Большая Энциклопедия Нефти и Газа. Зажигание конденсаторное


Конденсаторная система - зажигание - Большая Энциклопедия Нефти и Газа, статья, страница 2

Конденсаторная система - зажигание

Cтраница 2

На рис. 9 приведена принципиальная схема конденсаторной системы зажигания. Как видно, новыми по сравнению с батарейной системой зажигания элементами являются преобразователь напряжения ПН, накопительный конденсатор Ci, коммутатор К и схема управления СУ.  [17]

В книге подробно описаны практические конструкции контактных и бесконтактных электронных конденсаторных систем зажигания, электронных регуляторов напряжения, а также приборов для обслуживания автомобиля.  [18]

По принципу действия прибор Искра-5 относится к конденсаторной системе зажигания с импульсным накоплением энергии и стабилизированным вторичным напряжением. Прибор Искра-5 является наиболее совершенным из всех приборов серии Искра и ПАЗ.  [20]

По принципу действия прибор Старт относится к конденсаторной системе зажигания с непрерывным накоплением энергии.  [21]

По принципу действия прибор Электроника-ЗМ-К относится к конденсаторным системам зажигания с непрерывным накоплением энергии.  [22]

Вместе с тем отмеченные в предыдущих параграфах преимущества конденсаторных систем зажигания, заключающиеся в значительном увеличении срока службы свечей и устранении необходимости ухода за свечами, остаются в силе и в данном случае, так как длительность искрового разряда в свече остается в несколько раз меньше, чем в обычной батарейной системе зажигания, а фронт нарастания напряжения на свече такой же, как и в обычной конденсаторной системе.  [24]

По принципу действия прибор Электроника Б-5-31 относится к конденсаторной системе зажигания с импульсным накоплением энергии.  [25]

Длительность искрового разряда ( искры) в описанных выше конденсаторных системах зажигания значительно меньше, чем в обычной батарейной или транзисторной системе. Это является преимуществом конденсаторной системы зажигания с точки зрения срока службы свечей, так как устраняется бесполезная эрозия их электродов. Однако при запуске холодного двигателя на переобогащенной смеси длинная искра может оказаться весьма полезной.  [26]

На рис. 14 показана осциллограмма напряжения на контактах прерывателя в описываемой конденсаторной системе зажигания. Амплитуда напряжения на контактах в конденсаторной системе не превышает напряжения аккумуляторной батареи ( 12 В), а в батарейной системе превышает 300 В.  [27]

Наряду с этими двумя системами все чаще упоминают о так называемой конденсаторной системе зажигания низкого напряжения. В этой системе имеется конденсатор, между обкладками которого создается разность потенциалов в несколько тысяч вольт и который дает в момент зажигания искровой разряд в свечах сссбой конструкции. Искра, создаваемая такой системой зажигания, по своей природе отличается от обычной искры высокого напряжения ( см. фиг. При конденсатсрнсм зажигании используются свечи особой конструкции, так называемые свечи скользящей искры; в этих свечах искра скользит вдоль поверхности пслупроводника по направлению к электроду, соединенному с массой. Для свечей такого типа достаточно менее высокое пробивное напряжение, чем для свечей, в которых искра проскакивает через воздушный промежуток между электродами; однако указанные свечи не обладают достаточным сроком службы.  [28]

Известны также другие схемные решения, обеспечивающие компенсацию снижения энергии искрообразования в конденсаторной системе зажигания в момент запуска двигателя стартером. Например, питание системы зажигания может быть осуществлено от стабилизатора напряжения, поддерживающего напряжение питания постоянным независимо от того, включен стартер или нет. Однако такой способ неэкономичен, так как часть мощности батареи бесполезно теряется на стабилизаторе.  [29]

В результате возникает разряд более высокой энергии и температуры, чем в обычных конденсаторных системах зажигания, длительность разряда увеличивается почти в 3 раза. Это обстоятельство положительно влияет на работу двигателя, уменьшая токсичность отработавших газов и облегчая пуск горячего двигателя.  [30]

Страницы:      1    2    3

www.ngpedia.ru

Способ модернизации конденсаторного зажигания с непрерывным накоплением энергии

Изобретение относится к электрооборудованию конденсаторных систем многоискрового зажигания с непрерывным накоплением энергии и может быть использовано при эксплуатации двигателей внутреннего сгорания. Способ модернизации конденсаторных систем зажигания с непрерывным накоплением энергии заключается в том, что сигналом генерации искрового разряда открывают ведущий силовой электронный ключ, соединяющий с первичной обмоткой катушки зажигания образующий с ней колебательный контур и заряженный от преобразователя постоянного напряжения накопительный конденсатор. Электрический разряд накопительного конденсатора создает в этом контуре ряд колебаний переменного тока. Колебания переменного тока протекают по первичной обмотке катушки зажигания и трансформируются ее вторичной обмоткой в высоковольтные разнополярные импульсы многоискрового разряда. Напряжением преобразователя постоянного напряжения заряжают аккумулирующий конденсатор. Аккумулирующий конденсатор при пуске двигателя внутреннего сгорания заряжает накопительный конденсатор с исходной полярностью. Дoзapядом нaкопительнoгo конденсатора в каждом цикле генерации искровых разрядов компенсируют потери его напряжения от токов утечек силовой цепи и от отбора мощности на генерацию искрового разряда. Дозаряд накопительного конденсатора обеспечивается включением ведомого силового электронного ключа в моменты времени, соответствующие заряду накопительного конденсатора в исходной полярности и совпадающие с переходом переменного тока первичной обмотки катушки зажигания через нулевое значение. Блокированием открытия ведущего силового электронного ключа регулируют длительность искрового разряда в функции оборотов двигателя внутреннего сгорания при помощи схемы ограничения длительности искрового разряда. Технический результат заключается в исключении появления экстремальных нагрузок в процессе генерации регулируемых по мощности и длительности искровых разрядов, использовании для энергообеспечения процесса генерации искровых разрядов двухтактных двухконтурных преобразователей постоянного напряжения с внешним возбуждением и самовозбуждением, способных обеспечить питание нескольких каналов искрообразования. 4 ил.

