Модификация двигателя
Модификации двигателей -
Изменение (снижение) мощности двигателя
Перечень двигателей по маркам и моделям (скачать).
актуализация сентябрь 2014г.
Модель АТС |
Двигатель, мощность |
Аналог |
Двигатель, мощность |
|
|
|
|
|
|
|
|
|
|
|
|
Infiniti FX35, M35 |
VQ35, 280 л.с., 307 л.с. |
Nissan Murano 350VX, Teana |
VQ35, 231 л.с. |
|
|
|
|
Infiniti FX45, M45 |
VK45, 330-339 л.с. |
Nissan Cima (F50) |
VK45, 280 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Subaru Impreza, Forester |
EJ20, 240-280 л.с. |
Subaru Impreza |
EJ20, 135-155 л.с. |
|
|
|
|
|
EJ205, 260 л.с. |
subaru forester |
EJ20, 177 л.с. |
|
|
|
|
Legacy |
EJ25, 175 л.с. |
Legacy |
EJ25, 160-167 л.с. |
|
|
|
|
Subaru Outback |
EZ30, 250 л.с. |
Subaru Legacy B4 |
EZ30, 220 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Toyota |
1JZ, 280 л.с. |
Toyota |
1JZ, 180-200 л.с. |
|
|
|
|
Toyota Land Cruiser 100 (2000 г.в.) |
1HD, 205 л.с. |
Toyota Land Cruiser 100 2002 г.в.) |
1HD, 195 л.с. |
|
|
|
|
Lexus GX470 2007г.в. |
2UZ, 280 л.с. |
Toyota Land Cruiser 100 2002 г.в.), Lexus GX470 |
2UZ, 238 л.с. |
|
|
|
|
Toyota Harrier 2003 г.в. |
1MZ, 220 л.с. |
Toyota Camry (MCV30) |
1MZ, 186 л.с. |
|
|
|
|
Toyota Supra |
2JZ-GTE, 280 л.с |
Toyota Mark II |
2JZ-GE, 220 л.с |
|
|
|
|
|
|
|
|
|
|
|
|
Mitsubishi Pajero |
6G72T, 280 л.с. |
Mitsubishi Debonair |
6G72, 170 л.с. |
|
|
|
|
Chariot, Grandis |
6G72, 225-240 л.с. |
Debonair/Pajero |
6G72, 170-185 л.с. |
|
|
|
|
Lancer, |
4G93, 150 л.с. |
Mitsubishi Lancer IX |
4G93, 114 л.с. |
|
|
|
|
Lancer, Mirage |
4G93T, 215 л.с. |
Mitsubishi Galant |
4G93, 140 л.с. |
|
|
|
|
Outlander |
4G63 2 литра, 202 л.с. |
Airtrek |
4G63, 2 л, 126 л.с. |
|
|
|
|
Airtrek |
4G63 2 литра, 240 л.с. |
Airtrek |
4G63, 2 л, 126 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Nissan |
SR20 turbo, 280 л.с. |
Nissan Serena |
SR20DE 145 л.с. |
|
|
|
|
Nissan Skyline |
RB26DETT, 280 л.с. |
Nissan Skyline |
RB25DE, 200 л.с. |
|
|
|
|
|
VQ25T, 280 л.с. |
Nissan Cefiro |
VQ25DE, 190 л.с. |
|
|
|
|
Nissan Pathfinder |
VQ40DE 270 л.с |
Nissan Elgrand (Cefiro) |
VQ35DE 231-240 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
BMW 735i (E38) |
346KB, 235 л.с. |
BMW 735i (кузов E23) |
346KB, 192 л.с. |
|
|
|
|
BMW 530i (E60,E61) |
N52B30, 260 л.с. |
BMW 325i (кузов E90) |
N52B30, 218 л.с. |
|
|
|
|
BMW 525i (E60,E61) |
N52B25, 218 л.с. |
BMW 523i (кузов E60/61) |
N52B25, 174 л.с. |
|
|
|
|
BMW X3 (E83) |
3,0D 286 л.с. |
BMW X3 (E83) |
3,0D 204 л.с. |
|
|
|
|
BMW X3 (E83) |
3,0i (бензин) 286 л.с. |
BMW X3 (E83) |
3,0D 234 л.с. |
|
|
|
|
BMW X6M |
4.4 N62B44 (бензин) 555 л.с. |
BMW X6 |
4,4 407 л.с. |
|
|
|
|
|
4.4 (бензин) 555 л.с. |
BMW 745i (E65) |
4,4 333 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Chevrolet Suburban, Tahoe, Hummer h3 |
6 литров, 340 л.с. |
Chevrolet Suburban |
6 литров, 304 л.с. |
|
|
|
|
|
5,3 324 л.с |
|
5,3 273-280 л.с
|
|
|
|
|
Volvo XC90 |
B6294T, 272 л.с. |
Volvo S80 |
B6294S, 200 л.с. |
|
|
|
|
Volvo S60 |
B5254T4, 299 Л.С. |
Volvo S60 |
B5254T2, 210 Л.С. |
|
|
|
|
|
|
|
|
|
|
|
|
MAZDA MPS |
L3, 260 л.с. |
Mazda MPV |
L3, 163 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
Lincoln Aviator |
4600 cm3, 303 л.с. |
Ford Crown Victoria |
4600 cm3, 239 л.с. |
|
|
|
|
Ford Mustang |
4601 cm3, 303 л.с. |
|
4601 cm3, 239 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
SAAB 9000 |
B234T, 220 Л.С. |
SAAB 9000 |
B234I, 147 Л.С. |
|
|
|
|
|
|
|
|
|
|
|
|
Ford Mustang |
4,6 л390 л.с. |
Ford Mustang 1998 г.в. |
4,6 л215 л.с. |
|
|
|
|
|
3,8 л190 л.с. |
Ford Mustang 1998 г.в. |
3,8 л145 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
AUDI S4 |
AGB, 265 л.с. |
AUDI A4 |
AJK, 230 л.с. |
|
|
|
|
|
|
AUDI A6, Allroad (C5) |
ARE, BES, 250 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
HONDA Accord |
K24A, 200 л.с. |
HONDA Accord |
K24A, 160-190 л.с. |
|
|
|
|
|
|
|
|
|
|
|
|
Porsche Cayenne1st generation |
4.5 L 521 hp (389 kW) V8 (Turbo S) |
Porsche Cayenne1st generation |
4.5 L 340 hp (254 kW) V8 (S) |
|
|
|
|
|
|
|
4.5 L 450 hp (336 kW) V8 (Turbo) |
|
|
|
|
|
|
|
|
|
|
|
|
Chrysler 300М/300C |
3.5 L253 л.с (190 кВт) |
Chrysler Sebring |
3.5 L 214 hp (160 kW) |
|
|
|
|
|
|
|
3.5 L 234 hp (174 kW) |
|
|
|
|
|
2,7 л (203 л.с.) |
Sebring II |
2.7 л (188 л.с.) |
|
|
|
|
|
|
|
|
|
|
|
|
Mini Cooper SJCW GP-Kit |
1,598 cc (1.598 L; 97.5 cu in) |
Mini Cooper S |
1,598 cc (1.598 L; 97.5cu in) I4 turbo, 175 PS (129 kW) |
||||
|
I4 turbo, 211 PS (155 kW) |
One Convertible |
1,598 cc (1.598 L; 97.5 cu in) I4, 95 PS (70 kW) |
|
|||
|
|
|
|
|
|
|
Изменение (снижение) мощности двигателя
www.uslugiavto.ru
Топ-10 моторов всех времен — журнал За рулем
В нашем обзоре — десять знаменитых двигателей, десять ступеней к совершенству. Почти каждый из них повлиял не только на развитие техники, но и на социальную среду.
10-е место: родоначальник даунсайзинга
01 TopEngines zr04–11
Приличные характеристики двигателя при скромном рабочем объеме уже не особенно удивляют. Мы начинаем привыкать к понятию «даунсайзинг», понимая, что эра двигателей большого литража постепенно уходит. А началось это, на мой взгляд, с дебюта в середине 1990-х годов наддувного мотора в 1,8 л, разработанного «Ауди». При умеренном рабочем объеме он должен был удовлетворить владельцев автомобилей самых различных классов. Поэтому даже в самой простой версии двигатель выдавал 148 сил, чего вполне хватало, чтобы превратить в маленькую зажигалку хэтчбек «СЕАТ-Ибица» и не заставлять гореть со стыда владельца престижного «Ауди-А6».
Собственно, литраж ничего не говорил о способностях агрегата. Это был небольшой (в том числе по габаритам — ставь его хоть вдоль, хоть поперек) шедевр своего времени: пять клапанов на цилиндр, изменяемые фазы на впуске, кованые алюминиевые поршни и, конечно, турбонаддув.
С его помощью мощность мотора поднимали все выше и выше, дойдя в спецверсии «Ауди-ТТ кваттро Спорт» до 236 сил. Данный предел был обусловлен лишь спецификой дорожного автомобиля. В гоночной формуле «Палмер Ауди», где ресурс не так важен, с новым блоком управления и агрегатом наддува с 1800-кубового двигателя сняли 365 сил. В Формуле-2, превращая серийный двигатель в чисто гоночный агрегат, достигли и вовсе фантастических 480 сил. Поэтому переход Формулы-1 на «шестерки» объемом 1,6 л в свете достижений мотора «Ауди» не выглядит абсурдным.
9-е место: верность ротору
02 TopEngines zr04–11
Исключительный случай — когда автомобильная компания прочно ассоциируется с одним типом двигателя. Конечно, «Мазда» не сама изобрела роторно-поршневой двигатель Ванкеля. Зато она в труднейшие времена энергетического кризиса 1970-х пересилила обстоятельства: не бросила, как другие, эту весьма сложную в доводке конструкцию, а продолжила совершенствовать «Ванкель» в узком, зато перспективном для имиджа сегменте форсированных спортивных машин. Хотя первоначально планировалось, что все модели «Мазды», вплоть до грузовиков и автобусов, перейдут со временем на двигатель Ванкеля.
Когда в 1975 году двухсекционный мотор с индексом 13В появился на серийных машинах, никто не мог предположить, что он станет самым массовым РПД в мире и продержится в производстве более 30 лет. Более того, даже современный маздовский РПД «Ренезис» — лишь результат эволюции 13B. Именно этот мотор стал проводником в серию большинства впервые примененных на РПД новинок, которые и обеспечили ему столь долгую жизнь, — настроенного впуска с изменяемой геометрией, электронного впрыска топлива, турбонаддува. В итоге мотор, который начал жизнь под капотом утилитарного пикапа с мощности чуть больше 100 сил, превратился в короля автогонок, выдававшего даже в серийном варианте минимум 280. Повышенный расход топлива и большой угар масла — неизбежные проблемы любого РПД — были оправданной расплатой за скромный вес, низкий центр тяжести и способность крутить свыше 10 тысяч оборотов в минуту. Маздовские купе RX-7 доминировали в американских кузовных чемпионатах на протяжении 1980-х годов во многом благодаря роторно-поршневому мотору 13B.
8-е место: «восьмерка» планеты Земля
03 TopEngines zr04–11
Материалы по теме
Любой, кто хоть немного интересуется американским автомобилестроением, наверняка слышал о «восьмерке» «Шевроле» семейства Small Block. Неудивительно, ведь ее в почти неизменном виде можно было встретить на различных моделях концерна «Дженерал моторс» с 1955 по 2004 год. Долгая карьера сделала этот нижневальный двигатель самым распространенным V8 на Земле. Small Block первого поколения (не путать с аналогичными моторами второй и третьей генераций серий LT и LS!) выпускается и сейчас, правда, только на рынок запчастей. Общее число изготовленных моторов превысило 90 миллионов.
