Датчик кислорода схема


Лямбда зонд - признаки неисправности и способы проверки

Инжекторная система питания автомобиля является более экономичной и эффективной, чем карбюраторная. Достигается это за счет полного контроля за подачей топлива и воздуха, которое осуществляется рядом датчиков. Они выполняют проверку рабочих параметров, передают их на электронный блок, который анализирует и на их основе корректирует работу всей системы.

Причем датчики для обеспечения полной информации о работе системы устанавливаются не только на впуске (количества топлива, воздуха), но и в выпускной системе. В ней используется всего один датчик, но от его работы зависит, какое количество воздуха будет подаваться в цилиндры. Он так и называется – датчик кислорода, другое название — лямбда-зонд.

Содержание статьи

Что такое лямбда зонд в машине?

1) металлический корпус с резьбой и шестигранником “под ключ”;2) уплотнительное кольцо;3) токосъемник электрического сигнала;4) керамический изолятор;5) провода;6) манжета проводов уплотнительная;7) токоподводящий контакт провода питания нагревателя;8) наружный защитный экран с отверстием для атмосферного воздуха;9) чувствительный элемент;10) керамический наконечник;11) защитный экран с отверстием для отработавших газов.

Основная задача этого датчика кислорода – оценка количества несгоревшего кислорода в отработанных газах. Дело в том, что самое эффективное сгорание топливовоздушной смеси достигается при определенном соотношении топлива и воздуха — одна часть бензина должно смешиваться с 14,7 частями воздуха.

Если топливовоздушная смесь будет обедненной, то содержание воздуха будет увеличенным, и наоборот – обогащенная смесь обеспечит меньшее процентное содержание кислорода в выхлопных газах. А это уже сказывается на мощности, расходе, приемистости.

А поскольку двигатель работает на разных режимах, поэтому такое соотношение далеко не всегда соблюдается. Чтобы была возможность контролировать количество подаваемого воздуха, в систему питания и включен лямбда-зонд.

На основе показаний этого датчика электронный блок оценивает качество топливовоздушной смеси и при обнаружении несоответствия нормам – корректирует работу системы, обеспечивая подачу оптимальной смеси путем подачи сигнала на форсунки, которые увеличивают или уменьшают количество впрыскиваемого топлива.

Устройство и принцип работы лямбда зонда

Принцип работы лямбда зонда

Принцип вроде и прост, но реализация его — не такая уж и легкая. Этот датчик должен с чем-то сравнивать полученные результаты, чтобы «понять», что произошло изменение процента кислорода. Поэтому он делает замеры в двух местах – атмосферный воздух и тот, что остался после сгорания смеси. Это позволяет ему «почувствовать» разницу при изменении соотношения топливовоздушной смеси.

1 – твердый электролит ZrO2; 2, 3 – наружный и внутренний электроды; 4 – контакт заземления; 5 – «сигнальный контакт»; 6 – выхлопная труба

При этом на электронный блок должен подаваться электрический сигнал. Для этого лямбда-зонду необходимо преобразовать результаты замеров в импульс, который будет подаваться на ЭБУ. Для проведения замеров концентрации кислорода в атмосфере и в выхлопных газах, используется два электрода, вступающих в реакцию с ним. То есть, в работе этого датчика задействован принцип гальванического элемента, при котором смена параметров химической реакции влечет за собой изменение напряжения между электродами датчика. Так, при обогащенной смеси, когда процент кислорода – меньше, напряжение возрастает, а при обеднении – снижается.

Полученный в результате химической реакции электрический импульс подается на ЭБУ, параметры которого он сравнивает с прописанными в своей памяти и в результате этого производит корректировку работы системы питания.

Используя для работы химические реакции, лямбда-зонд не является сложным по конструкции. Основным его элементом выступает керамический наконечник, изготовленный из диоксида циркония (реже – диоксида титана) с платиновым покрытием, которое и выступает в роли электродов, вступающих в реакцию. Одной своей стороной наконечник контактирует с атмосферой, а другой – с выхлопными газами.

Лямбда зонд с подогревом

Особенность работы такого керамического наконечника заключается в том, что произведение эффективных замеров остаточного процента кислорода выполняется только при определенном температурном режиме. Чтобы наконечник обрел необходимую проводимость, необходима температура в 300-400 град. С.

Чтобы обеспечить необходимый температурный режим изначально этот датчик устанавливали ближе к выпускному коллектору, что обеспечивало достижение необходимой температуры по мере прогрева силовой установки. То есть, в работу он вступал не сразу. До того, как лямбда-зонд начнет передавать импульсы, электронный блок основывался на показания других датчиков, включенных в систему питания, но при этом оптимальное смесеобразование не соблюдалось.

Видео: Как подключить лямбда зонд с подогревом

Некоторые модели лямбда-зондов в своей конструкции имеют специальные электрические подогреватели, что обеспечивает более быстрый выход на необходимый температурный режим. Запитка подогревателя осуществляется от бортовой сети авто.

Датчик, выполняющий свою работу за счет химической реакции, получил название двухточечного, за счет того, что замеры производятся в двух местах. Но выпускаются еще и другой тип лямбда-зонда – широкополосный, который является более современной версией датчика. В его конструкции тоже используется двухточечный элемент, а также еще один керамический элемент – закачивающий. При этом суть сводится все к той же подаче электрического сигнала на ЭБУ.

Использование двух и более датчиков

Сейчас многие автомобили, чтобы повысить их экологичность, используют каталитические нейтрализаторы, что позволяет снизить вредные выбросы в атмосферу. При этом выхлопная система оснащается не одним, а двумя и более лямбда-зондами.

В такой выхлопной системе эти датчики производят не только замер остаточного кислорода, но еще и оценивают эффективность работы нейтрализатора. Один из датчиков устанавливается перед катализатором, а второй – за ним. Это позволяет на основании сравнения показаний двух лямбда-зондов понять, выполняется ли нейтрализация вредных веществ.

С одной стороны, такая система позволяет меньше загрязнять окружающую среду, но с другой – она очень «капризна». Одна-две заправки некачественным бензином запросто может испортить нейтрализатор. А это уже скажется на показаниях лямбда-зондов, и как следствие – на работе всей системы питания.

К тому же даже при соблюдении всех условий эксплуатации авто, нейтрализатор выйдет из строя, поскольку у него имеется свой ресурс, после которого он подлежит замене, чтобы восстановить нормальную работоспособность системы питания. А поскольку замена – «удовольствие» дорогостоящее, то на выручку приходят разные хитрости.

Многие просто вырезают нейтрализатор, а на его место устанавливают пламегаситель – обычный отрезок трубы необходимого диаметра. А чтобы получить разницу в показаниях двух датчиков, используют так называемую обманку на лямбда зонд – специальную проставку, устанавливаемую на второй лямбда-зонд.

Эта обманка просто удаляет наконечник от потока выхлопных газов, что влияет на его показания. За счет этого и достигается разница, которую ЭБУ воспринимает как работу катализатора.