 

Предлагаемое изобретение относится к электрооборудованию конденсаторных систем многоискрового зажигания с непрерывным накоплением энергии и может быть использовано при эксплуатации двигателей внутреннего сгорания (ДВС).

Искрообразование в этих системах сопровождается значительным изменением потребляемой мощности от холостого хода до максимальной, обусловленной периодическим короткозамкнутым или близким ему состоянием нагрузки, которое является дестабилизирующим фактором экстремального характера (далее «экстремальная нагрузка»), как и сопутствующие этому состоянию физические процессы, вследствие которых прерывается работа двухтактных (двухзвенных) автогенераторных (с самовозбуждением) преобразователей постоянного напряжения (далее ППН), что существенно ограничивает возможности энергообеспечения процесса искрообразования, особенно на больших оборотах ДВС.

Это связано с тем, что экстремально возрастающий с током вторичной обмотки силового трансформатора ее магнитный поток размагничивает магнитный поток первичной обмотки, что автоматически сопровождается исчезновением импульсных напряжений управления (возбуждения) силовых транзисторных ключей, их закрытием и прерыванием процесса генерации до момента полного снятия экстремальной нагрузки. Двухтактные (двухзвенные) преобразователи постоянного напряжения с внешним (независимым) возбуждением не имеют такой возможности самозащиты. Экстремальная нагрузка у них ведет к опасному для силового контура росту намагничивающего тока первичной обмотки силового трансформатора, ограничение которого требует применения принудительного закрытия силовых транзисторных ключей путем снятия их внешнего управления или других более сложных мер защиты. Это делает проблематичным их применение в упомянутых устройствах конденсаторного зажигания несмотря на существенные преимущества перед автогенераторными как по более высокой частоте преобразования и связанного с этим уменьшения габаритов, так и по эффективной стабилизации выходных напряжений во всем диапазоне нагрузок. Исключение составляют системы многотрансформаторных ППН (см. опубликованные сведения по заявке №2006108967/06 от 21.03.2006 г. этих же авторов, дата публикации 27.09.2007 г.) с внешним (независимым) возбуждением, но они предназначены для обеспечения двух и более экстремальных нагрузок и существенно отличаются от классических систем.

Задачей предлагаемого способа является расширение арсенала технических средств систем конденсаторного зажигания с непрерывным накоплением энергии, позволяющего:

1. Исключить появление экстремальных нагрузок двухтактных (двухзвенных) ППН в процессе искрообразования.

2. Использовать для энергопитания упомянутых конденсаторных систем наряду с двухтактными автогенераторными такие же ППН с внешним возбуждением.

3. Обеспечить генерацию регулируемого по энергетической мощности (по амплитуде разрядного тока) искрового разряда с помощью дозарядов накопительного конденсатора, компенсирующих потери:

а) на утечке тока в его силовой цепи в период между циклами генерации;

б) отбора энергии на трансформирование высоковольтных импульсов искрового разряда, ограничиваемого по длительности в функции оборотов ДВС.

4. Обеспечить энергообеспечение от одного двухтактного ППН с самовозбуждением или с внешним возбуждением нескольких источников регулируемого искрового разряда для многоканального искрообразования (например, для многокатушечных систем).

Аналогами предлагаемого способа являются существующие многоискровые конденсаторные системы ОН-427 (Справочник по устройству и ремонту электронных приборов автомобилей. Электронные системы зажигания. Авторы А.Г.Ходасевич, Т.И.Ходасевич. Москва, Антелком, 2001, стр.8), а также аналогичное и равноценное по технологическим возможностям устройство П.Гацанюка - «Усовершенствованная электронная система зажигания» - опубликованное на стр.52-62 сборника «В помощь радиолюбителю» №101, Москва, ДОСААФ, 1988 (далее источник Л1), которое принято в качестве наиболее близкого аналога (прототипа) из-за простоты схемных решений и конструкции, весьма важных для надежности подобных систем.

Прототипу также присущи все упомянутые выше недостатки: при открытии тринистора VSI (рис.1 стр.54 Л1) закорачивается на корпус нагрузка ППН, прерывающая генерацию на время ее экстремального состояния, составляющего 1,3 мсек (рис.5 Л1), что в сумме со временем полного восстановления прерванной генерации составляет около 2 мсек (а у других аналогов и более того). На больших оборотах ДВС, когда искровые разряды следуют с соизмеримым по времени периодом, такие потери ведут к значительному снижению напряжения заряда накопительного конденсатора С4 и параметров искрового разряда. Увеличить энергоотдачу ППН в таком режиме повышением частоты преобразования и выходного напряжения не представляется возможным, т.к. частота для этого типа ППН уже является предельной (800 Гц, стр.53 Л1), а отсутствие эффективной системы стабилизации выходного напряжения для подобных ППН вело бы к недопустимым перенапряжениям на малых и средних оборотах ДВС. Применение в таком устройстве ППН с внешним возбуждением решало бы эти проблемы, но, в свою очередь, ставило не менее сложную задачу по защите их от перегрузки при включении тринистора VSI. Предлагаемый способ модернизации конденсаторных систем зажигания, позволяющий решить упомянутые проблемы, входящие в объем поставленной ранее более обширной технической задачи, заключается в нижеследующем.

