Маркировка свечей отечественного производства. Свечи зажигания гост


Маркировка свечей отечественного производства

Позиция Значение Комментарии Примечания
1 A Резьба М14в1.25 Обозначает тип резьбы
М Резьба М18в1.25
2* М Малогабаритная свеча Обозначает конструктивные особенности. Если эта позиция в маркировке свечи отсутствует — плоское уплотнительное седло
К Коническое посадочное место
3 11 Калильное число (по ГОСТ 2043—74 ) Более подробно прокалильное число.
14
17
20
23
4* Н 11 Обозначает длину резьбовой части корпуса в миллиметрах. Если эта позиция в маркировке свечи отсутствует — 12
Д 19
5* В Тепловой конус свечи выступает из корпуса внутрь камеры сгорания Обозначает особенности конструкции. Если эта позиция в маркировке свечи отсутствует — тепловой конус утоплен в корпус свечи (выступание отсутствует)
6* Р Дополнительное сопротивление для подавления помех. Обозначает наличие дополнительного помехоподавляющего сопротивления
7* Э Экспортное исполнение Обозначает исполнение
О Общеклиматическое исполнение
Т Тропическое исполнение
Х; ХЛ Для холодного климата
У-ХЛ Для умеренно холодного климата
*Также в обозначении свечи могут присутствовать буквы и цифры, указывающие на особенности конструкции, не вошедшие в систему обозначений по ГОСТ (материал из которого изготовлены электроды, повышенная износостойкость, покрытие электродов, зазор, и т. д). Они приписываются к стандартному обозначению по ГОСТ через дефис. При этом обозначения одинаковых конструктивных особенностей свечей, выпущеных разными заводами-изготовителями могут быть различными.

* Звездочкой в таблице отмечены позиции, которые могут отсутствовать в маркировке свечи.

Итак, рассмотрим маркировку свечей для Волги с двигателем ЗМЗ 4021 — А14В . Первой в обозначении стоит буква «А», что означает резьбу М14в1,25. Вторая позиция в маркировке отсутствует, значит свеча с плоским уплотнительным седлом. «14» — калильное число свечи. Четвертая позиция в маркировке свечи отсутствует, значит, длина резьбовой части корпуса — 12мм. Далее стоит буква «В», значит, тепловой конус изолятора выступает из корпуса внутрь камеры сгорания.

gaz31.com

ГОСТ Р 53842-2010: Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний

 ГОСТ Р 53842-2010: Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний

Терминология ГОСТ Р 53842-2010: Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний оригинал документа:

3.1 калильное зажигание: Полностью или частично неуправляемое зажигание рабочей смеси в двигателе с принудительным зажиганием, вызванное источником зажигания, не зависящим от искры в искровом зазоре свечи зажигания.

Примечание - При измерении калильного числа свечи зажигания, зажигание должно быть вызвано исключительно накалившимися точками деталей самой свечи зажигания.

3.2 калильное число: Число, характеризующее свойство свечи зажигания не вызывать калильного зажигания накаленными точками своих деталей при стандартных условиях.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • ГОСТ Р 53640-2009: Автомобильные транспортные средства. Фильтры очистки дизельного топлива. Общие технические требования
  • ГОСТ Р 52850-2007: Автомобильные транспортные средства. Компрессоры одноступенчатого сжатия. Технические требования и методы испытаний

Смотреть что такое "ГОСТ Р 53842-2010: Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний" в других словарях:

  • ГОСТ Р 53842-2010 — 33 с. (6) Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний раздел 43.060.50 …   Указатель национальных стандартов 2013

  • калильное зажигание — 3.1 калильное зажигание: Полностью или частично неуправляемое зажигание рабочей смеси в двигателе с принудительным зажиганием, вызванное источником зажигания, не зависящим от искры в искровом зазоре свечи зажигания. Примечание При измерении… …   Словарь-справочник терминов нормативно-технической документации

  • калильное число — 3.2 калильное число: Число, характеризующее свойство свечи зажигания не вызывать калильного зажигания накаленными точками своих деталей при стандартных условиях. Источник: ГОСТ Р 53842 2010: Двигатели автомобильные. Свечи зажигания искровые.… …   Словарь-справочник терминов нормативно-технической документации

normative_reference_dictionary.academic.ru

Свечи зажигания — с русского

См. также в других словарях:

  • Свечи зажигания — Свеча зажигания устройство для поджига топливо воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические. В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг… …   Википедия