Не стоит соотносить слово Small с небольшим литражом двигателя. Рабочий объем «восьмерки» никогда не опускался ниже 4,3 л, а в лучшие времена достигал 6,6 л. Свое имя мотор получил за небольшую высоту блока, обусловленную соотношением диаметра цилиндра и хода поршня: на первом образце 95,2х76,2 мм. Такая короткоходность обусловлена техзаданием: новую «восьмерку» следовало вписать под низкий капот родстера «Шевроле-Корвет», который до этого едва не лишился спроса из-за слабой для него рядной «шестерки». Не появись этот мощный V8, подхлестнувший интерес к первому массовому американскому спорткару, «Корвет» вряд ли пережил бы середину 1950-х.
Вскоре удачного шевролетовского «малыша» назначили базовой «восьмеркой» для всего GM, хотя двигатели V8 собственной конструкции были у каждого отделения концерна. Простой, надежный и неприхотливый мотор пережил все уровни признания: участвовал в гонках, трудился в качестве движущей силы катеров и изредка монтировался даже на легкие самолеты. И хотя в последние годы полноценной жизни двигателя его предлагали только для пикапов и фургонов, все автомобильные фанаты знали, что именно этот заслуженный V8 когда-то был рожден для спасения «Шевроле-Корвет».
7-е место: единственный в своем роде
04 TopEngines zr04–11
Какой же рейтинг моторов обойдется без БМВ! Марка попала бы в наш перечень уже за исключительную приверженность рядной «шестерке» — когда-то такая компоновка легковых двигателей была широко распространена. Помимо баварцев, на легковых машинах (вседорожники и пикапы не в счет) ее применяют сейчас только «Вольво» и австралийский филиал «Форда» (остальные сдались в пользу менее уравновешенного, зато гораздо более компактного V6). Но БМВ стоит особняком: только эта компания смогла выжать из расположенных в ряд шести цилиндров все преимущества — от потрясающе плавной работы до способности легко раскручиваться до самых высоких оборотов.
С каждым поколением, начиная с «шестерки» БМВ образца 1968 года, которую получили, добавив пару цилиндров к уже выпускавшейся «четверке», эти двигатели становились легче, мощнее, совершеннее. Многоцилиндровые схемы для баварцев были практически под запретом — первый V12 появился лишь в 1986 году, а V8 вообще только в 1992-м. Создание этих двигателей легче оправдать маркетингом, нежели истинной любовью инженеров — они всю душу и умение вкладывали именно в шесть расположенных в ряд цилиндров.
Апофеоз атмосферной «шестерки» БМВ — мотор S54 образца 2000 года, предназначенный для М3. Это гимн совершенству гоночного по сути двигателя, водруженного на гражданский автомобиль. Тяжелого на подъем вначале, но расцветающего при малейшем намеке на спортивный стиль езды. С 3,2 л рабочего объема сняли 343 силы (с литра — 107) — для атмосферного мотора даже сейчас великолепный результат.
Его было бы трудно достичь без применения всех новейших на тот момент технологий — индивидуальных дросселей на каждый цилиндр с электронным управлением, системы регулирования фаз, причем как впуска, так и выпуска. Чтобы мотор выдерживал любые нагрузки, его даже перевели на чугунный блок цилиндров, что для БМВ редкость.
К сожалению, следующее поколение M3 отказалось от семейных ценностей в пользу V8. Это тоже очень неплохой мотор — но радость от укрощения разъяренного зверя ушла вместе с прежней «шестеркой». Подобные ей двигатели в нынешних условиях считаются, как бы точнее сказать, неполиткорректными.
6-е место: легенда гонок
05 TopEngines zr04–11
Последние образцы настоящего V8 «Хеми» собрали в 1971 году (современное одноименное семейство не имеет с ним ничего общего), но еще более четверти века этот двигатель служил любимой игрушкой любителям дрэг-рейсинга. Мотор, появившийся в 1964 году как чисто гоночный для серии NASCAR, был идеальным образцом спортивного V8 (рабочий объем 7 л, или 426 куб. дюймов по американской системе, стандартная мощность 425 сил) с минимальным применением сложных технологий: нижневальный, с двумя клапанами на цилиндр.
Важнейшим отличием от конкурентов стала полусферическая (отсюда «хеми», происходит от HEMIspherical — «полусферический») камера сгорания, позволившая оптимизировать процесс — получить большую мощность при меньшей степени сжатия. Впрочем, это тоже изобрел не «Крайслер». Его заслуга в том, что на основе известной технологии он создал непобедимый мотор, отличавшийся помимо характеристик еще и нереальной прочностью, способный выдержать самые ужасные методы форсировки. Недаром «Хеми» весил заметно больше, чем любой другой V8 начала 1960-х, — почти 400 кг. Но это обстоятельство совершенно не мешало автомобилям с 426-м «Хеми» уверенно громить соперников в гонках.
Гегемонию крайслеровского мотора не раз пытались ограничить — переписывая правила, изменяя количество требуемых для омологации серийных моторов, но он не сдавался и удерживал лидирующие позиции в NASCAR вплоть до 1970-х годов. К тому времени он стал не только спортивной, но и уличной легендой: серийные машины, снабженные дорожной версией «Хеми», выпускались в мизерных количествах — их сделали не более 11 тысяч, причем и эту малость распределили среди нескольких моделей «Доджа» и «Плимута». Ныне автомобили с оригинальным «Хеми», несмотря на примитивную конструкцию, стоят бешеные деньги — легенда пошла на новый круг.
5-е место: сложнее не бывает
06 TopEngines zr04–11
Самый необычный и амбициозный проект двигателя уникальной компоновки W16 выпестовали ради возрожденной марки «Бугатти». На самом деле этот двигатель, за исключением грандиозной мощности в 1001 л.с., является логичным развитием семейства компактных VR-образных моторов «Фольксвагена». Они отличались критически малым углом развала цилиндров — всего 15 градусов, что позволяло использовать на оба ряда одну головку. Мотор VR6 появился на «фольксвагенах» еще в 1991 году. Американский рынок требовал машин с шестью цилиндрами, и немцы умудрились выйти из положения, применив оригинальную схему, позволявшую без увеличения подкапотного пространства легко втиснуть «шестерку» (как вдоль, так и поперек) взамен стандартных четырех цилиндров.
Материалы по теме
Позже удачная находка получила развитие в более крупных масштабах. Амбиции Фердинанда Пиха, желавшего сделать «Фольксваген» топ-брендом, привели к созданию W8, представлявшего собой два VR4, установленных на общий картер под углом 72 градуса. Появился W12, «собранный» из двух VR6. Но мотор «Бугатти» даже в этой компании стоит особняком. Перед его создателями стояла задача почти неразрешимая — выдать рекордную мощность при минимальной массе. Поэтому мотор даже при схожей схеме получился иного уровня — сделанный на грани инженерного безумства. Конструкторы максимально уплотняли пространство вокруг двигателя. Блоки двух VR8 развалили под углом 90 градусов, разместив между ними сразу четыре турбонагнетателя.
Серьезная проблема возникла с охлаждением — решая ее, только для одних интеркулеров предусмотрели 15 л охлаждающей жидкости. Обычно данного количества хватало на весь мотор. Но «Вейрон» не вписывался в стандартные схемы — на охлаждение его двигателя в предельных режимах работали три отдельных радиатора, перегоняя 40 л антифриза. Возникли сложности с диагностикой, ведь определить сбои в одном из 16 цилиндров на слух практически невозможно. Поэтому мотор оснастили системой самодиагоностики, способной оперативно решать проблему, вплоть до отключения проблемного цилиндра.
А теперь самое интересное. При всей сложности и грандиозности замысла (одних только клапанов — вдумайтесь! — 64 штуки) создателям удалось удержать массу W16 в пределах 400 кг. Финансовый фактор при создании этого двигателя не имел почти никакого значения, поэтому титановые шатуны или полностью алюминиевый масляный насос для мотора «Бугатти» в порядке вещей.
4-е место: основоположник американской мечты
07 TopEngines zr04–11
Теперь о воплощении одной из последних замечательных идей Генри Форда, перевернувшей автомобильный мир. До него никто не предполагал, что массовый автомобиль можно запросто комплектовать престижной и мощной «восьмеркой», которая считалась принадлежностью лишь дорогих, роскошных машин. Появившийся в 1932 году фордовский V8 кардинально изменил на последующие полвека представление об автомобилях из-за океана. Они и до того заметно превосходили по размерам европейские модели аналогичной стоимости, а появление массового V8 окончательно развело процесс развития автомобилестроения на разных берегах Атлантики в противоположных направлениях.
Материалы по теме
Но как Генри Форду удалось снизить себестоимость довольно-таки сложного и массивного агрегата до уровня ширпотреба? О, здесь была масса ухищрений. К примеру, оба блока цилиндров и картер в фордовском V8 отливали как единую деталь. У «восьмерок» старой школы это были как минимум три отдельных элемента, скреплявшихся воедино болтами. Коленчатый вал, вместо того чтобы ковать, отливали с последующим термоупрочнением, что также снижало себестоимость.
Распредвал располагался в блоке, клапаны и выпускная система размещались внутри развала цилиндров — это упрощало конструкцию двигателя, однако приводило к перегреву при малейших проблемах с охлаждением. Даже в начальном варианте «восьмерка» при рабочем объеме 3,2 л выдавала приличные 65 сил, что быстро сделало «Форд- V8» любимцем гангстеров и полиции. Джон Диллинджер и Клайд Берроу в перерывах между кровавыми делами умудрились черкнуть пару строк Генри Форду с благодарностью за столь быстрый автомобиль.
Когда у первых V8 наступил пенсионный возраст, они оказались в руках молодых людей, творивших на их базе диковинные тачки по кличке «хот-род». Простая, мощная и легко поддающаяся форсировке фордовская «восьмерка» поспособствовала рождению сверхпопулярной автоконтркультуры. Ну а сама фирма отправила мотор на пенсию лишь в 1953 году, когда восьмицилиндровые двигатели в американских машинах стали уже повсеместным явлением.
3-е место: изменивший сознание
08 TopEngines zr04–11
В 1993 году в недрах исследовательского подразделения «Тойоты» была создана группа по разработке перспективных машин с минимальными выбросами, которые смогли бы занять нишу между традиционными машинами с ДВС и электромобилями. Результатом стала появившаяся в 1997 году «Тойота-Приус» — первый массовый автомобиль с гибридным приводом. Тогда он воспринимался как любопытный эксперимент, игрушка, продаваемая заведомо в убыток, которая вряд ли выйдет за пределы обожающих экзотику Японских островов. Но «Тойота» строила более серьезные планы.
Коренное отличие «Приуса» от прочих гибридных машин, уже существовавших в то время (речь идет о множестве экспериментальных и чуть раньше вышедшей на рынок серийной «Хонде-Инсайт»), заключалось в новом подходе к построению подобной модели. «Приус» создавали как гибрид с самого начала, без упрощений и компромиссов вроде заимствования кузова у традиционной модели или использования обычной механической коробки передач (как было сделано на «Инсайте»).
«Тойота» внедрила гибридную трансмиссию как неотъемлемую часть машины. Даже 1,5-литровый бензиновый двигатель специально модифицировали для работы с электромотором, переведя его на цикл Аткинсона, отличающийся укороченным тактом сжатия за счет увеличенной продолжительности открытия впускных клапанов. Это позволило получить необычно высокую степень сжатия (13–13,5) и дополнительные плюсы в копилку экономичности и экологичности.
Расплатой стала полная беспомощность ДВС на низких оборотах, но для гибрида, который всегда располагает поддержкой электродвигателя, это не проблема. Такой комплексный подход в итоге сделал «Приус» законодателем моды на гибриды. Он стоял в начале процесса, который уже не остановить.
2-е место: любимец всех континентов
09 TopEngines zr04–11
Что сказать про этот воздушник от «Фольксвагена»? Он так же легендарен, как и «Жук» — автомобиль, под который его сделали. Даже больше — ведь одним «Жуком» область применения данного мотора далеко не ограничивалась. Простой, надежный и легкий, четырехцилиндровый оппозитник воздушного охлаждения оказался столь эффективным, что его популярность намного превзошла признание даже самого распространенного в мире автомобиля.