Двухтактный (двухзвенный) автогенераторный или с внешним возбуждением ППН нагружается на дополнительно введенный аккумулирующий конденсатор, превосходящий на порядок и более по электрической емкости накопительный конденсатор (с оптимальной емкостью 1,0 мкФ), который в процессе пуска ДВС (соответствующего началу всего цикла искрообразования) однократно заряжается через токоограничивающий резистор напряжением аккумулирующего конденсатора. Далее сигналом генерации искрового разряда (импульсом контактного или бесконтактного прерывателя) включается ведущий силовой электронный ключ, создающий электрическую цепь разряда накопительного конденсатора на первичную обмотку катушки зажигания, совместно образующих параллельный колебательный контур, в котором инициируются колебания переменного тока, трансформируемые вторичной обмоткой этой катушки в высоковольтные разнополярные импульсы искрового разряда. При этом в моменты времени, соответствующие перезаряду накопительного конденсатора в исходной полярности (с положительным потенциалом на аноде ведущего силового электронного ключа) электродвижущей силой самоиндукции первичной обмотки катушки зажигания и совпадающие с переходом через нулевое значение переменного тока этой обмотки, включается ведомый силовой электронный ключ (также дополнительно введенный), создающий цепь дозаряда накопительного конденсатора напряжением аккумулирующего. Короткий по времени импульс, включающий ведомый силовой электронный ключ, формируется на трансформаторе тока, включенного в цепь первичной обмотки катушки зажигания и выдающего разнополярные импульсные сигналы с экстремумом в моменты перехода ее тока через нулевое значение. (Таким же, но более коротким по времени сигналом этого трансформатора вначале первого периода колебаний тока каждого цикла генерации искрового разряда производится дозаряд накопительного конденсатора, компенсирующий утечки тока в силовой цепи этого конденсатора в период между циклами генерации, см. далее.) Одновременно таким же сигналом с аналогичного трансформатора тока вновь (но уже не от прерывателя) включается ведущий силовой электронный ключ, создающий цепь разряда накопительного конденсатора на первичную обмотку катушки зажигания с генерацией следующего периода колебаний с восполненной дозарядом энергией и т.д. При этом естественно возникает необходимость ограничения длительности искрового разряда в обратной зависимости от числа оборотов (в функции оборотов) ДВС. Это ограничение осуществляется соответствующей схемой контроля длительности (см. ниже), блокирующей очередной сигнал включения ведущего силового электронного ключа с его трансформатора тока. При этом ведомый силовой электронный ключ включается аналогичным импульсным сигналом своего трансформатора тока и дозаряжает накопительный конденсатор до уровня напряжения аккумулирующего, подготавливая схему к выработке следующего искрового разряда по очередному сигналу его генерации (с контактного или бесконтактного прерывателя).

В описании и реализации предлагаемого способа использован признак «дозаряда накопительного конденсатора», по своей физической сущности напоминающий ранее раскрытый признак «поддержание энергии колебаний переменного тока первичной обмотки катушки зажигания» (см. заявку этих же авторов рег. №2005127310 от 30.08.2005 г. и патента к ней, дата регистрации 10.12.2007 г., бюллетень 34). Различие этих признаков заключается в следующем: в предлагаемом способе заряд и дозаряды накопительного конденсатора производятся из одного источника, не имеющего нагрузки экстремального характера, а в упомянутой заявке от разных - там заряд накопительного конденсатора осуществляется от источника (ППН), работающего на экстремальную нагрузку, а дозаряд (т.е. поддержание энергии колебаний) от вспомогательного (см. эл./схему фиг.4 этой заявки, соответственно источники 5 и 20). Кроме того, в этой схеме компенсация потерь напряжения накопительного конденсатора из-за токов утечки в период между циклами генерации искровых разрядов осуществляется одновременно с зарядом этого конденсатора от источника с экстремальной нагрузкой. Для реализации электросхемы этой заявки необходимы два двухтактных (двухзвенных) ППН классического типа, один из которых (5 с выпрямителем 4) должен быть только автогенераторным (с самовозбуждением), а другой может быть с внешним (независимым) возбуждением или оба замещены одним многотрансформаторным ППН (см. выше). Также в этой заявке не раскрыто влияние упомянутого признака на заявляемый в предлагаемом способе технический результат по устранению экстремального состояния нагрузки ППН, имеющему важные технологические последствия.

На электрической схеме фиг.1 представлен вариант реализации способа с использованием классического двухтактного двухзвенного симметричного ППН с внешним возбуждением.