Видео: Лямбда зонд (датчик кислорода). Как обмануть второй лямбда зонд

Признаки неисправности лямбда зонда

Лямбда-зонд – достаточно важный элемент в системе питания авто и его поломка может значительно сказаться на работе силовой установки. Признаки неисправности его таковы:

  • увеличение расхода бензина;
  • «плавающие» обороты на холостом ходу;
  • понижение динамики разгона;
  • щелчки и треск из-под авто после остановки мотора;

Одна из особенностей лямбда-зонда кроется в том, что его неисправность далеко не всегда распознается системой самодиагностики авто. К тому же невозможно его проверить при помощи обычных измерительных приборов в гаражных условиях. Его работоспособность проверяется только осциллографом.

Также он не ремонтопригоден. Единственное, что можно устранить, так это – обрыв проводки, ведущей к датчику. Но с ним бывают также и такие неисправности как повреждение подогревающего элемента и потеря чувствительности самого датчика.

Видео: Как проверить лямбда зонд

Замена

Поэтому многие автолюбители не пытаются проводить диагностику работоспособности лямбда-зондов, а просто периодически производят его замену на новый. Чтобы поддерживать работоспособность системы питания в рабочем состоянии следует производить замену раз в 2-3 года.

Данная операция не является сложной и выполняется она на смотровой яме. Предварительно следует приобрести необходимую модель датчика. Перед демонтажем отключается колодка проводов от зонда, а затем он выкручивается со своего посадочного места рожковым ключом соответствующего размера. Для облегчения откручивания допускается обработка специальными средствами (WD-40 или др.). На место выкрученного элемента вкручивается новый и к нему подключается проводка.

Поделитесь с друзьями:

avtomotoprof.ru

Лямба зонд. Устройство и принципы работы.

Для того, чтобы добиться наибольшей продуктивности от работы двигателя необходимо обеспечить наилучшее сгорание топливно-воздушной смеси, в свою очередь для этого необходимо точно определить необходимые пропорции впрыскиваемого топлива и поступающего воздуха. Полученная смесь гарантирует наилучшее сгорание, продуктивную работу и наименьшее количество вредных веществ от выхлопа. Для определения доли кислорода в отработанных газах автомобиля, используется кислородный датчик (он же лямбда зонд, в народе).

Такой датчик используется только на инжекторных автомобилях. Лямбда зонд устанавливается в выхлопной системе автомобиля, некоторые модели авто могут содержать в комплектации 2 кислородных датчика, в таком случае один из них устанавливается до катализатора, второй – после катализатора. Применение 2 датчиков, позволяет усилить контроль, за отработанными газами автомобиля, тем самым достигнуть наиболее эффективной работы катализатора.

Как работает лямбда зонд? Как Вам известно, дозировкой подаваемого топлива занимается электронный блок управления, он подает сигнал на форсунки о количестве необходимого топлива в камере сгорания в тот или иной момент времени. Лямбда зонд, в этом процессе выступает в качестве устройства обратной связи, благодаря которому, происходит правильная дозировка топлива на количество подаваемого воздуха. Правильно рассчитанная смесь очень важна как с экологической точки зрения, так и с экономической. На сегодняшний день, одним из важнейших требований к производству автомобилей является экологическая безопасность, поэтому новые автомобили комплектуются как правило каталитическим нейтрализатором (катализатором) и двумя датчиками лямбда зонда. Такое сочетание устройств позволяет свести к минимуму экологический вред, который наносят автомобили окружающей среде, но при возникновении поломки в одном из функциональных узлов выпускной системы, водитель попадет на приличные деньги, ведь все это не так то и дешево стоит.

Устройство лямбда зонда. Сам датчик состоит из 2 электродов, внешнего и внутреннего. Внешний электрод сделан из платинового напыления, поэтому особо чувствителен к кислороду, из за химический свойств платины, ну а внутренний сделан из циркония. Лямбда зонд устанавливается таким способом, чтобы через него проходили отработанные газы автомобиля, при прохождении, внешний электрод улавливает кислород в отработанных газах, при этом изменяется потенциал между электродами, чем больше кислорода – тем выше потенциал! Особенностью циркониевого сплава, из которого сделан внутренний электрод – это его рабочая температура, которая достигает отметки в 300-1000 градусов. Именно по этой причине кислородные датчики имеют в своей конструкции подогреватели, которые доводят температуру самого датчики до рабочей в момент холодного запуска двигателя.

Лямбда зонды бывают 2 видов:

  • Двухточечный датчик.
  • Широкополосный датчик.

Эти два вида датчика между собой схожи по внешним признакам, но при этом выполняют работу различными способами.

Двухточечный датчик – это пример того датчика, который мы описывали ранее, состоит он с двух электродов, он фиксирует коэффициент избытка воздуха в топливной смеси, по величине концентрации кислорода в отработанных газах автомобиля.

Широкополосный датчик – является современной конструкцией лямбда зонда, в нем значение получают благодаря использование силы тока закачивания. По своей конструкции широкополосный датчик состоит из двух керамических элементов, двухточечного и закачивающего. Закачивающий элемент – физическим процессом закачивает в себя кислород из отработанных газов автомобиля, с использованием определенной силы тока. Датчик держит постоянное напряжение 450 мВ, если концентрация кислорода уменьшается – напряжение между электродами возрастает и подается сигнал в электронно управляющий блок. Как только сигнал поступил на ЭБУ, создается ток определенной силы на закачивающем элементе, этот ток обеспечивает закачку кислорода в измерительный зазор. В этом всем процессе, величины силы тока, которая подается на закачивающий элемент – это уровень концентрации кислорода в отработанных газах.

Основные причины и признаки неисправностей. Существует несколько признаков, по которым можно определить неисправность кислородного датчика:

  • Увеличение токсичности выхлопных газов. Этот показатель на «глаз» определить невозможно, только с помощью замера специальным прибором, можно сделать вывод что уровень СО выхлопных газов увеличен. Показания прибора о увеличении СО гласит о нерабочем датчике лямбда зонд.
  • Увеличение расхода топлива. Этот признак более заметен, чем предыдущий. Любой автомобилист интересуется, какой количество топлива расходуется автомобилем на определенное расстояние, поэтому повышение расхода будет заметно практически сразу. Единственный нюанс в этом способе определения – не всегда увеличение расхода топлива говорит о неисправности кислородного датчика.
  • Check Engine. Все инжекторные автомобили имеют блок управления, который можно диагностировать на причину поломки в том или ином узле. Как правило, при появлении неисправности на приборной панели загорается соответствующая лампочка «Check Engine». В большинстве случаев, горение этой лампы говорит о неисправности лямбда зонда, более подробно можно узнать при диагностике на сервисе.

Причины неисправностей:

  • Качество топлива. При некачественном топливе, на кислородном датчике откладывается небольшими долями свинец, этот слой со временем снижает чувствительность внешнего электрода к кислороду. Такой датчик можно со временем смело считать нерабочим.
  • Механическая неисправность. К этим неисправностям относятся чисто механические повреждения самого датчика. Например: повреждение корпуса датчика, нарушение целостности обмотки обогрева и прочее. Решаются такие причины путем замены датчика на новый, ремонт практически невозможен и не целесообразен.
  • Неисправность в топливной системе автомобиля. Из за неисправности форсунок, в цилиндры двигателя подается большее количество топлива, чем требуется, следовательно, оно не сгорает, а выходит в выхлопную систему в виде черного налета (сажи). Со временем эта сажа накапливается на всех узлах выхлопной системы автомобиля, в том числе и на лямбда зонде, это становиться причиной неправильной работы датчика. Как лечение, можно использовать тряпки и средства очистки, чтобы вычистить кислородный датчик, но если такие загрязнения будут постоянными – можно смело выбрасывать датчик и устанавливать новый.