С той поры, как благодаря таланту Фердинанда Порше первые образцы мотора в 1933 году появились на прототипах «Жука», он перепробовал десятки профессий. Достаточная мощность (довоенные образцы выдавали минимум 24 силы, а самые мощные под конец серийного выпуска утроили этот показатель), беспроблемное в любом климате воздушное охлаждение и небольшая масса (цилиндры алюминиевые, картер — из магниевого сплава) позволили фольксвагеновскому мотору найти массу занятий. Он служил на амфибиях вермахта, примешивал свой выхлоп к запаху марихуаны в микробусах хиппи, приводил пожарные насосы, компрессоры, лесопилки, стал основой прогулочных багги и понтовых трайков, взмывал в небо более чем на 40 типах самолетов. И это далеко не полный список его талантов. Еще важнее, что именно из этого двигателя выросло семейство оппозитников «Порше».
На протяжении всех лет производства (моторы семейства окончательно прекратили выпускать только в 2006 году) принципиальная схема двигателя не менялась. Рос рабочий объем, на некоторых версиях применили впрыск топлива, но изначальная схема со штанговым приводом клапанов оставалась такой же, как на первых образцах 1930-х годов. Он радует сердца автомобилистов, да и не только их, более 70 лет — это ли не лучший показатель совершенства мотора?
1-е место: первый массовый
10 TopEngines zr04–11
С «Форда-Т» и его двигателя начал раскручиваться маховик массовой автомобилизации. Больше того, именно мотор «тэшки» стал в свое время самым распространенным ДВС в мире, с ним познакомилось подавляющее большинство жителей земного шара. Как и в случае с описанным выше оппозитником «Фольксвагена», мотор «Форда-Т» приводил не только одноименный автомобиль, которых с 1908 по 1927 год было построено более 15 миллионов.
Материалы по теме
Трактора, грузовики, моторные лодки, походные электростанции — он применялся везде, где была нужда в дешевом и простом в обращении моторе. Что касается автомобилей, то в какой-то период до 90% машин, колесивших по Земле, были одной-единственной модели Т. И приводил их этот самый двигатель необычно большого по сегодняшним меркам рабочего объема 2,9 л — при скромной мощности 20 сил. Но мощность тут была не принципиальна. Гораздо важнее крутящий момент и всеядность — помимо бензина «тэшку» официально разрешалось заправлять керосином и этанолом.
Двигатель удивительно прост. Собранный в одном блоке с двухступенчатой планетарной коробкой передач, четырехцилиндровый мотор делил с трансмиссией смазочное масло. Никакого давления в системе не создавалось, смазка осуществлялась разбрызгиванием. Водяную помпу через год производства отправили в отставку — Генри Форд решил, что дешевому автомобилю достаточно простого термосифонного принципа, когда жидкость циркулирует благодаря разности температур.
С другой стороны, фордовский мотор необычен для своего времени тем, что его блок и картер отливались как одно целое, а головка цилиндров впервые в мировой практике была сделана отдельной деталью. Но это дань массовости производства: ни один автомобиль в мире не выпускали в таких масштабах, как «Форд», поэтому его конструкция изначально рассчитана на максимально быструю и простую сборку.
Двигатель «тэшки» надолго пережил сам автомобиль. Последний экземпляр собрали в августе 1941 года. Он останется в истории как первый массовый ДВС человечества.
Знаменитые двигатели: 10 ступеней к совершенству
Почти каждый из описанных ниже двигателей повлиял не только на развитие техники, но и на социальную среду. Моторы-легенды представляет Дмитрий Федоров.
10. Родоначальник даунсайзинга
Приличные характеристики двигателя при скромном рабочем объеме уже не особенно удивляют. Мы начинаем привыкать к понятию «даунсайзинг», понимая, что эра двигателей большого литража постепенно уходит. А началось это, на мой взгляд, с дебюта в середине 1990-х годов наддувного мотора в 1,8 л, разработанного «Ауди». При умеренном рабочем объеме он должен был удовлетворить владельцев автомобилей самых различных классов. Поэтому даже в самой простой версии двигатель выдавал 148 сил, чего вполне хватало, чтобы превратить в маленькую зажигалку хэтчбек «СЕАТ-Ибица» и не заставлять гореть со стыда владельца престижного «Ауди-А6». Собственно, литраж ничего не говорил о способностях агрегата. Это был небольшой (в том числе по габаритам — ставь его хоть вдоль, хоть поперек) шедевр своего времени: пять клапанов на цилиндр, изменяемые фазы на впуске, кованые алюминиевые поршни и, конечно, турбонаддув. С его помощью мощность мотора поднимали все выше и выше, дойдя в спецверсии «Ауди-ТТ кваттро Спорт» до 236 сил. Данный предел был обусловлен лишь спецификой дорожного автомобиля. В гоночной формуле «Палмер Ауди», где ресурс не так важен, с новым блоком управления и агрегатом наддува с 1800-кубового двигателя сняли 365 сил. В Формуле-2, превращая серийный двигатель в чисто гоночный агрегат, достигли и вовсе фантастических 480 сил. Поэтому грядущий переход Формулы-1 на «четверки» объемом 1,6 л в свете достижений мотора «Ауди» не выглядит абсурдным.
9. Верность ротору
Исключительный случай — когда автомобильная компания прочно ассоциируется с одним типом двигателя. Конечно, «Мазда» не сама изобрела роторно-поршневой двигатель Ванкеля. Зато она в труднейшие времена энергетического кризиса 1970-х пересилила обстоятельства: не бросила, как другие, эту весьма сложную в доводке конструкцию, а продолжила совершенствовать «Ванкель» в узком, зато перспективном для имиджа сегменте форсированных спортивных машин. Хотя первоначально планировалось, что все модели «Мазды», вплоть до грузовиков и автобусов, перейдут со временем на двигатель Ванкеля.
Когда в 1975 году двухсекционный мотор с индексом 13В появился на серийных машинах, никто не мог предположить, что он станет самым массовым РПД в мире и продержится в производстве более 30 лет. Более того, даже современный маздовский РПД «Ренезис» — лишь результат эволюции 13B. Именно этот мотор стал проводником в серию большинства впервые примененных на РПД новинок, которые и обеспечили ему столь долгую жизнь, — настроенного впуска с изменяемой геометрией, электронного впрыска топлива, турбонаддува. В итоге мотор, который начал жизнь под капотом утилитарного пикапа с мощности чуть больше 100 сил, превратился в короля автогонок, выдававшего даже в серийном варианте минимум 280. Повышенный расход топлива и большой угар масла — неизбежные проблемы любого РПД — были оправданной расплатой за скромный вес, низкий центр тяжести и способность крутить свыше 10 тысяч оборотов в минуту. Маздовские купе RX-7 доминировали в американских кузовных чемпионатах на протяжении 1980-х годов во многом благодаря роторно-поршневому мотору 13B.
8. «Восьмерка» планеты Земля
Любой, кто хоть немного интересуется американским автомобилестроением, наверняка слышал о «восьмерке» «Шевроле» семейства Small Block. Неудивительно, ведь ее в почти неизменном виде можно было встретить на различных моделях концерна «Дженерал моторс» с 1955 по 2004 год. Долгая карьера сделала этот нижневальный двигатель самым распространенным V8 на Земле. Small Block первого поколения (не путать с аналогичными моторами второй и третьей генераций серий LT и LS!) выпускается и сейчас, правда, только на рынок запчастей. Общее число изготовленных моторов на сегодняшний день превысило 90 миллионов.
Не стоит соотносить слово Small с небольшим литражом двигателя. Рабочий объем «восьмерки» никогда не опускался ниже 4,3 л, а в лучшие времена достигал 6,6 л. Свое имя мотор получил за небольшую высоту блока, обусловленную соотношением диаметра цилиндра и хода поршня: на первом образце 95,2х76,2 мм. Такая короткоходность обусловлена техзаданием: новую «восьмерку» следовало вписать под низкий капот родстера «Шевроле-Корвет», который до этого едва не лишился спроса из-за слабой для него рядной «шестерки». Не появись этот мощный V8, подхлестнувший интерес к первому массовому американскому спорткару, «Корвет» вряд ли пережил бы середину 1950-х.
Вскоре удачного шевролетовского «малыша» назначили базовой «восьмеркой» для всего GM, хотя двигатели V8 собственной конструкции были у каждого отделения концерна. Простой, надежный и неприхотливый мотор пережил все уровни признания: участвовал в гонках, трудился в качестве движущей силы катеров и изредка монтировался даже на легкие самолеты. И хотя в последние десять лет полноценной жизни двигателя его предлагали только для пикапов и фургонов, все автомобильные фанаты знали, что именно этот заслуженный V8 когда-то был рожден для спасения «Шевроле-Корвет».
7. Единственный в своем роде
Какой же рейтинг моторов обойдется без БМВ! Марка попала бы в наш перечень уже за исключительную приверженность рядной «шестерке» — когда-то такая компоновка легковых двигателей была широко распространена. Помимо баварцев, на легковых машинах (вседорожники и пикапы не в счет) ее применяют сейчас только «Вольво» и австралийский филиал «Форда» (остальные сдались в пользу менее уравновешенного, зато гораздо более компактного V6). Но БМВ стоит особняком: только эта компания смогла выжать из расположенных в ряд шести цилиндров все преимущества — от потрясающе плавной работы до способности легко раскручиваться до самых высоких оборотов.
С каждым поколением, начиная с «шестерки» БМВ образца 1968 года, которую получили, добавив пару цилиндров к уже выпускавшейся «четверке», эти двигатели становились легче, мощнее, совершеннее. Многоцилиндровые схемы для баварцев были практически под запретом — первый V12 появился лишь в 1986 году, а V8 вообще только в 1992-м. Создание этих двигателей легче оправдать маркетингом, нежели истинной любовью инженеров — они всю душу и умение вкладывали именно в шесть расположенных в ряд цилиндров.
Апофеоз атмосферной «шестерки» БМВ — мотор S54 образца 2000 года, предназначенный для М3. Это гимн совершенству гоночного по сути двигателя, водруженного на гражданский автомобиль. Тяжелого на подъем вначале, но расцветающего при малейшем намеке на спортивный стиль езды. С 3,2 л рабочего объема сняли 343 силы (с литра — 107) — для атмосферного мотора даже сейчас великолепный результат. Его было бы трудно достичь без применения всех новейших на тот момент технологий — индивидуальных дросселей на каждый цилиндр с электронным управлением, системы регулирования фаз, причем как впуска, так и выпуска. Чтобы мотор выдерживал любые нагрузки, его даже перевели на чугунный блок цилиндров, что для БМВ редкость.
К сожалению, следующее поколение M3 отказалось от семейных ценностей в пользу V8. Это тоже очень неплохой мотор — но радость от укрощения разъяренного зверя ушла вместе с прежней «шестеркой». Подобные ей двигатели в нынешних условиях считаются, как бы точнее сказать, неполиткорректными.
6. Легенда гонок
Последние образцы настоящего V8 «Хеми» собрали в 1971 году (современное одноименное семейство не имеет с ним ничего общего), но еще более четверти века этот двигатель служил любимой игрушкой любителям дрэг-рейсинга. Мотор, появившийся в 1964 году как чисто гоночный для серии NASCAR, был идеальным образцом спортивного V8 (рабочий объем 7 л, или 426 куб. дюймов по американской системе, стандартная мощность 425 сил) с минимальным применением сложных технологий: нижневальный, с двумя клапанами на цилиндр. Важнейшим отличием от конкурентов стала полусферическая (отсюда слово «хеми» — «полу-» в переводе с английского) камера сгорания, позволившая оптимизировать процесс — получить большую мощность при меньшей степени сжатия. Впрочем, это тоже изобрел не «Крайслер». Его заслуга в том, что на основе известной технологии он создал непобедимый мотор, отличавшийся, помимо характеристик, еще и нереальной прочностью, способный выдержать самые ужасные методы форсировки. Недаром «Хеми» весил заметно больше, чем любой другой V8 начала 1960-х, — почти 400 кг. Но это обстоятельство совершенно не мешало автомобилям с 426-м «Хеми» уверенно громить соперников в гонках.
