная муфта; 26 — штекерный разъем; 27 — бесконтактный датчик; 28 — мембрана; 29 — ротор распределителя зажигания; 30 и 31 — соответственно боковой и центральный электроды с клеммами; 32 — резистор; 33 — наружный контакт ротора; 34 — грузик; 35 — опорная пластина бесконтактного датчика; 36 — экран; 37 — корпус датчика-распределителя зажигания; 38 — отличительная еанавка

На двигателе 2106 в датчике-распределителе (рис. 72, б) вместо контактов имеется бесконтактный датчик 27, а вместо кулачка прерывателя на приводном валике 24 укреплен стальной экран 36 с четырьмя прорезями. Через прорези датчик при вращении приводного валика 24 выдает импульсы высокого напряжения. Эти импульсы по угольку 10 центрального электрода поступают на наружный контакт 33 ротора и далее через клемму бокового электрода 30 по проводу на соответствующую свечу зажигания.

 

Бесконтактная система зажигания двигателя ВАЗ-2105 имеет те же элементы, что и на двигателе ВАЗ-2106, но датчик-распределитель типа 38. 3706-01 отличается более коротким приводным валиком 24, не имеющим кольцевой отличительной канавки 38 около шлицевого конца (см. рис. 72, б).

 

Бесконтактная электронная система зажигания двигателя ВАЗ-2111-80 с системой распределенного впрыска топлива включает в себя модуль зажигания 2 (см. рис. 58), свечи зажигания 6, высоковольтные провода 3, а также ЭБУ 15 и датчики 5 и 10 детонации и положения коленчатого вала.

 

Модуль зажигания состоит из коммутатора и двух катушек зажигания, каждая из которых обеспечивает высоковольтным импульсом две свечи зажигания цилиндров, поршни которых находятся в противоположных по тактам фазах. Например, если поршень первого цилиндра находится в ВМТ такта сжатия, а поршень четвертого цилиндра находится в конце такта выпуска, то основная энергия импульса от катушки, обеспечивающей высоковольтные импульсы в этих цилиндрах, будет направлена на свечу первого цилиндра, и лишь небольшая часть энергии импульса будет подаваться на свечу четвертого цилиндра.

 

При пуске двигателя, когда частота вращения коленчатого вала менее 400 мин"1 моментом искрообразования управляет коммутатор модуля зажигания. При более высоких оборотах управление зажиганием осуществляется ЭБУ, который оптимизирует угол опережения зажигания с учетом режимов работы двигателя, информация о которых поступает от датчиков детонации, положения коленчатого вала и др. (см. пп. «Системы впрыска бензина»).

 

В данной системе зажигания применяются свечи А17ДВРМ с зазорами между электродами 1,0... 1,13 мм. Приборы, применяемые в системе зажигания изучаемых двигателей, приведены в табл. 4.

Приборы, устанавливаемые в системах зажигания легковых автомобилей.  Таблица 4

* В числителе указаны приборы, применяемые в двигателе с контактной системой зажигания, в знаменателе — с бесконтактной.

sonkers.jimdo.com