Следите за автомобилем и своевременно выполняйте диагностику, это поможет сохранить функциональные узлы в хорошем состоянии на протяжении длительного времени.

yamotorist.ru

Датчик кислорода - лямбда зонд

     Задача датчика кислорода – определять содержание кислорода в отработанных газах. По принципу действия датчик кислорода можно сравнить с электрохимическим источником, напряжение которого зависит от концентрации кислорода. Такое определение не совсем корректно, но достаточно точно отражает сущность датчика, за одним исключением – чем больше кислорода, тем ниже уровень сигнала и наоборот. Есть кислород в отработанных газах – смесь бедная (сигнал датчика низкий), нет кислорода – богатая (сигнал высокий). Контроллер по сигналу датчик кислорода непрерывно корректирует длительность впрыска, поддерживая таким образом оптимальный состав топливной смеси, т.е. выполняет роль датчика обратной связи в замкнутом контуре управления подачей топлива. Уровень сигнала датчика изменяется несколько раз в секунду, обеспечивая таким образом высокую точность поддержания оптимального состава топливовоздушной смеси. Главное предназначение датчика кислорода – снижение токсичности отработанных газов, поэтому он используется только совместно с каталитическим нейтрализатором. Для удовлетворения нормам токсичности Евро-4 на двигателе установлены два датчика и два катализатора. Избыток воздуха в смеси измеряется – путем определения в выхлопных газах содержания остаточного кислорода. Поэтому лямбда-зонд и стоит в выпускном коллекторе перед катализатором.

Схема датчика кислорода

   Электрический сигнал датчика считывается электронным блоком управления системы впрыска топлива, а тот в свою очередь оптимизирует состав смеси путем изменения количества подаваемого в цилиндры топлива. На некоторых современных моделях автомобилей имеется еще один лямбда-зонд. Расположен он на выходе катализатора. Этим достигается большая точность приготовления смеси

   Лямбда-зонд действует по принципу гальванического элемента с твердым электролитом в виде керамики из диоксида циркония. Керамика легирована оксидом иттрия, а поверх нее напылены токопроводящие пористые электроды из платины. Один из электродов «дышит» выхлопными газами, а второй – воздухом из атмосферы. Эффективное измерение остаточного кислорода в отработавших газах лямбда-зонд обеспечивает после разогрева до температуры 300 – 400оС. Только в таких условиях циркониевый электролит приобретает проводимость, а разница в количестве атмосферного кислорода и кислорода в выхлопной трубе ведет к появлению на электродах лямбда-зонда выходного напряжения. Датчик приобретает способность генерировать электрический сигнал только после прогрева до рабочей температуры не менее 360 градусов. Для ускорения прогрева датчики установлены в выпускном коллекторе двигателя, то есть в зоне максимально высокой температуры. Кроме того, каждый датчик имеет нагревательный элемент, управляемый контроллером. Отключение нагрева происходит при появлении на выходе датчика изменяющегося электрического сигнала, что свидетельствует о его прогреве.

Неисправность кислородного датчика

   Специфическим отказом датчика является его «отравление», в результате чего датчик не реагирует или реагирует медленно на изменение концентрации кислорода. Причиной «отравления» могут быть применение этилированного бензина или силиконовых герметиков при ремонте двигателя. В первом случае датчик покрывается порошкообразным налётом зелёного цвета, а во втором – белого. Отказ ДК контроллер парирует переходом из замкнутого на разомкнутый контур управления, при котором сигнал датчик кислорода не используется. Следует иметь ввиду, что контроллер может оценить исправный датчик кислорода как неисправный, если уровень сигнала длительное время (более 5 сек.) не изменяется по причинам, не связанным непосредственно с датчиком. Например: малая величина сигнала может быть обусловлена пониженным давлением топлива, засорением топливных форсунок, подсосом воздуха в выпускной коллектор и т.д. Большая величина сигнала может быть вызвана негерметичностью форсунок, повышенным давлением топлива из-за неисправности регулятора давления и так далее.

   Неисправность датчика может проявляться следующим образом: неустойчивая работа или остановка двигателя на холостом ходу; рывки и/или недостаток мощности и приёмистости двигателя; детонация; повышенная токсичность газов; повышенный расход топлива. Автомобиль следует стараться вести плавно, избегая интенсивных разгонов. Если возникнет необходимость снять датчик кислорода, то не следует делать это на холодном двигателе. Можно сорвать грани датчика. Предварительно прогрейте двигатель, чтобы за счет теплового расширения металла ослабло резьбовое соединение датчика с приёмной трубой. А вообще, это наиболее уязвимый датчик автомобиля с системой впрыска. Его ресурс составляет примерно 50000 км в зависимости от условий эксплуатации и исправности двигателя. Плохое состояние маслосъемных колец, попадание антифриза в цилиндры и выпускные трубопроводы, обогащенная топливно-воздушная смесь, сбои в системе зажигания сильно сокращают срок его службы. Применение этилированного бензина категорически недопустимо – свинец портит платиновые электроды датчика кислорода за несколько бесконтрольных заправок.

Кислородные датчики - видео

Это должен знать каждый владелец авто:

electroshemi.ru

функции, неисправности и их устранение, видео

Далеко не всем современным автолюбителям известно, что лямбда-зонд выполняет одну из основных функций в работе ДВС и выхлопной системы. Без него фактически невозможна нормальная работа мотора. Предлагаем вам узнать, что это такое, зачем нужен, где находится и за что отвечает первый или верхний лямбда-зонд, почему он выходит из строя и как его почистить.

Что такое лямбда-зонд?

Какой лучше, для чего нужен верхний лямбда-зонд и где находится? Для начала стоит разобраться в том, что же это такое. Подробнее о назначении и принципе работе будет сказано ниже.

Назначение

Место монтажа лямбда-зондов

Лямбда-зонд представляет собой кислородный датчик — это такое устройство сопротивления, которое находится в выпускном коллекторе. Благодаря информации, которую отправляет лямбда-зонд, блок управления двигателем может поддерживать определенный состав горючей смеси. Кислородный датчик посылает электрический приборам сигнал, если в камеру поступает слишком богатая или бедная топливно-воздушная смесь. В результате информации, которую отправил лямбда-зонд, бортовой компьютер авто корректируется подачу горючей смеси.

По теоретическим данным, которые часто бывают далеки от практических, для сгорания одного килограмма горючей смеси необходимо около пятнадцати килограмм кислорода. Соответственно, если кислородный датчик работает не корректно, то это напрямую повлияет на то, как будет работать мотор в целом. Кроме того, это может отразиться на расходе топлива.

Что такое универсальный лямбда-зонд и для чего он нужен — понятно, но как же он выглядит? Ведь далеко не каждый автолюбитель понимает, что с виду представляет собой это устройство. Тем более, если вы планируете произвести самостоятельную диагностику устройства,то необходимо разобраться в принципе его работы. С этой информацией вы ознакомитесь ниже.