Гегемонию крайслеровского мотора не раз пытались ограничить — переписывая правила, изменяя количество требуемых для омологации серийных моторов, но он не сдавался и удерживал лидирующие позиции в NASCAR вплоть до 1970-х годов. К тому времени он стал не только спортивной, но и уличной легендой: серийные машины, снабженные дорожной версией «Хеми», выпускались в мизерных количествах — их сделали не более 11 тысяч, причем и эту малость распределили среди нескольких моделей «Доджа» и «Плимута». Ныне автомобили с оригинальным «Хеми», несмотря на примитивную конструкцию, стоят бешеные деньги — легенда пошла на новый круг.
5. Сложнее не бывает
Самый необычный и амбициозный проект двигателя уникальной компоновки W16 выпестовали ради возрожденной марки «Бугатти». На самом деле этот двигатель, за исключением грандиозной мощности в 1001 л.с., является логичным развитием семейства компактных VR-образных моторов «Фольксвагена». Они отличались критически малым углом развала цилиндров — всего 15 градусов, что позволяло использовать на оба ряда одну головку. Мотор VR6 появился на «фольксвагенах» еще в 1991 году. Американский рынок требовал машин с шестью цилиндрами, и немцы умудрились выйти из положения, применив оригинальную схему, позволявшую без увеличения подкапотного пространства легко втиснуть «шестерку» (как вдоль, так и поперек) взамен стандартных четырех цилиндров.
Позже удачная находка получила развитие в более крупных масштабах. Амбиции Фердинанда Пиеха, желавшего сделать «Фольксваген» топ-брендом, привели к созданию W8, представлявшего собой два VR4, установленных на общий картер под углом 72 градуса. Появился W12, «собранный» из двух VR6. Но мотор «Бугатти» даже в этой компании стоит особняком. Перед его создателями стояла задача почти неразрешимая — выдать рекордную мощность при максимально малой массе. Поэтому мотор даже при схожей схеме получился иного уровня — сделанный на грани инженерного безумства. Конструкторы максимально уплотняли пространство вокруг двигателя. Блоки двух VR8 развалили под углом 90 градусов, разместив между ними сразу четыре турбонагнетателя. Серьезная проблема возникла с охлаждением — решая ее, только для одних интеркулеров предусмотрели 15 л охлаждающей жидкости. Обычно данного количества хватало на весь мотор. Но «Вейрон» не вписывался в стандартные схемы — на охлаждение его двигателя в предельных режимах работали три отдельных радиатора, перегоняя 40 л антифриза. Возникли сложности с диагностикой, ведь определить сбои в одном из 16 цилиндров на слух практически невозможно. Поэтому мотор оснастили системой самодиагоностики, способной оперативно решать проблему, вплоть до отключения проблемного цилиндра.
А теперь самое интересное. При всей сложности и грандиозности замысла (одних только клапанов — вдумайтесь! — 64 штуки) создателям удалось удержать массу W16 в пределах 400 кг. Финансовый фактор при создании этого двигателя не имел почти никакого значения, поэтому титановые шатуны или полностью алюминиевый масляный насос для мотора «Бугатти» в порядке вещей.
4. Основоположник американской мечты
Теперь о воплощении одной из последних замечательных идей Генри Форда, перевернувшей автомобильный мир. До него никто не предполагал, что массовый автомобиль можно запросто комплектовать престижной и мощной «восьмеркой», которая считалась принадлежностью лишь дорогих, роскошных машин. Появившийся в 1932 году фордовский V8 кардинально изменил на последующие полвека представление об автомобилях из-за океана. Они и до того заметно превосходили по размерам европейские модели аналогичной стоимости, а появление массового V8 окончательно развело процесс развития автомобилестроения на разных берегах Атлантики в противоположных направлениях.
Но как Генри Форду удалось снизить себестоимость довольно-таки сложного и массивного агрегата до уровня ширпотреба? О, здесь была масса ухищрений. К примеру, оба блока цилиндров и картер в фордовском V8 отливали как единую деталь. У «восьмерок» старой школы это были как минимум три отдельных элемента, скреплявшихся воедино болтами. Коленчатый вал, вместо того чтобы ковать, отливали с последующим термоупрочнением, что также снижало себестоимость. Распредвал располагался в блоке, клапаны и выпускная система размещались внутри развала цилиндров — это упрощало конструкцию двигателя, однако приводило к перегреву при малейших проблемах с охлаждением. Даже в начальном варианте «восьмерка» при рабочем объеме 3,2 л выдавала приличные 65 сил, что быстро сделало «Форд-V8» любимцем гангстеров и полиции. Джон Диллинджер и Клайд Берроу в перерывах между кровавыми делами умудрились черкнуть пару строк Генри Форду с благодарностью за столь быстрый автомобиль.
Когда у первых V8 наступил пенсионный возраст, они оказались в руках молодых людей, творивших на их базе диковинные тачки по кличке «хот-род». Простая, мощная и легко поддающаяся форсировке фордовская «восьмерка» поспособствовала рождению сверхпопулярной автоконтркультуры. Ну а сама фирма отправила мотор на пенсию лишь в 1953 году, когда восьмицилиндровые двигатели в американских машинах стали уже повсеместным явлением.
3. Изменивший сознание
В 1993 году в недрах исследовательского подразделения «Тойоты» была создана группа по разработке перспективных машин с минимальными выбросами, которые смогли бы занять нишу между традиционными машинами с ДВС и электромобилями. Результатом стала появившаяся в 1997 году «Тойота-Приус» — первый массовый автомобиль с гибридным приводом. Тогда он воспринимался как любопытный эксперимент, игрушка, продаваемая заведомо в убыток, которая вряд ли выйдет за пределы обожающих экзотику Японских островов. Но «Тойота» строила более серьезные планы.
Коренное отличие «Приуса» от прочих гибридных машин, уже существовавших в то время (речь идет о множестве экспериментальных и чуть раньше вышедшей на рынок серийной «Хонде-Инсайт»), заключалось в новом подходе к построению подобной модели. «Приус» создавали как гибрид с самого начала, без упрощений и компромиссов вроде заимствования кузова у традиционной модели или использования обычной механической коробки передач (как было сделано на «Инсайте»). «Тойота» внедрила гибридную трансмиссию как неотъемлемую часть машины. Даже 1,5-литровый бензиновый двигатель специально модифицировали для работы с электромотором, переведя его на цикл Аткинсона, отличающийся укороченным тактом сжатия за счет увеличенной продолжительности открытия впускных клапанов. Это позволило получить необычно высокую степень сжатия (13–13,5) и дополнительные плюсы в копилку экономичности и экологичности. Расплатой стала полная беспомощность ДВС на низких оборотах, но для гибрида, который всегда располагает поддержкой электродвигателя, это не проблема. Такой комплексный подход в итоге сделал «Приус» законодателем моды на гибриды. Он стоял в начале процесса, который уже не остановить.
2. Любимец всех континентов
Что сказать про этот воздушник от «Фольксвагена»? Он так же легендарен, как и «Жук» — автомобиль, под который его сделали. Даже больше — ведь одним «Жуком» область применения данного мотора далеко не ограничивалась. Простой, надежный и легкий, четырехцилиндровый оппозитник воздушного охлаждения оказался столь эффективным, что его популярность намного превзошла признание даже самого распространенного в мире автомобиля. С той поры, как благодаря таланту Фердинанда Порше первые образцы мотора в 1933 году появились на прототипах «Жука», он перепробовал десятки профессий. Достаточная мощность (довоенные образцы выдавали минимум 24 силы, а самые мощные под конец серийного выпуска утроили этот показатель), беспроблемное в любом климате воздушное охлаждение и небольшая масса (цилиндры алюминиевые, картер — из магниевого сплава) позволили фольксвагеновскому мотору найти массу занятий. Он служил на амфибиях вермахта, примешивал свой выхлоп к запаху марихуаны в микробусах хиппи, приводил пожарные насосы, компрессоры, лесопилки, стал основой прогулочных багги и понтовых трайков, взмывал в небо более чем на 40 типах самолетов. И это далеко не полный список его талантов. Еще важнее, что именно из этого двигателя выросло семейство оппозитников «Порше».
На протяжении всех лет производства (моторы семейства окончательно прекратили выпускать только в 2006 году) принципиальная схема двигателя не менялась. Рос рабочий объем, на некоторых версиях применили впрыск топлива, но изначальная схема со штанговым приводом клапанов оставалась такой же, как на первых образцах 1930-х годов. Он радует сердца автомобилистов, да и не только их, более 70 лет — это ли не лучший показатель совершенства мотора?
1. Первый массовый
С «Форда-Т» и его двигателя начал раскручиваться маховик массовой автомобилизации. Больше того, именно мотор «тэшки» стал в свое время самым распространенным ДВС в мире, с ним познакомилось подавляющее большинство жителей земного шара. Как и в случае с описанным выше оппозитником «Фольксвагена», мотор «Форда-Т» приводил не только одноименный автомобиль, которых с 1908 по 1927 год было построено более 15 миллионов. Трактора, грузовики, моторные лодки, походные электростанции — он применялся везде, где была нужда в дешевом и простом в обращении моторе. Что касается автомобилей, то в какой-то период до 90% машин, колесивших по Земле, были одной-единственной модели Т. И приводил их этот самый двигатель необычно большого по сегодняшним меркам рабочего объема 2,9 л — при скромной мощности 20 сил. Но мощность тут была не принципиальна. Гораздо важнее крутящий момент и всеядность — помимо бензина, «тэшку» официально разрешалось заправлять керосином и этанолом.
Двигатель удивительно прост. Собранный в одном блоке с двухступенчатой планетарной коробкой передач, четырехцилиндровый мотор делил с трансмиссией смазочное масло. Никакого давления в системе не создавалось, смазка осуществлялась разбрызгиванием. Водяную помпу через год производства отправили в отставку — Генри Форд решил, что дешевому автомобилю достаточно простого термосифонного принципа, когда жидкость циркулирует благодаря разности температур. С другой стороны, фордовский мотор необычен для своего времени тем, что его блок и картер отливались как одно целое, а головка цилиндров впервые в мировой практике была сделана отдельной деталью. Но это дань массовости производства: ни один автомобиль в мире не выпускали в таких масштабах, как «Форд», поэтому его конструкция изначально рассчитана на максимально быструю и простую сборку.
Двигатель «тэшки» надолго пережил сам автомобиль. Последний экземпляр собрали в августе 1941 года. Он останется в истории как первый массовый ДВС человечества.
Ошибка в тексте? Выделите её мышкой! И нажмите: Ctrl + Enter
www.zr.ru
Устройство и принцип работы двигателя внутреннего сгорания (18 фото+4 видео)
Для того, чтобы понять принцип работы двигателя, нужно иметь некоторые представления о самом двигателе и его строении. Давайте разберемся со всем более подробно:Смотрите также: Вся правда о полном приводе
В устройстве двигателя поршень является ключевым элементом рабочего процесса. Поршень выполнен в виде металлического пустотелого стакана, расположенного сферическим дном (головка поршня) вверх. Направляющая часть поршня, иначе называемая юбкой, имеет неглубокие канавки, предназначенные для фиксации в них поршневых колец. Назначение поршневых колец – обеспечивать, во-первых, герметичность надпоршневого пространства, где при работе двигателя происходит мгновенное сгорание бензиново-воздушной смеси и образующийся расширяющийся газ не мог, обогнув юбку, устремиться под поршень. Во-вторых, кольца предотвращают попадание масла, находящегося под поршнем, в надпоршневое пространство. Таким образом, кольца в поршне выполняют функцию уплотнителей. Нижнее (нижние) поршневое кольцо называется маслосъемным, а верхнее (верхние) – компрессионным, то есть обеспечивающим высокую степень сжатия смеси.
Когда из карбюратора или инжектора внутрь цилиндра попадает топливно-воздушная или топливная смесь, она сжимается поршнем при его движении вверх и поджигается электрическим разрядом от свечи системы зажигания (в дизеле происходит самовоспламенение смеси за счет резкого сжатия). Образующиеся газы сгорания имеют значительно больший объем, чем исходная топливная смесь, и, расширяясь, резко толкают поршень вниз. Таким образом тепловая энергия топлива преобразуется в возвратно-поступательное (вверх-вниз) движение поршня в цилиндре.