  • Свечи зажигания — Представляют собой центральный изолированный электрод и контакт, подсоединенный к корпусу. Корпус имеет резьбу у основания для установки в головке цилиндра, на верху центрального электрода имеется клемма для подсоединения к источнику тока. При… …   Официальная терминология

  • ГОСТ Р 53842-2010: Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний — Терминология ГОСТ Р 53842 2010: Двигатели автомобильные. Свечи зажигания искровые. Технические требования и методы испытаний оригинал документа: 3.1 калильное зажигание: Полностью или частично неуправляемое зажигание рабочей смеси в двигателе с… …   Словарь-справочник терминов нормативно-технической документации

  • общее электрическое сопротивление свечи зажигания — сопротивление свечи Электрическое сопротивление между корпусом и центральным электродом свечи зажигания при отсутствии искрообразования. [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы сопротивление свечи …   Справочник технического переводчика

  • тренировка свечи зажигания — тренировка свечи Операция для изменения параметров рабочего элемента свечи с целью обеспечения заданных пробивных напряжений с помощью электрических разрядов на свече зажигания. [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей… …   Справочник технического переводчика

  • боковой электрод свечи зажигания — боковой электрод свечи [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы боковой электрод свечи …   Справочник технического переводчика

  • контактная головка свечи зажигания — контактная головка свечи [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы контактная головка свечи …   Справочник технического переводчика

  • центральный электрод свечи зажигания — центральный электрод свечи [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы центральный электрод свечи …   Справочник технического переводчика

  • подготовительная стадия разряда свечи зажигания поверхностного разряда — подготовительная стадия Интервал времени от момента приложения напряжения к электродам свечи зажигания до пробоя ее межэлектродного промежутка. [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы подготовительная стадия …   Справочник технического переводчика

  • пробивное напряжение свечи зажигания — пробивное напряжение Минимальное напряжение, при котором возникает электрический разряд в межэлектродном промежутке свечи зажигания. [ГОСТ 22606 77] Тематики системы зажигания авиационных двигателей Синонимы пробивное напряжение …   Справочник технического переводчика

  • шунтирование свечи зажигания — – перемыкание электродов свечи из за образования на ее электродах токопроводящих углеродистых отложений, что приводит к невозможности образования искры на такой свече. EdwART. Словарь автомобильного жаргона, 2009 …   Автомобильный словарь

translate.academic.ru

Свечи зажигания - это... Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания1 — Контактный вывод2 — рёбра изолятора3 — изолятор4 — металлическая оправа5 — центральный электрод6 — боковой электрод7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания.

Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.
Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения - так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между "мощностью" искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор - тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали - двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути - скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор - тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор - тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять - оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае - от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации - в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих "самоочищению" их поверхности от продуктов сгорания топливной смеси - нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета "кофе с молоком".

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи - конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи - конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

brokgauz.academic.ru

Свечи зажигания - это... Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания1 — Контактный вывод2 — рёбра изолятора3 — изолятор4 — металлическая оправа5 — центральный электрод6 — боковой электрод7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания.

Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.
Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения - так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между "мощностью" искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор - тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали - двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути - скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор - тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор - тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять - оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае - от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации - в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих "самоочищению" их поверхности от продуктов сгорания топливной смеси - нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета "кофе с молоком".

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи - конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи - конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

dal.academic.ru

Свечи зажигания - это... Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания1 — Контактный вывод2 — рёбра изолятора3 — изолятор4 — металлическая оправа5 — центральный электрод6 — боковой электрод7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания.

Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.
Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения - так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между "мощностью" искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор - тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали - двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути - скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор - тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор - тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять - оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае - от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации - в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих "самоочищению" их поверхности от продуктов сгорания топливной смеси - нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета "кофе с молоком".

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи - конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи - конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

dik.academic.ru

Свечи зажигания - это... Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания1 — Контактный вывод2 — рёбра изолятора3 — изолятор4 — металлическая оправа5 — центральный электрод6 — боковой электрод7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания.

Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.
Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения - так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между "мощностью" искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор - тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали - двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути - скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор - тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор - тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять - оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае - от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации - в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих "самоочищению" их поверхности от продуктов сгорания топливной смеси - нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета "кофе с молоком".

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи - конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи - конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

3dic.academic.ru