Устройство и принцип работы

Устройство кислородного датчика

Итак, для чего нужен лямбда-зонд в автомобиле и какой его принцип работы? Перед тем, как ответить на эти вопросы, лучше будет разобраться в устройстве элемента.

Универсальный кислородный датчик состоит из следующих компонентов:

  1. Непосредственно сам корпус. Универсальный лямбда-зонд сопротивления имеет металлический корпус, оснащенный нарезной резьбой для правильного монтажа.
  2. Керамический изолятор.
  3. Уплотнительное кольцо.
  4. Керамический наконечник.
  5. Провода, а также манжеты для их правильного уплотнения.
  6. Для того, чтобы обеспечить вентиляцию устройства, применяется специальный корпус, оснащенный дополнительным отверстием.
  7. Контакт, по которому проходит ток.
  8. Дополнительный щиток, именующийся защитным, поскольку оснащен специальным отверстием, необходимым для выпуска выхлопных газов.
  9. Также универсальный датчик оснащается спиралью, установленной в отдельном резервуаре (автор видео — Витя Крякушкин).

Следует отметить, что отличительной особенностью, которой характеризуется первый или второй лямбда-зонд в автомобиле, является то, что для изготовления используются термостойкая основа. Применение таких материалов необходимо потому, что само устройство всегда работает при высоких температурах. На сегодняшний день в современных автомобилях используются один из четырех типов датчиков, их различие зависит от числа подводящих к устройству проводов — от одно- до четырехпроводного.

Что касается принципа работы, то диагностический датчик концентрации кислорода представляет собой элемент обратной связи. Это устройство позволяет системе правильно рассчитать необходимую дозировку топлива для определенного количества подаваемого воздуха. Оптимальный расчет горючей смеси актуален не только с экологической, но и экономической точки зрения. Поскольку сегодня требования к экологической безопасности при производстве транспортных средств очень велики, то новые машины комплектуются обычно только катализаторами. Также двигатели автомобилей оснащаются двумя датчиками кислорода.

Благодаря использованию катализатора и двух лямбд, экологический вред при функционировании транспортного средства будет минимальный, то есть машина будет наносить минимальный вред окружающей среде. Однако при появлении неисправности в одном из элементов системы автомобилист может столкнуться с серьезными проблемами, которые ударят по его бюджету, поскольку такая поломка будет дорого стоить.

Причины и симптомы поломок

Вышедший из строя лямбда-зонд

Если универсальный диагностический датчик концентрации кислорода выходит из строя, то причины могут быть следующие:

  1. Произошел разрыв проводки в месте подключения.
  2. Произошло замыкание цепи.
  3. В результате использования некачественного топлива, обогащенного различными октаноповышающими присадками, произошло загрязнение устройства.
  4. Если система зажигания работает некорректно, то датчик может сломаться из-за термических перегрузок.
  5. Регулярная эксплуатация транспортного средства по сельской местности или бездорожью может привести к появлению механических повреждений в работе устройства.
  6. Кроме того, способствовать выходу из строя датчика может неудовлетворительное состояние маслосъемных колец.
  7. Если в цилиндры и впускные трубопроводы попадает охлаждающая жидкость, лямбда-зонд также скоро выйдет из строя.
  8. Постоянно обогащенная горючая смесь также приведет к поломке элемента.

Если содержание монооксида углерода повышается до 3-7% вместо положенных 0.1-0.3%, то это может свидетельствовать о выходе из строя зонда. Чтобы избавиться от проблемы, необходимо будет только менять элемент, поскольку запаса хода может быть не достаточно. Если транспортное средство оснащено двумя зондами, то при поломке второго устройства наладить оптимальную работу мотора будет невозможно (автор видео — Александр Сабегатулин).

Что касается основных симптомов, по которым можно будет узнать о поломке регулятора:

  • во время движения на автомобиле начинают проявляться рывки;
  • вполне ощутимый увеличенный расход бензина;
  • катализатор начинает работать некорректно;
  • обороты двигателя начинают плавать;
  • в выхлопных газах начинает увеличиваться концентрация токсинов.

Как почистить?

Диагностика

Перед тем, как отключить и почистить универсальное устройство, следует правильно произвести диагностику, иначе чистка может быть нецелесообразной. Чтобы наиболее эффективным образом произвести проверку остаточного кислорода, датчик должен быть разогрет минимум до трехсот градусов. В этом случает циркониевый электролит сможет быть проводимым, а благодаря разнице кислорода и атмосферного кислорода на устройстве появляется выходное напряжение. Соответственно, напряжение можно будет проверить только при включенном и прогретом моторе. При несоответствии уровня напряжения следует осуществить замену устройства.

Измерение напряжения производится с помощью осциллографа, так как благодаря этому прибору можно получить наиболее точный результат. После замера напряжения необходимо проверить уровень сопротивления нагревателя устройства, при этом штекер необходимо заранее отключить. Уровень сопротивления должен составлять от 2 до 14 Ом, в этом случае все зависит от производителя.

Перед тем, как поставить диагноз, также следует измерить уровень напряжения, которое подводит к нагревателю лямбда-зонда. Напряжение должно быть не меньше 10.5 вольт, при этом зажигание должно быть включено, а разъем датчика — подключен. В том случае, если напряжение будет более низким, следует также проверить места соединения разъемов, проводов, а также само напряжение АКБ.

Очистка

Определенных технологий по ремонту таких устройств нет, поскольку при выходе из строя регулятор нужно менять на новый. Но перед тем, как поменять универсальный датчик, можно попробовать его почистить. Разумеется, отключение разъемов и чистка будут актуальны только в том случае, если под защитным колпачком лямбда-зонда образовались отложения. Как показывается практика, если отключить разъем и произвести чистку датчика, то в большинстве случаев это помогает избавиться от проблемы (автор видео — Авто новости).

Чистка чувствительного элемента производится с применением ортофосфорной кислоты. Если вы поместите этот элемент в кислоту на 10-20 минут, то это позволит уничтожить все отложения, при этом не воздействуя негативным образом на электроды. Наиболее эффективным вариантом будет отсоединение разъема и чистка элемента после демонтажа защитного колпака, перед этим колпачок нужно снять на токарном станке. Для снятия регулятора можно использовать съемник кислородного датчика, а после очистки его также можно будет промыть.

Когда устройство промыто, его необходимо обработать водой и высушить. В том случае, если прочистка не помогла, то датчик придется менять. При замене важно проследить, чтобы разъемы на регуляторах были идентичные. Если же вы не обращаете внимания на показания, которые предоставляет датчик, ведь устройство может работать некорректно, то можно использовать обманку. Обманка предназначена для монтажа вместо катализатора, благодаря которой можно будет избежать появления ошибок.

Обманка может быть выполнена из бронзы, но размер обманки должен соответствовать размерам катализатора. В обманке необходимо высверлить небольшое отверстие — через него выхлопные газы будут попадать в обманку. В результате концентрация вредных элементов в газах будет снижена, однако при этом блок управления не будет тревожить водителя новыми ошибками, принимая соответствующий сигнал за нормальную работу катализатора.