Далее необходимо преобразовать это движение во вращение вала. Происходит это следующим образом: внутри юбки поршня расположен палец, на котором закрепляется верхняя часть шатуна, последний шарнирно зафиксирован на кривошипе коленчатого вала. Коленвал свободно вращается на опорных подшипниках, что расположены в картере двигателя внутреннего сгорания. При движении поршня шатун начинает вращать коленвал, с которого крутящий момент передается на трансмиссию и – далее через систему шестерен – на ведущие колеса.
Технические характеристики двигателя.Характеристики двигателя При движении вверх-вниз у поршня есть два положения, которые называются мертвыми точками. Верхняя мертвая точка (ВМТ) – это момент максимального подъема головки и всего поршня вверх, после чего он начинает движение вниз; нижняя мертвая точка (НМТ) – самое нижнее положение поршня, после которого вектор направления меняется и поршень устремляется вверх. Расстояние между ВМТ и НМТ названо ходом поршня, объем верхней части цилиндра при положении поршня в ВМТ образует камеру сгорания, а максимальный объем цилиндра при положении поршня в НМТ принято называть полным объемом цилиндра. Разница между полным объемом и объемом камеры сгорания получила наименование рабочего объема цилиндра.Суммарный рабочий объем всех цилиндров двигателя внутреннего сгорания указывается в технических характеристиках двигателя, выражается в литрах, поэтому в обиходе именуется литражом двигателя. Второй важнейшей характеристикой любого ДВС является степень сжатия (СС), определяемая как частное от деления полного объема на объем камеры сгорания. У карбюраторных двигателей СС варьирует в интервале от 6 до 14, у дизелей – от 16 до 30. Именно этот показатель, наряду с объемом двигателя, определяет его мощность, экономичность и полноту сгорания топливо-воздушной смеси, что влияет на токсичность выбросов при работе ДВС. Мощность двигателя имеет бинарное обозначение – в лошадиных силах (л.с.) и в киловаттах (кВт). Для перевода единиц одна в другую применяется коэффициент 0,735, то есть 1 л.с. = 0,735 кВт. Рабочий цикл четырехтактного ДВС определяется двумя оборотами коленчатого вала – по пол-оборота на такт, соответствующий одному ходу поршня. Если двигатель одноцилиндровый, то в его работе наблюдается неравномерность: резкое ускорение хода поршня при взрывном сгорании смеси и замедление его по мере приближения к НМТ и далее. Для того, чтобы эту неравномерность купировать, на валу за пределами корпуса мотора устанавливается массивный диск-маховик с большой инерционностью, благодаря чему момент вращения вала во времени становится более стабильным.
Принцип работы двигателя внутреннего сгорания Современный автомобиль, чаше всего, приводится в движение двигателем внутреннего сгорания. Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, устройство двигателя внутреннего сгорания, похоже. Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко. Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части. Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ). Первый такт - такт впуска
Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень, всасывает в цилиндр топливовоздушную смесь. Работа этого такта происходит при открытом клапане впуска. Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.
Второй такт - такт сжатия
Следующий такт работы двигателя – такт сжатия. После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.
Третий такт - рабочий ход
Третий такт – рабочий, начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает система зажигания. Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля. После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз. Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.
Четвертый такт - такт выпуска
Четвертый такт работы двигателя, последний – выпускной. Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан. Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.
После четвертого такта наступает черед первого. Процесс повторяется циклически. А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.Газораспределительный механизм
Газораспределительный механизм (ГРМ) предназначен для впрыска топлива и выпуска отработанных газов в двигателях внутреннего сгорания. Сам механизм газораспределения делится на нижнеклапанный, когда распределительный вал находится в блоке цилиндров, и верхнеклапанный. Верхнеклапанный механизм подразумевает нахождение распредвала в головке блока цилиндров (ГБЦ). Существуют и альтернативные механизмы газораспределения, такие как гильзовая система ГРМ, десмодромная система и механизм с изменяемыми фазами. Для двухтактных двигателей механизм газораспределения осуществляется при помощи впускных и выпускных окон в цилиндре. Для четырехтактных двигателей самая распространенная система верхнеклапанная, о ней и пойдет речь ниже.
Устройство ГРМ В верхней части блока цилиндров находится ГБЦ (головка блока цилиндров) с расположенными на ней распределительным валом, клапанами, толкателями или коромыслами. Шкив привода распредвала вынесен за пределы головки блока цилиндров. Для исключения протекания моторного масла из-под клапанной крышки, на шейку распредвала устанавливается сальник. Сама клапанная крышка устанавливается на масло- бензо- стойкую прокладку. Ремень ГРМ или цепь одевается на шкив распредвала и приводится в действие шестерней коленчатого вала. Для натяжения ремня используются натяжные ролики, для цепи натяжные «башмаки». Обычно ремнем ГРМ приводится в действие помпа водяной системы охлаждения, промежуточный вал для системы зажигания и привод насоса высокого давления ТНВД (для дизельных вариантов). С противоположной стороны распределительного вала посредством прямой передачи или при помощи ремня, могут приводиться в действие вакуумный усилитель, гидроусилитель руля или автомобильный генератор.
Распредвал представляет собой ось с проточенными на ней кулачками. Кулачки расположены по валу так, что в процессе вращения, соприкасаясь с толкателями клапанов, нажимают на них точно в соответствии с рабочими тактами двигателя. Существуют двигатели и с двумя распредвалами (DOHC) и большим числом клапанов. Как и в первом случае, шкивы приводятся в действие одним ремнем ГРМ и цепью. Каждый распредвал закрывает один тип клапанов впускных или выпускных. Клапан нажимается коромыслом (ранние версии двигателей) или толкателем. Различают два вида толкателей. Первый – толкатели, где зазор регулируется калибровочными шайбами, второй – гидротолкатели. Гидротолкатель смягчает удар по клапану благодаря маслу, которое находится в нем. Регулировка зазора между кулачком и верхней частью толкателя не требуется.
Принцип работы ГРМВесь процесс газораспределения сводится к синхронному вращению коленчатого вала и распределительного вала. А так же открыванию впускных и выпускных клапанов в определенном месте положения поршней. Для точного расположения распредвала относительно коленвала используются установочные метки. Перед одеванием ремня газораспределительного механизма совмещаются и фиксируются метки. Затем одевается ремень, «освобождаются» шкивы, после чего ремень натягивается натяжным(и) роликами. При открывании клапана коромыслом происходит следующее: распредвал кулачком «наезжает» на коромысло, которое нажимает на клапан, после прохождения кулачка, клапан под действием пружины закрывается. Клапаны в этом случае располагаются v-образно. Если в двигателе применены толкатели, то распредвал находится непосредственно над толкателями, при вращении, нажимая своими кулачками на них. Преимущество такого ГРМ малые шумы, небольшая цена, ремонтопригодность. В цепном двигателе весь процесс газораспределения тот же, только при сборке механизма, цепь одевается на вал совместно со шкивом.Кривошипно-шатунный механизм
Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и, наоборот.
Устройство КШМ Поршень
Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения. Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.
Шатун
Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяя, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.
Коленчатый вал
Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в получении усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.
Маховик
Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.
Блок и головка цилиндров
Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.
В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.Источник: autoustroistvo.rufishki.net
Новые технологии в двигателях внутреннего сгорания
Опубликовано Мир науки и техники в 21 Июль, 2011 - 19:24.
На сегодняшний день двигатели внутреннего сгорания переживают не лучший период своей жизни. Постоянный рост цен на нефть, глобальное потепление, в котором винят и их тоже, а также растущие «зеленые» настроения в развитых странах не прибавляют авторитета двигателям внутреннего сгорания. Но, не смотря на все свои минусы, мы с ними не сможем распрощаться еще на протяжении многих десятилетий. Однако мы можем попытаться сократить немалые аппетиты наших любимцев, тратя меньше энергии на выделение тепла и выжимая из каждой капли топлива тот максимум, который позволяет нам физика.
И, правда, двигатель внутреннего сгорания совсем не безнадежен. В новых автомобильных разработках, и научных лабораториях по всему миру бензиновый двигатель испытывает что-то похожее на Ренессанс.
Защитники экологии не должны бояться этого возрождения двигателей внутреннего сгорания. Так как данные новшества не просто решительно уменьшают количество вредного топлива, они служат технологическим мостом, который приведет нас к полностью электрофицированому будущему.
Большинство таких технологий находиться все еще на стадии разработок, ожидая финансирования, или внедрены пока только в опытные образцы, для демонстрации своих возможностей. Не одно из данных решений не является панацеей, но каждое из них показывает, насколько меньше мы могли бы использовать топлива, делая автомобили намного эффективнее.
В прошлом веке бензиновые двигатели стали повсеместны, в этом столетии они станут еще и умными. Рассмотрим некоторые из новых технологий будущего двигателей внутреннего сгорания:
Двигатель Scuderi
Группа Scuderi представляет двигатель разделенного цикла – он делит четыре обычных поршневых цилиндра на два различных типа для более разумного использования каждой капли энергии, которую они могут выработать.
Принцип действия технологии заключается в соединение двух цилиндров между собой. В отличии от обычных двигателей, которые во время четвертого такта выбрасывают сжатые газы, двигатель Scuderi впрыскивает сжатый воздух во второй цилиндр, где проходит воспламенение и выхлоп.
Благодаря данной технологии мы можем использовать два цилиндра из четырех бесплатно. Как показывают компьютерные модели, двигатель Scuderi улучшает экономию по сравнению со своими обычными аналогами на 50 процентов.
Разделение двигателя на горячую и холодную части
Как и предыдущий данный двигатель делиться на две рабочие части, но по сравнению с Scuderi дополнительно использует температурами в разных частях, для достижения максимального КПД.
Большая проблема в обычном четырехтактном двигателе – первые два такта (впуск и сжатие) наиболее эффективны при холоде, в то время третий и четвертый такты работают лучше в холодных условиях. Как утверждают инженеры, если придерживаться данных требований, можно добиться до 40 процентов экономии. Просто отделив область высокой температуры радиатором.
Процесс проходит следующим образом: впуск и сжатие происходят в холодном цилиндре, гарантируя максимальную эффективность при этом, а сгорание и выхлоп сжатой в холодной части смеси происходят в горячем цилиндре. Данная технология дает до 20 процентов экономии топлива, но ученые надеются усовершенствовать систему и выжать из нее 50 процентов.
Двигатель Pinnacle
В данном виде двигателей поршни расположены противоположно друг к другу. Но в отличие от оппозитных двигателей, которые сейчас широко распространены, тут на одну головку цилиндра приходиться два поршня, соответственно взрыв горючей смеси происходит между двумя поршнями. При таком расположении поршней получается колоссальная экономия энергии, которая в привычных двигателях внутреннего сгорания тратиться на выделение высокой температуры.
Первые малолитражки с таким типом двигателей должны быть выпущены уже в 2013, а большие двигатели будут готовы к 2016. Инженеры ожидают увеличение эффективности данного двигателя до 50 процентов.
EcoMotors OPOC
Данная схема двигателя объединяет в себе конструкции известного многим оппозитного двигателя и описанного выше двигателя Pinnacle. В данной конструкции два поршня расположены в одной головке цилиндра, а два других находятся тоже вместе под углом 180 градусов.
В обоих цилиндрах сгорание происходит в центре, между поршнями, длинные шатуны соединяют наиболее удаленные поршни с коленчатым валом, который расположен посредине. Как и другие оппозитные двигатели, OPOC не нуждается в тяжелых головках цилиндров, снижая вес двигателя. Ход поршней в таком двигателе, меньше чем в обычных бензиновых двигателях.
Инженеры Ecomotors надеяться создать демонстрационный автомобиль с двигателем OPOC, который на 2 литрах топлива будет проезжать до 100км.
Двигатель на взрывных волнах
Поршни, клапана и распредвалы приводили в движение бензиновые двигатели на протяжении всего прошедшего столетия, но в будущем они могут оказаться ненужными. Исследователи Мичиганского университета разрабатывают новый вид бензинового двигателя, принцип действия которого базируется на взрывных волнах, которые поддерживают движение.