На ждущих мультивибраторах 1а, 1б, включенных по кольцевой схеме, и выходного усилителя на транзисторах 2, 3, коллекторной нагрузкой которых является выходной трансформатор 4, образован задающий генератор внешнего возбуждения ППН. Его парафазные сигналы со вторичных обмоток трансформатора 4 подаются на база-эмиттерные переходы силовых транзисторных ключей 5, 6, попеременное открытие которых создает в первичной обмотке выходного силового трансформатора 7 импульсный ток переменного направления, преобразуемого его вторичной обмоткой и выпрямителем 8 в повышенное постоянное напряжение заряда аккумулирующего конденсатора повышенной емкости 9. Схема управления ППН питается с интегрального стабилизатора 10 пониженным напряжением 5 В. На компараторе 11 выполнена стабилизация выходного напряжения ППН. На его вход А подается уставка опорного напряжения, на вход В - масштабный аналог стабилизируемого напряжения с резисторного делителя 12, 13. При достижении им уровня напряжения уставки на входе А на выходе С появляется сигнал низкого уровня, останавливающий работу мультивибраторов 1a, 1б и, наоборот, осуществляя стабилизацию выходного вторичного напряжения ППН широтно-импульсным модулированием колебаний первичного.

Работа эл/схемы по генерации искрового разряда заключается в нижеследующем. При включении пускового реле стартера ДВС параллельно включается реле 14 на короткое время, определяемое постоянной времени зарядной цепи конденсатора 15, и своим замыкающим контактом 16 через токоограничивающий резистор 17 заряжает накопительный конденсатор 18 до уровня напряжения аккумулирующего конденсатора 9. При этом при провороте коленвала ДВС замыкается контакт 19 механического прерывателя, включающий в процесс генерации схему ограничения длительности искрового разряда, состоящую из транзисторов 20, 21, конденсатора 22 и компаратора 23. При этом транзистор 20 запирается, конденсатор 22 заряжается до напряжения на входе В компаратора 23, превышающего уставку на его входе А, устанавливаемую резистором 25, на выходе С появляется сигнал низкого уровня, запирающий транзистор 21, который снимает шунтирование управляющего электрода ведущего силового электронного ключа 26 на его катод. При разрыве контакта 19 прерывателя вырабатывается импульсный сигнал запуска цикла генерации искрового разряда (копия прототипа), который через конденсатор 27 и диод 28 открывает ведущий силовой электронный ключ 26, который создает классическую цепь разряда накопительного конденсатора 18 на первичную обмотку катушки зажигания 29 с формированием первого периода колебаний ее тока (фиг.2 график 2), проходящего и по первичным обмоткам трансформаторов тока 30 и 31, включенных последовательно в эту цепь. Эти трансформаторы выдают на своих вторичных обмотках импульсные сигналы, получаемые дифференцирированием по скорости изменения проходящего по их первичным обмоткам тока и имеющие экстремумы при переходе этого тока через нулевое значение, которое совпадает с окончанием перезаряда ЭДС самоиндукции катушки зажигания 29 (см. диаграммы фиг.2) накопительного конденсатора 18 в полярности, противоположной исходной в моменты времени t1, t3, t5 и т.д. (соответственно импульсы a2, a4, a6 и в2, в4, в6 и т.д.), и совпадающей с исходной - в моменты времени t2, t4, t6 (соответственно импульсы а3, а5, а7, в3, в5, в7 и т.д.) В начале каждого искрового разряда передним фронтом первого полупериода тока первичной обмотки (время его действия от t0 до t1) на этих трансформаторах выделяются импульсы а1 и в1, но более короткие по времени (т.к. в их формировании не участвует задний фронт отрицательного предшествующего полупериода, которого просто нет). Их значение и использование пояснено ниже.

Трансформатор тока 31 служит для управления ведущего силового электронного ключа 26, а такой же трансформатор 30 - для управления ведомого силового электронного ключа 32 (соответственно диаграммы их сигналов 3 и 4 фиг.2). Резисторы в нагрузке их вторичных обмоток служат для корректировки амплитуды импульсов, а шунтирующие диоды - для закорачивания отрицательных (импульсов а и в с четными номерами), не используемых в процессе генерации искрового разряда, в начале каждого из которых на управляющий электрод ведущего силового электронного ключа (уже открытого по сигналу прерывателя) подается дополнительный импульс а1 с трансформатора тока 31, лишь подтверждающий его открытое состояние. Импульс же в1 имеет более важное значение: на малых оборотах, например 300 об/мин, четырехцилиндрового ДВС период следования искровых разрядов tразр составляет 0,1 сек (без вычета малой длительности самого искрового разряда). При этом при сопротивлении изоляции силовых цепей накопительного конденсатора, например, 250 кОм (что вполне удовлетворительно для устройства зажигания, работающего в условиях повышенной влажности и температуры) постоянная времени разряда этого конденсатора емкостью 1,0 мкФ (см. выше) составит 0,2 5 сек, а его напряжение к началу цикла генерации следующего искрового разряда из-за потерь на утечки составит:

, где

Uкон - конечное напряжение заряда конденсатора;

Uнач - начальное напряжение заряда;

е=2,718 - основание натурального логарифма;

tраз - период следования искровых разрядов, сек;

τ - постоянная времени разряда, сек.

Тогда

Совершенно очевидно - потери напряжения значительны, приблизительно такие же, как при отборе энергии колебаний на генерацию первого периода искрового разряда у прототипа - около 1/3 (рис.5 Л1), а при сопротивлении изоляции 100 кОм они увеличиваются до 2/3 начального напряжения.