Видео «Правильная очистка лямбда-зонда»

О том, как правильно произвести прочистку датчика в домашних условиях, узнайте из видео ниже (автор видео — Своими руками).

 Загрузка ...

avtozam.com

Как сделать обманку лямбда зонда своими руками

Дата публикации: 16 января 2017.

      СОДЕРЖАНИЕ:

  1. Механическая обманка лямбда зонда («ввертыш»)
  2. Электронная обманка
  3. Перепрошивка контроллера
  4. Какие последствия бывают после установки обманок
  5. В заключении
  6. Видео

Лямбда зонд (также называется кислородным контроллером, датчиком O2, ДК) является неотъемлемой частью выхлопной системы автотранспортных средств, отвечающих экологическим стандартам EURO-4 и выше. Это миниатюрное устройство (обычно устанавливается 2 лямбда зонда и более) контролирует содержание O2 в выхлопных смесях автотранспортного средства, благодаря чему значительно снижается выброс ядовитых отходов в атмосферу.

В случае некорректной работы ДК или если произошло отключение лямбда зонда, функционирование силового агрегата может быть нарушено, из-за чего мотор перейдет в аварийный режим (на панели загорится Check Engine). Чтобы такого не случилось, систему автомобиля можно перехитрить, установив обманку.

Механическая обманка лямбда зонда («ввертыш»)

«Ввертыш» – это втулка, изготовленная из бронзы или теплоустойчивой стали. Внутренняя часть такой «проставки» и ее полости заполняются керамической крошкой со специальным каталитическим покрытием. Благодаря этому отработанные газы дожигаются быстрее, что, в свою очередь, приводит к разным показателям импульсов 1 и 2 ДК.

Важно! Любая обманка устанавливается только на исправный лямбда зонд.

Самодельная обманка лямбда зонда, схема которой представлена ниже, проста в изготовлении. Для этого вам потребуется подготовить:

  • заготовку;
  • отвертку;
  • набор ключей.

Делается обманка на обрабатывающем токарном станке. Если такового нет, то можно обратиться к специалисту, предоставив ему чертеж.

Полученная деталь совместима с большинством выхлопных систем как отечественных, так и зарубежных автомобилей.

Установка обманки лямбда зонда производится следующим образом:

  • Поднимите авто на эстакаду.
  • Отключите минусовую клемму на АКБ.
  • Выкрутите первый (верхний) зонд (если их два, то снимите тот, который расположен между катализатором и выпускным коллектором).
  • Вкрутите лямбда зонд в «проставку».
  • Установите «усовершенствованный» датчик на место.
  • Подключите клемму к аккумулятору.

Полезно! Обычно механическая обманка второго лямбда зонда не выполняется, так как этот ДК защищен катализатором и контролирует только его состояние. Самым чутким является именно первый датчик, который установлен ближе всего к коллектору.

После этого системная ошибка «Check Engine» должна исчезнуть. Если этот способ не сработал, можно воспользоваться более дорогостоящей обманкой.

Электронная обманка

Еще один способ устранения проблем с ДК – это электронная обманка лямбда зонда, схема которой представлена чуть ниже. Так как датчик кислорода передает сигнал контроллеру, то схема-обманка, подключенная к проводке от датчика к разъему, позволит «загрубить» систему. Благодаря этому, в ситуации, если лямбда зонд будет неисправен, силовой агрегат будет продолжать работать корректно.

Полезно! Места установки такой обманки могут отличаться в зависимости от модели АТС. Например, она может быть монтирована в центральный тоннель между сиденьями, в торпеде или моторном отсеке.

Схема-обманка – это однокристальный микропроцессор, который анализирует процессы в катализаторе, получает данные от первого ДК, обрабатывает их, преобразует до показателей второго датчика и выдает на процессор автомобиля соответствующий сигнал.

Чтобы установить обманку этого типа, вам потребуется схема подключения лямбда зонда, которая выглядит следующим образом.

Как видите, бывает разная распиновка лямбда зонда (4 провода, три и два). Цвета проводов могут также отличаться, чаще всего встречаются изделия с 4 пинами (2 черных, белый и синий).

Для изготовления обманного устройства, вам потребуется:

  • паяльник с мелким жалом и припой;
  • канифоль;
  • неполярный конденсатор емкостью 1 мкФ Y5V, +/- 20%;
  • резистор (сопротивление) на 1 мОм, С1-4 имп, 0,25 Вт;
  • нож и изоляционная лента.

Полезно! Перед установкой, схему лучше всего поместить в пластиковый корпус и залить ее «эпоксидкой».

Дальше электронная обманка на лямбда зонд своими руками монтируется следующим образом:

  • Отключите минусовую клемму АКБ.
  • «Препарируйте» провод, который идет от самого ДК к разъему.
  • Разрежьте синий провод и подсоедините его обратно через резистор.
  • Впаяйте неполярный конденсатор меду белым и синим проводами.
  • Заизолируйте соединения.

Ниже представлена схема обманки лямбда зонда своими руками для распиновки на 4 провода.

На заключительном этапе, должно получиться следующее.

Такие манипуляции не стоит выполнять, если у вас нет должного опыта. Сегодня в магазинах представлены готовые схемы-обманки, которые без труда сможет установить даже начинающий водитель.

Перепрошивка контроллера

Некоторые особо искушенные автовладельцы решаются на перепрошивку блока управления, благодаря чему блокируется обработка сигналов второго кислородного датчика. Однако необходимо учитывать, что любые изменения алгоритма работы системы могут привести к необратимым последствиям, так как вернуть заводские настройки будет практически невозможно и затратно. Поэтому выполнять такие манипуляции самостоятельно не рекомендуется. То же самое касается и готовых прошивок, которые продаются в интернете.

Полезно! При перепрошивке лямбда зонды удаляются.

Если вы все-таки хотите произвести перепрошивку системы, то обратитесь к грамотному специалисту, который сможет отключить получение данных ДК с помощью специализированного оборудования.

Также стоит учитывать, что практически любое вмешательство в работу систем, может привести к не самым приятным последствиям.

Какие последствия бывают после установки обманок

Нужно понимать, что любая обманка устанавливается на страх и риск автовладельца. Если монтаж был произведен неправильно, то вы можете столкнуться со следующими проблемами:

  • Из-за того, что бортовой компьютер не может регулировать впрыск жидкости, может произойти нарушение работы мотора.
  • Если схема неправильно спаяна, это может привести к повреждению электропроводки.
  • В процессе установки обманки вы можете повредить датчики кислорода, после чего даже не узнаете об их неисправности (так как у вас уже будет установлена обманка).
  • После таких вмешательств (не только при перепрошивке) может произойти сбой в бортовом компьютере.

Любая неточность приведет к плачевным последствиям, поэтому лучше установить более безопасный готовый эмулятор. В отличие от обманки, он не «обманывает» блок управления, а лишь обеспечивает его корректную работу, преобразуя сигнал ДК. Внутри эмулятора также установлен микропроцессор (как и в самодельной электронной обманке), который способен оценивать выхлопные газы и анализировать ситуацию.