Концепция базируется на роторе, который содержит несколько радиальных каналов. Поскольку ротор вращается быстро, смесь топлива и воздуха поступает через серию каналов в его центре, заполняя отсек, в котором находиться ротор. Расположение отсеков и каналов в системе такое, что во время сжатия жидкости все выходные порты заблокированы, чтобы горючая смесь не могла вытечь. Смесь приливает в отсеки внезапно, производя ударную волну, которая сжимает оставшуюся горючую смесь дальше в центр. Дальше происходит зажигание и выхлоп, единственная проблема тут – это выбор времени.
Это, довольно радикальное решение, может сэкономить до 60 процентов топлива, а также дает возможность снизить общий вес автомобиля до 400 кг. Еще одним плюсом данного двигателя является то, что в нем мало движущихся частей, которые стираются в течении долгого времени.
Замена обычных свечей зажигания на лазеры
Лазеры стают все лучше, и теперь их можно использовать в двигателях внутреннего сгорания. В свечах, которые используются сегодня, есть одна проблема, для сжигания большего количества воздуха и меньшего количества топлива нужна сильная искра. Но если увеличить мощность искры, будут быстро изнашиваться электроды. Идеальным выходом из данной ситуации может быть использование лазеров. У лазеров есть большой плюс по сравнению с обычными свечами зажигания, их можно очень точно настроить: установить нужную мощность, угол зажигания, тем самым увеличив мощность и эффективность процесса сгорания.
Японские инженеры уже разработали керамические лазеры диаметром 9 мм специально для двигателей внутреннего сгорания. Такие нововведения будут достаточно эффективны и не требуют серьезных доработок в существующих двигателях.
Mazda Skyactiv-G
Mazda всегда славилась своими инновационными решениями. У них есть модели серийных автомобилей с роторными двигателями, а теперь они взялись за экономию топлива. Новый двигатель Skyactiv-G первый из серии Skyactiv и автомобили оборудованные данным двигателем будут выпускаться уже в следующем году.
Ожидается, что в конце этого года Мазда выпустит новую версию малолитражного автомобиля Mazda2. Она будет оснащена 1.3-литровым спортивным двигателем Skyactiv-G и вариаторной коробкой передач. У данного двигателя будет самая высокая степень сжатия, что довольно сильно будет повышать топливную экономичность - приблизительно на 15 процентов. В компании утверждают, что новая Mazda2 должна использовать чуть больше 3л бензина на 100 км.
mirnt.ru
Стационарные бензиновые двигатели производства СССР
В СССР в различные годы выпускались несколько серий стационарных бензиновых двигателей для привода электрических генераторов, насосов, сельскохозяйственных машин. Эти же двигатели широко использовались на маломерных судах.
Серия «Л»
Двигатели серии Л были разработаны в конце 30-х годов на Ульяновском моторном заводе и производились до начала 60-х годов. Серия включала в себя три двигателя, унифицированных по цилиндро-поршневой группе: Л-3/2, Л-6/2 и Л-12, соответственно одноцилиндровый, двухцилиндровый и четырехцилиндровый. Рабочий объем цилиндра — 300 см³. Рабочая частота вращения — 2000 об/мин. Цилиндровая мощность 3 л/с. Двигатели карбюраторные, четырехтактные. Охлаждение — жидкостное. Смазка — разбрызгиванием.
Двигатели «Л» изначально разрабатывались для привода электрогенераторов, насосов и др., но нашли применение и для лодок.
Серия «УД»
УД — марка многоцелевых малолитражных бензиновых двигателей внутреннего сгорания, выпускаемых Ульяновским моторным заводом. УД расшифровываются как Ульяновский Двигатель. Двигатели четырёхтактные, воздушного охлаждения. С 1952 года выпускались 3 основных модели и их модификации:
- УД-1 одноцилиндровые двигатели мощностью 4 л.с. с нижним расположением клапанов; 305см"
- УД-2 двухцилиндровые двигатели мощностью 8 л.с. с нижним расположением клапанов; 610см"
- УД-4 четырёхцилиндровые двигатели мощностью 15 л.с. с нижним расположением клапанов;1220см"
С 1967 года начат выпуск двигателей еще двух моделей:
- УД-15 одноцилиндровые двигатель мощностью 6 л.с. с верхним расположением клапанов;
- УД-25 двухцилиндровые двигатели мощностью 12 л.с. с верхним расположением клапанов;
Базовые модели двигателей на заводе комплектовались различным оборудованием, которое обозначалось литерой после цифр:
- Г — двигатели, предназначенные для привода генераторов. Комплектовались электростартером и переходным кожухом. Магнето с фиксированным углом опережения зажигания.
- С — двигатели, предназначенные для привода малогабаритных сельхозмашин. Комплектовались понижающим редуктором. Магнето с фиксированным углом опережения зажигания.
- В — двигатели для маломерных судов. Комплектовались разобщительной муфтой, реверс-редуктором, гребным валом и гребным винтом, магнето с регулятором угла опережения зажигания. Изначально имели водяное охлаждение, но серийно выпускались с воздушным (под маркой ПД-221).
- Т — двигатели, предназначенные для работы на мини-тракторах и катках для асфальта. Комплектовались переходным фланцем для коробки передач, электростартером, бумажным воздушным фильтром, магнето с регулятором угла опережения зажигания (выпускались также под маркой СМ-12).
- М — модернизированные в 90-х годах двигатели.
Эти двигатели выпускались и другими заводами под марками ПД (Петропавловск, Казахстан) и СМ (завод «Серп и Молот», Харьков, Украина).
Основное применение двигателей — бензиноэлектрические агрегаты серии АБ. Применялись также для привода средств малой механизации: микротракторов, катков для асфальта, компрессоров, лебёдок и в качестве стационарных двигателей на хозяйственных, рыбацких и бакенщицких лодках.
Двигатели УД относятся к среднефорсированным карбюраторным двигателям и характеризуются удельной массой порядка 9 кг/л.с., что является нормальным показателем для современных стационарных двигателей.Конструкция двигателей рассчитана на продолжительную работу при номинальной мощности в тяжёлых условиях (пониженные или повышенные температуры воздуха). Ресурс двигателя до капитального ремонта — порядка 3000 часов. По своим удельным показателям двигатели УД-15М и УД-25М находятся на одном уровне со стационарными двигателями аналогичной долговременной мощности, выпускаемыми в США и лишь немного уступают современным типам стационарных двигателей Honda и Subaru-Robin. Здесь следует учитывать, что для зарубежных двигателей в технических характеристиках указывается кратковременно реализуемая максимальная мощность, а для двигателей УД — долговременная. Например, двигатель УД-15 по своей долговременной мощности сопоставим с двигателем Subaru-Robin 8,5hp, а УД-25 с двигателем Subaru-Robin 18hp. Несколько большая масса двигателей УД (по сравнению с зарубежными аналогами) объясняется тем, что при их проектировании важно было обеспечить совместимость по привязочным размерам с предыдущими моделями. Поэтому двигатели получили картер излишне большого размера и излишне тяжелый маховик-вентилятор. Следует отметить, что после модернизации двигателей в 90-х годах их масса и размеры были уменьшены.
Двигатель ЗиД-4,5 (УМЗ-5)
Двигатель ЗИД-4,5 карбюраторный, четырехтактный, одноцилиндровый, с воздушным охлаждением и рабочим объемом цилиндра 520 см3; ход поршня 90 мм; диаметр цилиндра 86 мм; степень сжатия — 5,3; номинальная мощность — 4,5 л. с.; число оборотов коленчатого вала при этой мощности не более 2000 об/мин; ЗИД-4,5 оснащен встроенным редуктором, вал которого вращается со скоростью 333 об/мин на первой передаче и со скоростью 687 об/мин — на второй. Расход топлива 1,5 кг/ч. Система зажигания с маховичным магнето, запуск — шнуром или пусковой рукояткой, габаритные размеры: 615X490X678 мм; вес сухого двигателя 65 кг.
Двигатель «2СД»
Двигатель 2СД-М1 на мотоблоке2СД — серия двухтактных бензиновых стационарных двигателей, унифицированных по деталям цилиндро-поршневой группы и коленчатого вала с двигателями мотоцикла «Минск». Двигатели имеют воздушное охлаждение. Выпускались Петропавловским заводом малолитражных двигателей. Основное топливо - бензин А-72, топливо допустимое Б-70 ... А-76. Масло для топливной смеси MC-20 в пропорции 1:33 по объёму. Свеча зажигания экранированная А-10 Н с резьбой M18x1,5 или неэкранированная с резьбой M14x1,25 через переходник. Рабочий объем - 123 см.куб. температура эксплуатации -50 ... +50 градусов, допускалось использование эфира для зимнего пуска. УОЗ -8 градусов для низкокачественных топлив, -4 градуса для нормального. Номинальные обороты 3000 об.в мин. Мощность номинальная 0.75-1.0 квт. Имели следующие модификации:
- 2СД-в — первая модификация с карбюратором К-55, степень сжатия 5,5 , под А-66 бензин;
- 2СД-М — модификация с карбюратором К-41;
- 2СД-М1 — модификация с карбюратором К-41 и измененной головкой цилиндра (степень сжатия 6,5)
- 2СД-М2 — модификация с измененным пусковым механизмом.
- 2СД-М1К - модификация для работы на керосине (запуск осуществлялся на бензине)
Двигатель «СД-60»
Двигатель СД-60 — модификация двигателя бензиномоторной пилы «Дружба», дефорсированная до 1,5 л.с., оснащенная регулятором частоты вращения и предназначенная для продолжительной работы.
Двигатель «ОДВ-300В»
Карбюраторный двигатель, используется в качестве силового агрегата для привода различных машин, потребляющих не свыше 5 л. с. Двигатель рассчитан на номинальную мощность 5,5 л. с. при 3000 об/мин. При работе в комплекте электростанции скорость двигателя — 1500 об/мин.
Техническая характеристика:[1]
Тип двигателя | двухтактный с двухканальной возвратной продувкой |
Число цилиндров | 1 |
Диаметр цилиндра | 74 мм |
Ход поршня | 68 мм |
Рабочий объем цилиндра | 292 см куб. |
Степень сжатия | 5,8 |
Мощность номинальная | 3,7 л. с. |
Число оборотов | 1500 об/мин. |
Магнето | М-25Б левого вращения |
Тип свечи | АПУ с гайкой Б, ГОСТ 2048-54 |
Тип карбюратора | К-12-3 |
Горючее | Бензин А-66 ГОСТ 2084-51 |
Система смазки | Примешивание Автола 10 к бензину в соотношении 1:25 |
Удельный расход горючего | 380-420 г на л. с./час |
Сухой вес двигателя | 40 кг |
Габариты | 370х440х620 мм |
Модификации двигателей «Москвич»
Модификации двигателей ГАЗ
- ГАЗ-331 (позже ЗМЗ-331) — модификация двигателя автомобиля ГАЗ М-20 «Победа».
Модификации двигателей ЗИЛ
См. также
Примечания
- ↑ Шестопалов, К.С. Справочная книга сельского киномеханика. — М.: Издательство "Советская Россия", 1964. — 600 с.
Литература
- Руководство по обслуживанию двигателя Л-6/2. М.: Оборонгиз, 1940.
dic.academic.ru
Самые надежные двигатели легковых автомобилей
Вниманию автолюбителей представлены самые надежные двигатели легковых автомобилей по мнению экспертов.
10
AWM
Серия силовых агрегатов AWM открывают десятку самых надежных моторов для авто. Они впервые были созданы в 1987 году и до сих пор эти моторы пользуются небывалой популярностью на многих автомобилях немецкого производства – Volkswagen, Audi и многих других. AWM являются долговечными, надежными и неприхотливыми. Самыми мощными двигатели из серии AWM являются моторы APG и AWA. Первый двигатель является восьмиклапанным с впрыском Digifant. Объем его составляет 1.8 л, мощность высока – 160 л.с. при крутящем моменте в 228 Нм/3800 об. Самое широкое применение этот силовой агрегат нашел в автомобилях Volkswagen Passat B5. Второй же мотор гораздо больший объем – 2.8л. При этом его мощность составляет 175 л.с. при 240 Нм/4000 об.