Поэтому наличие импульса в1 (фиг.2) в начале генерации каждого искрового разряда в данной схеме имеет важное значение, позволяющее компенсировать неизбежные потери заряда накопительного конденсатора 18 из-за утечек в период между искровыми разрядами восстановлением (дозарядом) его напряжения, ведущего к возрастанию амплитуды первого периода тока катушки зажигания (но не в полной мере, т.к. из-за более короткого по времени импульса в1 эта амплитуда всегда несколько меньше амплитуды следующего второго периода, см. диаграмму 1 фиг.2). Естественно с повышением сопротивления изоляции и увеличением оборотов ДВС величина и негативное влияние утечек значительно снижаются. Например, при 1200 об/мин и том же сопротивлении изоляции (250 кОм) потери напряжения составляют менее 10%.

Таким образом, при подготовке исходного состояния накопительного конденсатора 18 к циклу генерации очередного искрового разряда он дозаряжается напряжением аккумулирующего конденсатора 9 дважды - по моменту окончания предыдущего искрового разряда (см. ниже) и по моменту начала очередного, а в течение процесса генерации - в каждом полупериоде, соответствующем перезаряду накопительного конденсатора 18 в исходной полярности.

При этом у прототипа постепенный (мягкий) заряд накопительного конденсатора 4 осуществляется по цепи корпус - мостовой выпрямитель - накопительный конденсатор - катушка зажигания - корпус.

В предлагаемом способе дозаряд накопительного конденсатора 18 имеет импульсный и кратковременный характер и осуществление его по такой же цепи вызывало бы генерацию катушкой зажигания внеочередного высоковольтного импульса разрядного тока, не совпадающего с тактами рабочего цикла ДВС. Поэтому дозаряд осуществляется непосредственно с аккумулирующего конденсатора 9 на накопительный 18, что к тому же ускоряет этот процесс и снижает потери энергии.

При этом цепь перезаряда накопительного конденсатора 4 ЭДС самоиндукции катушки зажигания в исходной полярности у прототипа через цепь мостовых выпрямителей VD3÷VD10 (рис.1 Л1) заменена в способе одним силовым диодом 33, встречно-параллельно шунтирующим ведущий силовой электронный ключ 26. При этом (см. выше) в момент времени t1 (диагр.1 фиг.2) заканчивается перезаряд накопительного конденсатора 18 ЭДС самоиндукции катушки зажигания в полярности, противоположной исходной, и начинается генерация второго полупериода тока первичной обмотки катушки зажигания во временном интервале от t1 до t2 (диагр.2 фиг.2), по моменту окончания которого (время t2) заканчивается перезаряд накопительного конденсатора 18 по цепи корпус - анод силового диода 33 - накопительный конденсатор - трансформаторы тока 30 и 31 - катушка зажигания - корпус, а также выдаются трансформаторами тока совпадающие по времени импульсные сигналы a3 и в3. Последний из них, в3, поступает на базоэмиттерный переход силового транзисторного ключа 32, открывает его, дозаряжая накопительный конденсатор 18 и уравнивая его напряжение, уменьшившиеся приблизительно на 1/3 от своего начального в результате отбора мощности на первый период искрового разряда (аналогично, как у прототипа, рис.5 Л1) с напряжением аккумулирующего конденсатора, подготавливая генерацию следующего регулируемого по мощности периода колебаний тока первичной обмотки катушки зажигания и соответственно тока искрового разряда. В это же время импульсный сигнал в3 поступает на управляющий электрод ведущего электронного ключа 26 (блокирующий транзистор 21 при этом закрыт, см. выше), открывает его. Начинается генерация следующих периодов тока первичной обмотки катушки зажигания и соответствующих им периодов искрового разряда с приведенной выше последовательностью физических процессов до срабатывания схемы ограничения длительности разряда, которая работает следующим образом: при разрыве электрической цепи прерывателем 19 начинается цикл генерации искрового разряда (см. выше) и открывается транзистор 20, замыкающий на корпус цепь разряда конденсатора 22 через переменный резистор 24, которым устанавливается постоянная времени τ этого разряда. При снижении напряжения на входе В компаратора 23 до уровня уставки на входе А на его выходе С появляется сигнал высокого уровня, открывающий транзистор 21, который замыкает на корпус управляющий электрод ведущего силового электронного ключа 26, блокируя его открытие последним импульсом в искровом разряде, например импульсом а7 (диаграмма 3, фиг.2). При этом его аналог импульс в7 открывает ведомый силовой электронный ключ 32, который дозаряжает накопительный конденсатор 18, подготовив его к генерации следующего искрового разряда по сигналу с прерывателя 19. С изменением оборотов ДВС меняется время и уровень заряда конденсатора 22 и соответственно время его разряда, от которого зависит продолжительность закрытого состояния транзистора 21 и соответственно длительность искрового разряда, которая настраивается переменным резистором 24 (по постоянной времени заряда-разряда) и корректируется таким же резистором 25 по уровню (уставке) напряжения срабатывания схемы ограничения длительности разряда.