В заключении

Многие автовладельцы устанавливают на свои машины самодельные обманки, чтобы сэкономить на покупке новых кислородных датчиков. Однако в такой погоне за выгодой, вы вполне можете столкнуться с большими денежными затратами, если кустарное устройство повлияет на работу «жизненно-важных» систем. Поэтому устанавливать обманки рекомендуется, только если вы смыслите в работах такого плана.

avto-moto-shtuchki.ru

Лямда зонд - Кислородный датчик

Для того, чтобы сделать более понятной тему кислородного датчика и упростить проверку в авторемонтной мастерской, мы хотели бы в данном статье рассмотреть устройство, принцип работы и различные возмож­ности проверки кислородного датчика.

Как правило, работоспособность кислородного датчика проверяется при обычной проверке выхлопных газов двигателя. Так как кислородный датчик подвержен определённому износу, то его нужно регулярно (примерно после каждых 30.000 км пробега) проверять на надёжность работы, например, в рамках технического осмотра.

Для чего нужен кислородный датчик ?

Вследствие ужесточения законов об ограничении вредных автомобильных выхлопов технологии последующей обработки выхлопных газов были значительно улучшены. Для обеспечения оптимальной работы катализатора выхлопных газов требуется оптимальное сгорание топлива. Это достигается за счёт состава рабочей смеси из расчёта 14,7 кг воздуха на 1 кг топлива (стехиометрическая смесь). Эта оптимальная смесь обозначается греческой буквой λ (лямбда). Показатель лямбда отражает соотношение между теоретической потребностью в воздухе и фактическим его поступлением.

Устройство и принцип действия кислородного датчика

Принцип действия кислородного датчика основан на сравнительном измерении кислорода. Это означает, что остаточное содержание кислорода в выхлопных газах (около 0,3% — 3%) сравнивается с содержанием кислорода (около 20,8%) в окружающем воздухе. Если содержание кислорода в выхлопных газах составляет 3% (обеднённая смесь), то в результате возникшей разницы с содержанием кислорода в окружающем воздухе возникает сигнал напряжением 0,1 вольт. Если содержание кислорода в выхлопных газах меньше 3% (богатая смесь), то напряжение сигнала датчика в результате увеличения разницы с содержанием кислорода в окружающем воздухе возрастает до 0,9 вольт. Измерение остаточного содержания кислорода производится при помощи различных кислородных датчиков.

Измерение заданного напряжения датчика Особенность (датчик изменения температуре напряжений)

Зонд этого типа состоит из продолговатого полого внутри стержня, изготовленного из керамики на основе окиси циркония. этого твёрдого электролита заключается в том, что при около 300 °С он становится проницаемым для ионов кислорода. Обе стенки этого керамического элемента покрыты тонким пористым слоем платины, который служит электродом. С внешней стороны элемент обтекается выхлопными газами, внутренняя часть заполнена воздухом для сравнения. Вследствие различной концентрации кислорода по обеим сторонам происходит обусловленное особенностями керамического элемента перемещение ионов кислорода, которое вызывает образование электрического потенциала. Это напряжение используется как сигнал для управляющего устройства, которое изменяет состав рабочей смеси на основании остаточного содержания кислорода в выхлопных газах. Этот процесс — измерение остаточного содержания кислорода в выхлопных газах и обогащение или обеднение рабочей смеси — повторяется многократно в течение одной секунды, для получения соответствующей стехиометрической смеси.

 Измерение с использованием сопротивления датчика (датчик изменения сопротивлений)

Этот тип датчиков изготовлен из керамики на основе окиси титана – по многослойной технологии. Окись титана имеет свойство изменять своё сопротивление пропорционально содержанию кислорода в выхлопных газах. При высоком содержании кислорода (обеднённая смесь λ > 1) проводимость становится меньше, при малом содержании кислорода (богатая смесь λ < 1)  проводимость лучше. Для работы этого датчика не нужно иметь эталонный воздух для сравнения, однако через систему резисторов к нему должно подводиться от управляющего устройства напряжение 5 вольт. Вследствие падения напряжения на резисторах образуется сигнал, необходимый для работы управляющего устройства.

Оба измерительных элемента размещены в одинаковых корпусах. Защитная трубка предохраняет находящиеся в зоне действия выхлопных газов датчики от повреждений.

Подогрев кислородных датчиков: первые кислородные датчики не имели подогрева, поэтому их нужно было устанавливать рядом с двигателем, чтобы быстрее довести их до рабочей температуры. Сегодня кислородные датчики оснащены автономным подогревом. Поэтому их можно устанавливать на расстоянии от двигателя. Преимущество: они больше не подвергаются высоким тепловым нагрузкам. Благодаря автономному подогреву они быстро разогреваются до рабочей температуры, поэтому отрезок времени, в течение которого кислородный датчик не выполняет свои функции, очень мал. Также устраняется опасность переохлаждения на холостом ходу, когда температура выхлопных газов низкая. Кислородные датчики с подогревом имеют очень малое время срабатывания, что положительно влияет на скорость управления.

Широкополосные кислородные датчики

Кислородный датчик показывает обеднённый или богатый характер рабочей смеси в области λ = 1. С помощью широкополосного датчика мы получаем возможность получать точные значения λ как в области обеднённой (λ > 1), так и в области богатой (λ < 1) смеси. Датчик вырабатывает точный электрический сигнал, поэтому можно устанавливать любую паспортную характеристику, например, для дизельных двигателей, ДВС, работающих на обеднённой смеси, газовых двигателях и двигателях на газовых тепловых элементах. Широкополосный датчик работает, как и обычный датчик, по принципу сравнения с наружным воздухом. Дополнительно он имеет электрохимическую ячейку: нагнетательную ячейку. Через небольшое отверстие в ней выхлопной газ попадает в измерительную камеру — диффузионную щель. Для того, чтобы точно определить X здесь происходит сравнение содержания кислорода в наружном воздухе, служащем эталоном. Для получения управляющего сигнала к нагнетательной ячейке приложен электрический потенциал. Благодаря этому напряжению кислород из выхлопных газов подаётся в диффузионную щель или отводится из неё. Управляющее устройство регулирует величину напряжения таким образом, чтобы в диффузионной щели состав газов оставался постоянно равным λ =1  Если смесь обеднённая, то через нагнетательную ячейку кислород отводится наружу. Образуется положительный ток. Если смесь богатая, кислород из эталонного воздуха подаётся внутрь. Образуется отрицательный ток. При λ = 1 в диффузионную щель кислород не подаётся, ток равен нулю. Управляющий прибор оценивает этот ток, задаёт λ и, следовательно, состав рабочей смеси.