9
Mersedes M266
Mersedes M266 является одним из самых надежных двигателей для легковых авто. 4-цилиндровый бензиновый двигатель является эволюцией предыдущего М166, известного по первому A-Class и Vaneo. Двигатель получил специфичную конструкцию, так как должен был размещаться под большим наклоном в тесном моторном отсеке. Инженеры сделали ставку на простоту: только одна цепь привода ГРМ и 8-клапанный газораспределительный механизм. Механическая часть очень надежная. Очень редко встречаются неисправности форсунок.
8
Suzuki DOHC М
Двигатели Suzuki DOHC «М» расположились на восьмой строчке в списке самых надежных моторов. Силовые агрегаты серии «М» включают в себя моторы небольшой емкости 1.3, 1.5, 1.6 и 1.8. Последний предназначен исключительно для Австралийского рынка. На Европейском континенте силовой агрегат встречается практически во всех мелких и средних моделях Сузуки, появившихся на рубеже 20-21 века, и в Fiat Sedici 1.6, который является копией Suzuki SX4. Механическая часть двигателя очень надежная и прочная. Не вызывает нареканий даже система изменения фаз газораспределения VVT, использующаяся большинством модификаций двигателя. Ее нет только в 1,3-литровой версии, предназначенной для Ignis и Jimny до 2005 года, и старых модификациях 1.5 для SX4. Цепной привод ГРМ очень надежный. Среди незначительных недостатков можно отметить небольшие утечки масла через сальник коленчатого вала. Более серьезные неисправности практически не встречаются.
7
Honda D-series
Honda D—series занимают седьмую строчку в топе самых надежных двигателей для легковых автомобилей. D-серия Хонды, это прежде всего легендарные D15B и все их модификации. В первую очередь стоит рассматривать именно эти моторы, оказавшие наибольшее влияние на развитие одновальных двигателей в мире. Двигатель Хонда серии D представляет собой практически идеальную конструкцию. Поперечно установленная в подкапотном пространстве рядная четверка, вращающаяся по “законам Хонды”, против часовой стрелки с ременным приводом. Подача топливной смеси осуществлялась через карбюратор, через два карбюратора (уникальная разработка от Хонды), посредством системы моновпрыска (подача распыленного топлива во впускной коллектор), а также инжекторная подача. Причем все эти варианты встречались одновременно в одной модели. Надежность этой серии стала стандартом для простых одновальных двигателей. Выпускались они с 1984 по 2005 год.
6
Mitsubishi 4G63
Mitsubishi 4G63 является одним из лучших и самых надежных моторов для легкового автомобиля. Первая модификация 4G63 появилась еще в 1981 году, и с небольшими изменениями продолжает выпускаться и по сей день. Отличные технические характеристики этого мотора сочетаются с его великолепной надежностью. Двигатели семейства 4G63 — это четырехцилиндровые силовые агрегаты, которые имеют объем в 2,0 литра и мощность от 109 до 144 лошадиных сил. Двигатель 4g63 имеет чугунный блок цилиндров и алюминиевую головку, что позволяет обеспечить максимальную устойчивость к перегреву.
5
Toyota 3S-FE
Toyota 3S—FE — один из самых надежных двигателей для легковых автомобилей. Модификация 3S FE стала одной из первых у Toyota с непосредственной системой впрыска топлива. Использование инжектора позволило значительно улучшить мощностные характеристики нового мотора, улучшилась его работа на холостых оборотах, также в сравнении с карбюраторной версией этого двигателя существенно сократился расход топлива. Сам мотор Toyota 3S FE является фактически усовершенствованной версией 3S, поэтому он сохранил легендарную надежность и относительную простоту конструкции. Особенностью этого силового агрегата является наличие двух катушек зажигания, что повышает качество воспламеняемости топливно-воздушной смеси. Двигатель 3S уверенно работает на 92 и 95 бензине. В зависимости от своей версии показатель мощности может колебаться от 115 до 130 лошадиных сил. Максимальный крутящий момент мотор показывает уже с самых низов, поэтому недостатка тяги автовладельцы не испытывали.
4
Opel 20ne
Opel 20ne входит в десятку самых надежных моторов для легковых авто. Этот член семейства моторов GM Family II прославился тем, что часто переживал машины, на которые был установлен. Простая конструкция: 8 клапанов, ременной привод распределительного вала и простая система распределенного впрыска являются секретами долголетия. Мощность разных вариантов составляет от 114 до 130 л.с. Выпускались моторы с 1987 по 1999 год и устанавливались на такие модели, как Kadett, Astra, Vectra, Omega, Frontera, Calibra, а также на австралийские Holden и американские Buick и Oldsmobile. В Бразилии даже выпускали турбонаддувную версию двигателя — Lt3 мощностью в 165 л.с.
3
BMW M60
BMW M60 открывает тройку самых «неубиваемых» двигателей для легкового автомобиля. Использование никель-кремниевого покрытия (Nikasil) делает цилиндры такого мотора практически не изнашиваемыми. К полумиллиона километров пробега зачастую в двигателе не нужно менять даже поршневые кольца. Простота конструкции, высокая мощность, хороший запас прочности ставит М60 в ряд лучших.
2
BMW M57
BMW M57 входит в список самых надежных двигателей для легковых автомобилей. Силовой агрегат был спроектирован компанией BMW и его производство начато с 1998 г. Мотор имеет несколько своих модификаций, изменения и усовершенствования вносились по мере изучения эксплуатационных качеств, причём не все внедрённые инженерные доработки одинаково сказались на надёжности агрегата. Главной инновацией этого мотора стала система впрыска дизельного топлива «Common rail», с помощью которой удалось добиться высоких показателей работы двигателя. Важной характеристикой всех двигателей M57 является их способность обеспечивать высокий крутящий момент при низких оборотах коленвала (точные данные зависят от модификации) и средние значения максимальных оборотов, что привело к повышению ресурса эксплуатации.
1
Mersedes-Benz OM602
Mersedes—Benz OM602 возглавляет рейтинг самых надежных двигателей легковых автомобилей. В 1985-ом году компания Mercedes Benz представила дизельный двигатель OM602 для легкового автомобиля, который выделялся высочайшей надежностью и занял свое место в истории автомобилестроения. Ресурс этого 5-ти цилиндрового дизельного двигателя составлял более 500 000 км, были зафиксированы случаи, когда автомобили с таким двигателем проходили более 1 млн. километров без капитального ремонта двигателя. В 1996 году они была выпущена новая модификация двигателя ОМ602 под названием ОМ602.982 с непосредственным впрыском топлива и мощностью 129 лошадиных сил. Этот дизельный двигатель имел уникальные характеристики экономичности (7.9 л/100 км в городском цикле для С класса), значительный крутящий момент на низких оборотах и довольно тихо работал, несмотря на прямой впрыск.
top10a.ru
регистрация Товарных Знаков, Авторских прав, Изобретений, Патентов (ТЗ, логотипов, трейдмарок, брендов)
Андрей (Гавриэль) ЛИВШИЦизобретатель, инженер-исследователь в компании «АДЕМ». США, Калифорния
Вопрос экономичности двигателей внутреннего сгорания является сегодня одним из ключей к развитию экономики и путей к решению важнейших социальных задач, относящихся к целому спектру комплексных проблем от темпов развития промышленности до уровня загрязнения окружающей среды.
И специалисты и не специалисты знают, что не смотря на громадные затраты на модернизацию и на модификацию двигателей внутреннего сгорания, их коэффициент полезного действия так и не превышает 40%.
Практически, на первый взгляд получается, что недостающие 60% эффективности можно получить, если избавиться от кривошипно – шатунного механизма и это, кажется, решит все проблемы.
Но к сожалению, многочисленные опыты в этом направлении по состоянию на сегодня не принесли каких – либо положительных результатов.
Современный двигатель внутреннего сгорания является настолько глубоко интегрированным техническим решением, с такой сложной системой взаимосвязей, что вывод напрашивается сам собой, - линейного и простого решения не существует, по крайней мере сегодня.
Эффективность сгорания топлива или топливной смеси в современном двигателе внутреннего сгорания достигает 98%, это практический потолок, выше которого подняться, в рамках приемлемых затрат, даже теоретически невозможно.
Всё повышающиеся требования к экологическим характеристикам выхлопных газов двигателей внутреннего сгорания заставляют даже при 98% эффективности сгорания искать дополнительные методы усовершенствования процесса сгорания, для того, что бы эффективность сгорания была не только энергетической но и экологической и могла соответствовать всё более ужесточающимся требованиям стандартов.
Для этого пришлось значительно больше внимания уделить локальным процессам в камерах сгорания и найти и постоянно искать методы их усовершенствования.
Для правильного выбора возможных версий указанных модификаций, интересно рассмотреть полученные результаты предыдущих версий модификаций и модернизаций двигателей внутреннего сгорания и их основных базовых процессов и компонентов.
Использование эмульсии из топлива и воды в сочетании с повышением давления впрыска
Одним из вариантов повышения эффективности двигателей внутреннего сгорания является применение в качестве топлива эмульсии. приготовленной из жидкого углеводородного топлива и воды при помощи устройства для смешивания и гомогенизации топливных композитов.
На фото показана капля воды в дизельном топливе; Диаметр капли составляет около 2 микрон; Вокруг капли имеется оболочка из дизельного топлива толщиной в приблизительно 120 нанометров.
Внутри капли на фото видны нано – частицы воды, которые разделены тончайшими прослойками из дизельного топлива; При этом размеры частиц воды находятся в пределах от 25 до 180 нанометров.
В эмульсии, как видно на фото капли и частицы воды капсулированы в дизельном топливе и такая эмульсия может быть отнесена к категории гомогенных нано-эмульсий.
До момента получения такой нано-эмульсии, применялась микро-эмульсия и, например снижение концентрации сажи в выхлопных газах дизельного двигателя составляло в самых лучших случаях величину эквивалентную содержанию в эмульсии воды; То есть при содержании в эмульсии 15% воды концентрация сажи снижалась на 15%.
При использовании нано-эмульсии с капсулированными в дизельном топливе нано-частицами воды, концентрация сажи снизилась на 97% при таком же (15%) содержании воды в дизельном топливе.
Также необходимо отметить, что при использовании нано-эмульсии мощность двигателя не снижалась, как это происходит при использовании микро-эмульсии.
Не смотря на исключительно обнадёживающие результаты окончательное решение о применении эмульсификатора в системе подготовки топливной смеси ещё не принято и это имеет под собой вполне обоснованные причины и опасения.
Вот некоторые важные особенности и условия применения нано-эмульсии:
- нано-эмульсия применялась на самом современном дизельном двигателе, у которого давление впрыска составляет 2000 бар; как показали испытания нано-эмульсия при прохождении через насос высокого давления и специальные инжекторы не деструктирует и сохраняет на достаточно длительный период времени однородность и внутреннюю локальную структуру;
- сгорание происходило за существенно меньший период времени и отбор тепла при этом происходил на 30% быстрее, чем в стандартном двигателе; этот факт позволяет существенно снизить потери мощности двигателя при прохождении через мёртвые точки и существенно снижает негативное влияние на эффективность двигателя от кривошипно-шатунного механизма;
- при этом имеются и неясности в результатах применения эмульсии, в частности в вопросах коррозионной стойкости элементов конструкции двигателя и в поведении эмульсии при зимних низких температурах;
Достаточно болезненным является и вопрос о ёмкости для воды и ещё множество технических вопросов возникающих при первых попытках интеграции системы в реальный современный двигатель внутреннего сгорания.
Все перечисленные факторы и ещё много других, которые здесь не освещены и которые ещё не достаточно изучены определяют ту осторожность с которой производители двигателей встретили информацию об успешном испытании нано-эмульсии.
Интегральный комбинированный впрыск
В качестве средства обеспечения в короткий период времени достаточного объёма впрыска топливной смеси в камеру сгорания применяется интегральный комбинированный впрыск, который характерен следующим.