На фиг.3 представлены параметры регулируемого искрового разряда устройства зажигания, выполненного по предлагаемому способу. На диаграмме 1 фиг.3 проиллюстрирован характер изменения тока искрового разряда из десяти периодов (на частоте генерации 10÷12 Гц или 300÷360 об/мин ДВС), измеренный на нагрузочном резисторе сопротивлением 14 Ом по методике прототипа (рис.7, стр.60, Л1). Длительность этого разряда, регулируемая схемой его ограничения, ступенчато меняется с изменением оборотов ДВС в соответствии с кривой второго порядка «f» (диагр.2, фиг.3), отдаленно соответствующей кривой разряда конденсатора 22 фиг.1. При этом амплитуды разрядного тока оставшихся периодов остаются неизменными. Например, искровой разряд из шести колебаний разрядного тока наступит при частоте его генерации 62 Гц и будет сохраняться до 82 Гц (диагр.2, фиг.3). В этом диапазоне потребляемый ППН ток нагрузки изменится от 7,5 А до 9,5 А. (линия I диагр.2, фиг.3). На частоте генерации искровых разрядов около 180 Гц останется только 2 периода колебаний (1 и 2 диагр.1, фиг.3), которые будут сохраняться до частоты 240 Гц с изменением тока нагрузки ППН в этом диапазоне частот от 8 А до 10,5 А. Первый период (№1, диагр.1 фиг.3) сохраняется без изменения амплитуды от 240 Гц до 600 Гц (и даже до 800 Гц при перестройке схемы ограничения длительности) с значительным ростом потребляемого тока. Возврат к искровому разряду, например, из 6 периодов произойдет на частоте этих разрядов около 82 Гц и будет сохраняться до частоты 62 Гц с изменением тока нагрузки ППН от 9,5 А до 7,5 А и т.д. Во всем диапазоне нагрузок напряжение аккумулирующего и накопительного конденсаторов остается практически неизменным - уменьшение не более 2% в области пиковых нагрузок при трех или четырех колебаниях в искровом разряде, достигающих тока нагрузки 11,5 А (диагр.2, фиг.3), в режиме холостого хода ППН (без искрообразования) не превышающего 0,25 А. Аналогичные параметры прототипа существенно скромнее. Недостатком способа является необходимость поддержания высокого сопротивления изоляции силовых цепей накопительного конденсатора, на которое значительное влияние оказывают утечки ведущего силового электронного ключа. Приведенные на диаграммах фиг.3 параметры не являются предельными и могут быть изменены, в том числе в сторону их усиления, для чего достаточно применить более мощный ППН.

Таким образом, предлагаемый способ позволяет:

1. Исключить появление экстремальных нагрузок в процессе генерации искровых разрядов, что делает возможным применение для его реализации наряду с двухтактными (двухконтурными) автогенераторными таких же ППН с внешним (независимым) возбуждением.

2. Обеспечить генерацию регулируемого по длительности в функции оборотов ДВС и по энергетической мощности (амплитуде разрядного тока) искрового разряда с помощью дозарядов накопительного конденсатора, компенсирующих потери его напряжения:

а) из-за утечек его силовой цепи в период между циклами генерации искровых разрядов;

б) вследствие отбора энергии на трансформирование импульсов искрового разряда.

3. Надежно обеспечить генерацию искровых разрядов на запредельных, недосягаемых для прототипа и всех аналогов частотах, например для сверхвысокооборотных ДВС.

4. Обеспечить надежное энергообеспечение от одного двухтактного (двухконтурного) ППН (автогенераторного или с внешним возбуждением) нескольких источников регулируемого искрового разряда для многоканального искрообразования.

Вариант такой реализации способа для четырех каналов искрообразования поясняет электросхема фиг.4. Она состоит из четырех каналов, идентичных по построению и функционированию одноканальной схеме фиг.1. Исключение составляет общий для всех каналов силовой трансформатор 7 с четырьмя вторичными нагрузками 9 (1÷4), аналогами аккумулирующего конденсатора 9 фиг.1, гальванически связанных по положительному потенциалу на коллекторе также общего для всех ведомого силового электронного ключа 32, поочередно управляемого каждым из генерирующих искровой разряд каналов импульсами своего трансформатора тока 30 (1÷4). При этом дозаряд накопительных конденсаторов 18 (1÷4) со своих аккумулирующих 9 (1÷4) осуществляется одновременно по всем каналам через развязывающие диоды 36 (1÷4), наиболее интенсивный по каналу, где идет генерация искрового разряда, по остальным только компенсация токов утечек. Ограничение длительности искровых разрядов, аналогичное одноканальной схеме фиг.1, за исключением необходимости инвертирования выходного сигнала транзистора 21, для чего достаточно поменять местами входы А и Б компаратора 23.

Первичная обмотка трансформатора 7 и схема управления ППН не показаны, так как преобразователи могут быть как автогенераторными, так и с внешним возбуждением. Их выбор для конкретной конструкции зависит от:

1. стоимости,

2. сложности конструкции,

3. надежности обеспечения требуемых технологических параметров искрового разряда.

Наиболее просты и дешевы конструкции с двухтактными автогенераторными ППН, но они значительно уступают по габаритам и параметрам искрового разряда преобразователям с внешним возбуждением.

В описании представлен вариант схемы ограничения длительности искрового разряда в функции оборотов ДВС по кривой разряда конденсатора 22 фиг.1. Эта зависимость может быть выполнена также прямолинейной с использованием генераторов, линейно-изменяющихся во времени напряжений или по более сложному варианту с применением цифровых и аналоговых микросхем для реализации заданной оптимальной конфигурации искрообразования, точно соответствующей требуемым параметрам конкретного технологического процесса.

Для реализации способа пригодны радиодетали широкого применения. Исключение составляет ведомый силовой электронный ключ, который при перезаряде накопительного конденсатора в полярности, противоположной исходной, находится под воздействием суммарного напряжения аккумулирующего и накопительного конденсаторов, поэтому должен быть не только мощным, но и высоковольтным.