Использование нескольких кислородных датчиков

В V-образных и оппозитных двигателях с двухпоточным отводом выхлопных выхлопных газов используется обычно два датчика. Для каждого ряда цилиндров имеется свой собственный контур регулирования, который может составом смеси. Но и в двигателях по рядной схеме устанавливаются кислородные датчики для отдельных групп цилиндров (например, для цилиндров (1-3 и 4-6). В новейших двенадцатицилиндровых двигателях применяется до восьми кислородных датчиков. После введения процедуры EOBD должна проверяться работоспособность катализатора. Для этого дополнительные кислородные датчики устанавливаются после катализатора. С их помощью определяется способность катализатора накапливать кислород. Задача датчика, установленного после катализатора такая же, как и датчика, установленного перед катализатором. В управляющем устройстве сравниваются амплитуды кислородных датчиков. Вследствие способности катализатора накапливать кислород, амплитуды напряжения датчика, расположенного после катализатора, очень малы. Если накопительная способность катализатора падает, то амплитуды напряжения датчика после катализатора возрастают вследствие повышенного содержания кислорода. Высота амплитуд, которые возникают в датчике после катализатора, зависит от конкретной накопительной способности катализатора в данный момент, и изменяются с изменением числа оборотов и нагрузки. Поэтому при сравнении амплитуд учитываются также нагрузка и число оборотов. Если, несмотря на это, амплитуды напряжений обоих датчиков примерно одинаковы, накопительная способность катализатора исчерпана, например, в результате старения.

Диагностика и контроль с помощью кислородного датчика

В автомобилях, оснащённых собственной системой диагностики, возникающие в цепи регулирования неисправности распознаются самостоятельно и регистрируются в банке неисправностей. Сигнал неисправности показывается, как правило, миганием контрольной лампочки состояния двигателя. Для определения причины неисправности достаточно открыть с помощью прибора для диагностики банк регистрации неисправностей. Более старые системы не в состоянии определить, возникла ли данная неисправность по причине неисправной детали или, например, из-за дефекта кабеля. В этом случае автомеханик должен применить и другие способы проверки. В ходе EOBD в процесс проверки кислородных датчиков были включены: крепление проводников, эксплуатационное состояние, проверка на короткое замыкание на массу управляющего устройства, короткое замыкание на плюс, разрыв кабеля и старение кислородного датчика. Для определения сигналов кислородных датчиков в управляющем устройстве используется частота сигнала. Помимо этого, устройство рассчитывает следующие данные: максимальное и минимальное значения распознаваемого напряжения, время между положительным и отрицательным срезом, диапазон регулирования датчика по величине для обеднённой и богатой смеси, порог регулирования, напряжение датчика и длительность периода.

Как определяется максимальное и минимальное напряжение?

При запуске двигателя все старые значения минимум и максимум, сохранённые в управляющем устройстве, стираются. Значения минимум и максимум, задаваемые нагрузкой и числом оборотов, устанавливаются во время езды.

Расчёт времени между положительным и отрицательным срезом.

Если порог регулирования в результате скачка напряжения превысил верхний предел, то включается замер времени между положительным и отрицательным срезами. Если порог регулирования в результате скачка напряжения упал ниже нижнего предела, то замер времени прекращается. Отрезок времени между началом и окончанием замера времени измеряется счётчиком.

Распознавание старого или засорённого кислородного датчика.

Если датчик сильно состарился или, например, засорился топливными добавками, то это оказывает влияние на сигнал датчика. Сигнал датчика сравнивается с сохранённым сигналом. Медленно реагирующий датчик распознаётся, например, по периоду длительности сигнала, и регистрируется как неисправность.

Проверка кислородного датчика с помощью пользования осциллоскопа, тестера,тестера кислородного

Обычно перед каждой проверкой должен проводиться визуальный контроль, чтобы быть уверенным в том, что кабель и разъём исправны. Прибор для контроля выхлопных газов не должен показывать утечек. Для измерительным прибором рекомендуется использовать удлинитель. Нужно следить за тем, чтобы регулирование ? в отдельных эксплуатационных режимах было выключено, например, во время холодного запуска, до датчика, достижения рабочей температуры и при полной нагрузке.

Прибор проверки выхлопных газов

Одним из самых быстрых и простых способов проверки является измерение с помощью четырёхконтурного прибора контроля выхлопных газов. Проверка проводится в обычном для такого контроля режиме. При нагретом двигателе снимают шланг, как бы добавляя излишний мешающий воздух. Вследствие изменившегося состава выхлопных газов изменяется рассчитанный и показанный тестером показатель λ. При определённом значении λ система подготовки рабочей смеси должна распознать его и в течение определённого времени (как и при AU, равном 60 секундам) произвести регулировку. Если мешающую излишнюю величину убрать, то значение λ должно вернуться в первоначальное пол­ожение. Обычно при этом должны учитываться размеры мешающей величины и значения λ, данные производителем. При этом способе проверки определяется общая работоспособность регулятора λ. Проведение проверки электрическими методами невозможно. При этом способе существует опасность того, что современные системы управления двигателем, несмотря на та неработающий регулятор λ, благодаря точному распознаванию нагрузки , будут готовить рабочую смесь так, чтобы λ = 1.

 

 

Проверка с помощью тестера

Для проверки нужно использовать только высокоомный тестер с цифровой или аналоговой шкалой. Тестер с небольшим внутренним сопротивлением (обычно аналогового типа)будет сильно перегружать сигнал кислородного датчика и искажать его. Вследствие быстрого измен­ения напряжения лучше всего сигнал изучать на аналоговом приборе. Тестер включается параллельно сигнальному проводнику (чёрный проводник, смотри электрическую схему) кислородного датчика. Шкалу тестера установить на 1 или 2 вольта. После запуска двигателя на шкале появляется значение между 0,4-0,6 вольт (рекомендуемое напряжение). После достижения эксплуатационной температуры двигателя и кислородного датчика прежде устойчивое напряжение начинает изменяться между 0,1 и 0,9 вольт. Для достижения правильного результата измерения двигатель должен работать на скорости 2.500 оборотов. Благодаря этому обеспечивается нагревание датчиков, работающих без системы подогрева, до эксплуатационной температуры. Иначе, вследствие недостаточной температуры выхлопных газов в режиме холостого хода, существует опасность того, что датчик, работающий без системы подогрева, охладится и не будет генерировать никаких сигналов.

Проверка с помощью осциллоскопа

С помощью осциллоскопа нагляднее всего представить сигнал кислородного датчика. Основным условием, как и при проверке с помощью тестера, является разогрев двигателя, а также датчика до эксплуатационной температуры. Осциллоскоп подключается к сигнальному проводнику. Диапазон измерений зависит о типа осциллоскопа. Если прибор оснащён системой автоматического распознавания сигнала, то она должна быть включена. При ручной системе регулирования устанавливаем шкалу напряжений на 1-5 вольт и время на 1-2 секунды.

 

Вращение двигателя должно составлять примерно 2.500 оборотов. Переменное напряжение изображается в виде синусоиды. Этот сигнал характеризуется следующими параметрами: высота амплитуды (максимальное и минимальное напряжение 0,1 -0,9 вольт), время срабатывания и длительность периода (частота примерно 0,5-4 Гц, то есть до четырёх раз в секунду)

Проверка тестером кислородного датчика

Различные производители предлагают для проверки кислородных датчиков специальные тестеры. Этот прибор показывает работоспособность кислородного датчика при помощи светодиодов. Подключение производится, как и при использовании тестера и осциллоскопа, к сигнальному проводнику кислородного датчика. Как только датчик достигнет рабочей температуры и начнёт работать, светодиоды начнут мигать — в зависимости от состава рабочей смеси и прохождения напряжения (0,1-0,9 вольт) датчика. Все данные по установке данных прибора приводятся для измерения напряжения кислородного датчика из оксида циркония (принцип скачка напряжения). Для датчиков из оксида титана устанавливается диапазон 0-10 вольт, измеряемые напряжения колеблются в пределах 0,1-5 вольт. Следует руководствоваться данными производителя. Наряду с электронным контролем выводы о работоспособности датчика позволяет сделать также состояние защитной трубки собственно элемента датчика:

Защитная трубка покрыта толстым слоем копоти: двигатель работает на слишком богатой смеси. Датчик нужно заменить и устранить причины, ведущие к образованию богатой смеси, чтобы предотвратить новое загрязнение зонда копотью.