Перечень графического материала

Фиг.1 - электросхема варианта реализации способа (одноканальное исполнение).

Фиг.2 - диаграммы привязки по времени напряжений накопительного конденсатора, тока первичной обмотки катушки зажигания и импульсных сигналов трансформаторов тока.

Фиг.3 - диаграммы параметров искрового разряда конкретного устройства реализации способа.

Фиг.4 - электросхема варианта реализации способа для четырехканального искрообразования (многокатушечная система).

Способ модернизации конденсаторных систем зажигания с непрерывным накоплением энергии, заключающийся в том, что сигналом генерации искрового разряда открывают ведущий силовой электронный ключ, соединяющий с первичной обмоткой катушки зажигания образующий с ней колебательный контур и заряженный от преобразователя постоянного напряжения накопительный конденсатор, электрический разряд которого создает в этом контуре ряд колебаний переменного тока, протекающего по первичной обмотке катушки зажигания и трансформируемого ее вторичной обмоткой в высоковольтные разнополярные импульсы многоискрового разряда, отличающийся тем, что напряжением преобразователя постоянного напряжения заряжают аккумулирующий конденсатор, с которого при пуске двигателя внутреннего сгорания заряжают накопительный конденсатор с исходной полярностью, дозарядом которого в каждом цикле генерации искровых разрядов компенсируют потери его напряжения от токов утечек силовой цепи и от отбора мощности на генерацию искрового разряда включением ведомого силового электронного ключа в моменты времени, соответствующие заряду накопительного конденсатора в исходной полярности и совпадающие с переходом переменного тока первичной обмотки катушки зажигания через нулевое значение, регулируют длительность искрового разряда в функции оборотов двигателя внутреннего сгорания блокированием открытия ведущего силового электронного ключа схемой ограничения его длительности, что позволяет исключить появление экстремальных нагрузок в процессе генерации регулируемых по мощности и длительности искровых разрядов, использовать для энергообеспечения процесса генерации искровых разрядов двухтактных двухконтурных преобразователей постоянного напряжения с внешним возбуждением и самовозбуждением, способных обеспечить питание нескольких каналов искрообразования.

www.findpatent.ru

Высоконадёжное универсальное конденсаторно-тиристорное CDI электронное зажигание, оптимизированное по импульсной и пиковой мощности искрового разряда

Высоконадёжное универсальное конденсаторно-тиристорное CDI электронное зажигание - Зажигание - Двигатели внутреннего сгорания - Каталог статей

Смирнов Владимир Фёдорович

Россия, Тверская обл., г. Кимры

E-mail: [email protected]

Web-sait: smirnov.ucoz.com

Импульсные помехи, возникающие в моменты искрообразования, способны оказывать обратное влияние на работу формирователя запускающих импульсов и тиристора, делая работу зажигания неустойчивой.

Углублённый анализ процесса искрообразования позволил прояснить, что в момент искрообразования существуют, как минимум, три контура токов:

1 — первичный ток проводимости в контуре ударного возбуждения: индуктивность низкоомной обмотки КЗ (катушка зажигания), ёмкость разрядного конденсатора С5, тиристор VS и диод VD10. Принцип искрообразования следующий. Конденсатор С5 получает заряд от преобразователя постоянного напряжения (около 600 В). В момент искрообразования включается тиристор VS и «соединяет» заряженный конденсатор С5 с КЗ. Цепь контура ударного возбуждения замыкается и в нём возникают затухающие колебания. Напряжение на низкоомной обмотке КЗ скачком (единицы микросекунд) становится равным напряжению на ёмкости С5. Напряжение на вторичной обмотке КЗ достигает напряжения пробоя искрового промежутка свечи — возникает искровой разряд.

В идеале, когда тиристор включён, заряд ёмкости С5 тратится на поддержание искры и создание магнитного потока КЗ. Во втором полупериоде направление тока меняется на противоположное — открывается диод VD10, а тиристор VS — выключается. В это время энергия магнитного поля КЗ тратится на искру и на возврат (рекуперацию) заряда в ёмкость С5, после чего диод VD10 закрывается, и контур ударного возбуждения размыкается. Таким образом, искрообразование продолжается один период затухающих колебаний контура ударного возбуждения, после чего колебания прекращаются, а в ёмкость С5 возвращается неиспользованный остаток заряда.

Хочу обратить внимание на следующее. В случае возникновения паразитной проводимости (нагар, «мостик») между электродами свечей в конденсаторно-тиристорном CDI электронном зажигании возникает конденсаторно-тиристорный синергизм взаимодействия, проявляющийся в том, что заряд конденсатора С5, как источника ЭДС, может быть полностью потрачен на силовое (с выделением тепла) пережигание паразитной проводимости. В этом предельном случае, заряда конденсатора С5 хватит на возбуждение всего одного полупериода затухающих колебаний — диод рекуперации VD10 останется без работы. Нагрузка на преобразователь возрастёт, но на причину будет оказано активное энергетическое воздействие, которое может уничтожить «мостик». Кроме того, атаке подвергнутся помехоподавляющие резисторы, которые в конденсаторно-тиристорном CDI электронном зажигании лучше заранее перемкнуть. Для справки: энергия, запасённая в электрическом поле конденсатора С5, заряженного до напряжения 600 В составляет около 0,4 Дж, что соответствует 0,1 кал теплоты за одно искрообразование (для пережигания «мостика» может потребоваться некоторое количества искрообразований, т. е. времени). Настоящее зажигание без помехоподавляющих резисторов будет надёжно работать, но импульсные помехи могут оказаться запредельными для остальной электроники.

2 — паразитный ток проводимости искрового разряда свечи. Высоковольтный провод от вывода высокоомной обмотки КЗ до свечи представляет собой элементарный вибратор. В 1879-1888 годах профессор Генрих Рудольф Герц ставил опыты, целью которых было экспериментально доказать возможность возбуждения магнитных полей переменными электрическими полями — предполагалось доказать физическую реальность токов смещения и обязательную замкнутость их цепей (В. Мигулин, член-корреспондент АН СССР. Столетие «волн Герца». Радио № 11, 1988 г., с. 47). Герц использовал искровой разряд для импульсного возбуждения резонатора, названного им вибратором, на частоте порядка сотни миллионов колебаний в секунду. Если внимательно проанализировать высоковольтную часть схемы CDI зажигания, то в его вторичной цепи легко обнаружить все элементы устройства Герца. Разрядная ёмкость — паразитная ёмкость КЗ и высоковольтного провода. Искровой разрядник — свеча. Вибратор — высоковольтный провод. Единственное отличие — место подключения разрядника к вибратору. В моменты искрообразования CDI зажигание функционирует подобно устройству Герца, генерируя мощные радиоимпульсные помехи. Для защиты от них в настоящее время, во-первых, используют специальные высоковольтные провода, обладающие высокими распределёнными потерями, резко снижающими их добротность как вибраторов, во-вторых, между разрядником-свечой и высововольтным проводом-вибратором обычно включают помехоподавляющий резистор, который ограничивает возбуждающий колебания разрядный ток. В настоящем зажигании один конец вибратора, роль которого исполняет высоковольтный провод, замыкается искровым разрядом свечи на массу, а к другому — подключена КЗ, через паразитную ёмкость которой вибратор удлиняется проводом, соединяющим катод тиристора VS c блокирующей ёмкостью зимнего пуска С1. Таким образом, катод тиристора VS оказывается подключенным к отводу составного вибратора. Ток отрицательных полупериодов колебаний вибратора течёт по цепи: катод-управляющий электрод тиристора VS, ограничивающий резистор R5 (индуктивность L в исходной схеме зажигания отсутствует), переход эмиттер-коллектор фототранзистора оптрона U1, запускающая тиристор ёмкость С2, ёмкость зимнего пуска С1. Это равносильно действию положительных импульсов тока на управляющий электрод тиристора VS. Однако чтобы тиристор мог открыться, необходимо чтобы напряжение помехи на фототранзисторе оптрона U1 достигло величины лавинного пробоя фототранзистора, после чего цепь замкнётся, и ёмкость С2 ложно запустит тиристор VS. Для борьбы с указанным недостатком введён блокирующий конденсатор С9, заземлённая обкладка которого проводом большого сечения должна быть присоединена возможно ближе к месту, где ввинчены свечи. При этом ток колебаний вибратора будет отделён от тока цепи управления. Окончательно решить проблему помогает интегрирующий фильтр второго порядка LC6, введённый в доработанную схему. Кроме того некоторое улучшение помехозащищённости в исходной и доработанной схемах достигается тем, что на катод тиристора VS с ёмкости зимнего пуска С1 подаётся + 12 В, а управляющий электрод тиристора VS через резистор R8 соединён с общим проводом, что равносильно подаче на управляющий электрод запирающего смещения минус 12 В;

3 — ток смещения (электрическая составляющая электромагнитной волны; течет в физическом вакууме, даже при полном отсутствии какого-либо вещества за счёт смещения квантов поля) возникает во время искрового пробоя, когда напряжение на свече резко уменьшается, и, соответственно, резко изменяется напряжённость электрического поля вокруг высоковольтного провода. Феномен тока смещения состоит в том, что симметрично с ним возникает и изменённое (квантово-полевое) пространство-время, наделённое свойством динамической сверхпроводимости. Динамическая сверхпроводимость — это временное возникновение у вакуума сверхпроводимости, позволяющей току смещения без потерь на тепло замкнуть цепь тока проводимости. Импульс тока смещения, возникающий во время фронта или спада напряженности электрического поля, определяется первой производной и в виде токового импульса помехи атакует прямо из окружающего сверхпроводящего пространства. Основной способ защиты от тока смещения состоит в том, чтобы разорвать электрическое поле с помощью электростатического экрана, поэтому все цепи управления тиристором необходимо тщательно экранировать (экранированные провода и металлический кожух без щелей, закрывающий цепи управления). Для защиты тиристора со стороны анода между его управляющим электродом и катодом установлен конденсатор С7, повышающий критическую скорость нарастания напряжения на аноде в закрытом состоянии. Ёмкость С6 защищает эмиттер фототранзистора оптрона U1 от импульса тока смещения. Защиту по входу осуществляет ёмкость С8. Дроссель L имеет индуктивность 120 мкГн на токе 0,1 А и должен быть расположен как можно дальше от КЗ, и ближе к фототранзистору.

Действенность принятых мер подтверждается тем, что в зажигании стали прекрасно работать тиристоры, ранее отбракованные из-за необъяснимых сбоев. Настоящее зажигание было создано в 90-е и зарекомендовало себя как высоконадёжное, безупречно работающее, облегчающее запуск и раскрывающее мощностные возможности двигателей.

 

 

 

 

smirnov.ucoz.com