Блестящие отложения на защитной трубке: использования топлива с большим содержанием свинца. Свинец разрушает элемент датчика. Датчик нужно заменить, также нужно проверить катализатор. Заменить топливо, содержащее свинец, на топливо без свинца.

Светлые (белые или серые) отложения на защитной трубке: в двигателе сгорает масло, дополнительная присадка к топливу. Датчик нужно заменить, а также устранить причины сгорания масла.

Неправильная установка: в результате неправильной установки можно повредить кислородный датчик так, что он больше не будет обеспечивать надёжную работу. При установке нужно пользоваться только специальным монтажным инструментом, обращать внимание на величину крутящего момента.

Проверка датчика

 

Проверяется внутреннее сопротивление и подача напряжения на подогрева нагревательный элемент. Для этого отсоединить разъём кислородного кислородного датчика. Омметром со стороны датчика замерить сопротивление нагревательного элемента на обоих проводниках. Оно должно быть в пределах между 2 и 14 Ом. Замерить вольтметром подачу напряжения со стороны автомобиля. Напряжение должно составлять > 10,5 вольт (напряжение сети).

 

Существует целый ряд типичных дефектов кислородных датчиков, которые возникают очень часто. Предлагаемый перечень показывает, какие причины могут вызвать неисправность:

Если кислородный датчик подлежит замене, то при установке нового датчика следует соблюдать следующие требования:

  • используйте для снятия и установки только специальный инструмент
  • проверьте сохранность резьбы на устройстве для отвода выхлопных газов
  • используйте только ту смазку, которая специально предназначена для кислородных датчиков
  • избегайте попадания на измерительные элементы датчика влаги, масла, смазки, моющих и противокоррозийных средств
  • соблюдайте величину крутящего момента при затягивании резьбы М18х1,5, равную 40-52 ньютонометров.
  • при прокладке соединительных проводников следите за тем, чтобы они не соприкасались с горячими, движущимися предметами и острыми кромками
  • прокладывайте соединительные проводники нового датчика по возмо­жности так, как это было сделано на старом кислородном датчике
  • сохраните запас при монтаже соединительных проводников, чтобы они не оборвались при колебаниях и вибрации устройства для отвода выхлопных газов
  • предупредите клиента о том, чтобы он не использовал металлосодержащие присадки и топливо, содержащее свинец
  • не используйте кислородные датчики, упавшие на пол, или имеющие механические повреждения

www.avtodiagnostika.info

Motorhelp.ru диагностика и ремонт двигателя

Сигнал датчика кислорода (лямбда-зонд, далее ДК, ЛЗ) используется системой управления двигателя для поддержания оптимального (стехиометрического, около 14,7:1) соотношения топливной смеси воздух/бензин в камерах сгорания, при котором топливо максимально полно и эффективно сгорает.

λ=1 — стехиометрическая (теоретически идеальная) смесь;λ>1 — бедная смесь;λ

Чувствительный элемент датчика кислорода находится в потоке отработавших газов. Принцип измерения остаточного содержания кислорода в выхлопных газах основан на свойствах оксида циркония — ZrO2 и начинает работать только при температурах более 350 °C. Сигнал циркониевого ДК (при замкнутой петле обратной связи) представляет собой переменное напряжение, колеблющееся между 0.1 и 0.9 вольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии.Датчик реагирует на разницу между уровнем кислорода в выхлопных газах и в атмосфере, вырабатывая на выходе соответствующую разность потенциалов. Выходное напряжение зависит от концентрации кислорода в отработавших газах. Когда ЛЗ находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе равно опорному (или близко к нему). Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ "видит" изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.Напряжение с датчика ниже опорного 450 мв. (0,1 В) указывает на бедную смесь, выше опорного (0,9 В) – на богатую смесь. Контроллер принимает сигнал с ЛЗ, сравнивает его со значением, прошитым в его памяти и, если сигнал отличается от оптимального для текущего режима, корректирует длительность впрыска топлива в ту или иную сторону. Таким образом осуществляется обратная связь и точная подстройка режимов работы двигателя под текущую ситуацию с достижением экономии топлива, получения максимальной отдачи от двигателя и минимизацией вредных выбросов.

Признаки неисправности датчика кислорода:1. Неустойчивая работа двигателя на малых оборотах.2. Повышенный расход топлива. 3. Ухудшение динамических характеристик автомобиля. 4. На современных автомобилях загорается индикатор «СНЕСК ЕNGINЕ»

Причины преждевременного выхода из строя датчика кислорода:1. Применение этилированного бензина или низкокачественного топлива. 2. Использование при ремонте двигателя силиконовых герметиков. 3. Выход из строя вследствии неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д. 4. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств. 5. Обрыв, плохой контакт или замыкание на массу электропроводки цепи датчика. 6. Внешнее загрязнение датчика, например антикором, битумом. Поскольку атмосферный воздух должен поступать к внутренней полости датчика, все что загрязняет наружнюю поверхность или блокирует поступление воздуха вызывает нарушение в работе датчика.Ресурс датчиков кислорода составляет до 100 тыс. км пробега автомобиля при соблюдении условий эксплуатации. Далее чувствительный элемент датчика стареет, на изменение состава топлива начинает медленней откликаться, что приводит к повышенному расходу топлива.

Проверка датчика кислорода.Для полноценной проверки потребуется осциллограф и сканер. В случае выхода из строя датчика кислорода, контрольная лампа Check Engine сигнализирует о неисправности. Двигатель должен быть прогрет до рабочей температуры, а подогрев датчика нормально функционировать. Перед проведением теста, надо удостоверится, что прошивка контроллера двигателя поддерживает регулировку состава смеси по датчику кислорода, то есть он не отключен программно посредством чип-тюнинга. 1. При обогащении горючей смеси напряжение на сигнальном проводе должно быть не менее 0,7 В;2. При обеднении горючей смеси напряжение на сигнальном выводе должно быть не более 0,25 В;3. Время срабатывания при переключении Lean-Rich - не более 350 мс.Если сигнал на выходе датчика не меняется или время реакции превышает заданную величину, то его надо менять. При отказе датчика система переходит в аварийный режим без коррекции содержания воздуха в смеси.

Одной из разновидностью лямбда-зонда является широкополосный датчик кислорода. Основное его отличие заключается в возможности отслеживать точное соотношение топливовоздушной смеси в широком диапазоне от 1:12 до 1:19. Проверка широкополосного датчика должна проводиться совместно со сканером.

Купить датчик кислорода в Воронеже. скачать dle 10.6фильмы бесплатно

www.motorhelp.ru