Впрыск осуществляется посредством серии инжекционных пульсов, например семи – двенадцати – пятнадцати, при которых самый значительный по объёму, - это первый пульс.
После завершения первого пульса, происходит зажигание и все последующие пульсы осуществляются в процессе горения предыдущих инжекций.
Такой процесс значительно улучшает качество горения в локальном аспекте, но к сожалению не решает всех проблем модификации двигателя внутреннего сгорания.
Повышение давления впрыска
На всех типах двигателей определено, что повышение давления впрыска существенно снижает размеры капель жидкого топлива и улучшает условия горения, особенно в локальном плане.
Именно благодаря этому были достигнуты максимальные показатели коэффициента эффективности сгорания топливной смеси в современных двигателях внутреннего сгорания, доходящие до 98%.
Но при таких отличных показателях эффективности сгорания, проблемы с токсичностью выхлопных газов остаются нерешёнными.
Рециркуляция выхлопных газов
В современных двигателях внутреннего сгорания и особенно в дизельных двигателях для снижения концентрации окислов азота, часть выхлопных газов возвращают в камеру сгорания на следующий цикл горения.
Это снижает температуру пламени и соответственно снижает концентрацию токсичных окислов азота в выхлопных газах.
К сожалению, снижение температуры пламени приводит к снижению мощности двигателя и не изменяет или даже повышает концентрацию сажи в выхлопных газах.
Таким образом рециркуляция выхлопных газов решает проблему токсичных веществ в выхлопных газах частично, при относительно высокой технической и эксплуатационной сложности и высоких материальных издержках.
Конденсация воды из выхлопных газов и эмульсификация топлива с использованием этой водыПри использовании в топливной смеси или в качестве топливной смеси различных модификаций эмульсий в любом случае основной вопрос, - это какую воду использовать для приготовления эмульсии и откуда эту воду брать.
Так как выхлопные газы содержат значительное количество водяных паров, то одним из ответов на вопрос о источнике воды может стать, - конденсация воды из выхлопных газов.
Теперь обратимся к информации о свойствах конденсата, полученного из выхлопных газов.
Самым опасным фактором у конденсата является его химическая агрессивность, то есть его наличие в эмульсии может стать источником возникновения коррозионного поражения поверхностей компонентов цилиндра двигателя внутреннего сгорания.
Кроме того для того, что бы получить в режиме реального времени достаточное количество конденсата необходимо охладить поверхность теплообмена в конденсоре по крайней мере до температуре точки росы, а это ориентировочно не выше чем 3 градуса Цельсия.
Что бы получить такую стабильную температуру необходимо затратить большое количество энергии, что сведёт на нет предполагаемые преимущества, полученные при применении этого варианта модификации.
Непосредственный впрыск этанола в цилиндры
В последнее время появляется информация о том, что на экспериментальных двигателях внутреннего сгорания непосредственно на цилиндр устанавливают дополнительный инжектор для впрыска этанола непосредственно в камеру сгорания.
Ввиду того, что этанол испаряется намного быстрее чем бензин или дизельное топливо, локальные условия горения несколько улучшаются, но существенного влияния на совокупный эффект от работы двигателя этот фактор не оказывает.
Использование при эмульсификации смеси из воды и этанолаКак известно смесь спирта (допустим это этанол) с водой при пропорциях смешивания, - 40% спирта и 60% воды (просто говоря водка) не замерзает при низких температурах.
Это решает проблемы применения эмульсий в зимнее время и добавляет горючие вещества в эмульсию, что по идее должно обеспечить больший выход энергии при сгорании такой эмульсии.
В то же время этанол увеличивает уровень детонации топливной смеси при сгорании, а это снижает октановое или (в случае с дизельным топливом) сетановое число такого композитного топлива.
В качестве положительного аспекта, можно привести аргумент в пользу влияния воды в такой эмульсии, которое смягчает детонационные свойства этанола при горении, так как воспламенение происходит с некоторой задержкой и этанол и вода испаряются с одинаковой термодинамической интенсивностью.
Применение и приготовление такой смеси имеет множество проблем и трудностей и на решение этих уже выявленных и предполагаемых проблем необходимо время и средства, которые при сегодняшнем состоянии экономики найти крайне сложно.
Модификация процесса горения при помощи пульсирующей детонацииМодификация процесса горения при помощи метода сгорания топливной смеси в постоянном объёме камеры сгорания и при постоянном объёме пламени (Constant Volume Combustion)
В информационных массивах можно найти множество сообщений о экспериментальных испытаниях и исследованиях метода сгорания в постоянном объёме, в отличие и в сравнении с методом сгорания при постоянном давлении (более глубоко и детально исследованном).
Теоретически такой вид сгорания топливной смеси, который (опять же теоретически) может быть отнесён к сгоранию в термодинамическом цикле Хемфри (HEMPFREY CYCLE) и должен обеспечить по сравнению с применяемым сегодня классическим циклом Брайтона (BRAYTON CYCLE) почти 20% прирост термодинамической эффективности, должен обеспечить определённый энергетический выигрыш от сгорания топливной смеси не зависящий от потерь на преодоление мёртвых точек в системе современного двигателя.
Указанный метод и цикл сгорания к сожалению ещё не достаточно изучены и инженерное и инновационное сообщество ещё не располагают более или менее достоверной информацией о каких либо обнадёживающих результатах испытаний
Опять к двигателям без кривошипно-шатунного механизма
В настоящее время в информационных массивах представлены более 1000 изобретений и несколько тысяч патентных аппликаций на тему бескривошипных двигателей внутреннего сгорания.
К сожалению трудно найти информацию о построенных успешно работающих двигателях этого типа и о каких либо достоверных и систематически оформленных результатах или протоколов испытаний.
Изобретатели в поиске и надо надеяться на успех.
Роторные двигателиСуществуют многочисленные вариации проектов двигателей внутреннего сгорания в которых авторы проектов стараются исключить потери энергии сгорания топливной смеси при преобразовании возвратно-поступательного движения поршня в цилиндре двигателя в вращательное движение коленчатого вала.
Приведен один из вариантов проекта такого двигателя.
Цель проекта, - создать новую оригинальную конструкцию роторного двигателя внутреннего сгорания, который оставаясь типичным двигателем внутреннего сгорания, сохранил бы и соединил в себе преимущества, конвенционального кривошипно-шатунного двигателя внутреннего сгорания, и роторного двигателя, например двигателя Ванкеля, и не имел бы присущих им недостатков.
Сущность проекта состоит в следующем:
Конструкция существующего конвенционального кривошипно-шатунного двигателя внутреннего сгорания состоит из двух базовых компонентов. Первый компонент – это цилиндр с движущимся в нем поршнем. В камере, образующейся между цилиндром и поршнем, происходит сгорание топлива, получение тепла и преобразование его в механическое возвратно-поступательное движение поршня.
Этот компонент конструкции, удачно созданный Н.Отто в 1876 г. высоко эффективен. Второй базовый компонент конвенционального двигателя – это кривошипно-шатунный механизм. Он предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала. Эффективность этого узла очень низка, составляет менее 45 % и определяет низкую эффективность конвенционального двигателя в целом. Во всех без исключения предыдущих попытках создать роторный двигатель внутреннего сгорания без кривошипно-шатунного механизма и, тем самым, повысить его эффективность, изменялись оба базовых компонента конвенционального двигателя и эти попытки были неудачны.
Вышесказанное определяет базовую идею настоящего проекта и она на первый взгляд проста. В новой термодинамической системе взаимосвязей между элементами конструкции роторного двигателя сохраняется цилиндр с движущимся в нем поршнем и отсутствует кривошипно-шатунный механизм. Эта идея успешно реализована в новой конструкции.
Новый двигатель содержит цилиндр с движущимся в нем поршнем как и конвенциональный двигатель и реализует такую же технологию сгорания топлива, получения тепла и преобразования его в механическое движение поршня относительно цилиндра, только характер этого движения иной.
Это движение не имеет ничего общего с возвратно-поступательным движением.
Под давлением газа и поршень и цилиндр вращаются с одинаковой угловой скоростью и в одном направлении относительно двух эксцентричных осей соответственно. В процессе этого вращения меняется положение поршня относительно цилиндра полностью иммитируя возвратно-поступательное движением поршня в цилиндре конвенционального кривошипно-шатунного двигателя внутреннего сгорания.
Крутящий момент нового двигателя, как предполагается без потерь, создается непосредственно на выходном валу за счет эксцентричного расположения цилиндров относительно оси ротора без использования кривошипно-шатунного механизма. По сравнению с конвенциональным двигателем конструкция изобретенного двигателя так же проста, но более технологична в изготовлении. По сравнению с двигателем Ванкеля она несравненно более технологична визготовлении, имеет несравненно более высокую надежность и долговечность.
Изобретенный двигатель по сравнению с обоими аналогами имеет более высокую мощность на единицу веса, низкий шум и отсутствие вибрации. Но основное достоинство изобретенного двигателя – это супер низкий расход топлива и возможность использовать низкосортное топливо при лучшей экологии. Конструкция этого двигателя, по определению, исключает возможность детонации топлива и поэтому позволяет использовать все виды топлива, ключая газ и биологическое топливо без использования токсических антидетонационных присадок и без необходимости переналадки двигателя при изменении вида топлива. Изобретенный двигатель имеет такую же или большую надежность и долговечность как и конвенциональный двигатель. Вспомогательные системы для обеспечения работы двигателя конструктивно на 90 % такие же, как и в конвенциональном двигателе.
Вывод из вышесказанного – это не еще один роторный двигатель, а принципиально новая конструкция двигателя, способного с большим эффектом заменить существующий конвенциональный кривошипно-шатунный двигатель во всех сферах его применения.
Двигатели с горизонтально расположенными цилиндрами
Это направление сравнительно новое и без информации о систематическом квалификационном тестировании трудно что либо утверждать и даже делать предварительные выводы и сравнительный анализ вариантов.
Гибридные двигатели
Гибридные двигатели также находятся в постоянном процессе усовершенствования и сейчас трудно выделить или сравнить между собой отдельные направления; Время покажет за каким из направлений модификации будущее.
Гибридно – комбинированные двигатели
В связи с тем, что потенциал гибридных двигателей до конца не исчерпан, хотелось бы прогнозировать обобщённый вариант комбинированного гибридного двигателя, в котором могут найти место гипотетические варианты модификации этих двигателей.
ФОРМУЛИРОВАНИЕ ХАРАКТЕРА КОНСТРУКТИВНЫХ И ТЕХНОЛОГИЧЕСКИХ ВЗАИМОСВЯЗЕЙ К ТЕХНИЧЕСКОМУ РЕШЕНИЮ МОДИФИЦИРОВАННОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ
С учётом проведенного структурного анализа проблем модификации и модернизации двигателей внутреннего сгорания, с учётом всех возможных реально реализуемых вариантов модификации и модернизации, этот двигатель представляется следующим:
РОТОРНЫЙ ДВИГАТЕЛЬ ВНУТРЕННЕГО СГОРАНИЯ ИМЕЮЩИЙ ГРУППОВУЮ КИНЕМАТИКУ С ПОРШНЕВОЙ СИСТЕМОЙ В КОТОРОЙ ПОРШЕНЬ И ЦИЛИНДР ОТНОСЯТСЯ К РАЗЛИЧНЫМ КИНЕМАТИЧЕСКИМ ГРУППАМ И ИСПОЛЬЗУЮЩИЙ КОМБИНИРОВАННОЕ ТОПЛИВО НА ОСНОВЕ ОРГАНИЧЕСКОГО БАЗОВОГО КОМПОНЕНТА СМЕШАННОГО С НЕОРГАНИЧЕСКИМИ ДОБАВКАМИ
Тогда сам двигатель и особенности его конструктивных взаимосвязей могут выглядеть так:
Двигатель внутреннего сгорания и способ приготовления горючей смеси для его функционирования, состоящий из:
- установленных на автономных опорах качения, с возможностью независимого вращения одной относительно другой, кинематических групп;
- опорной несущей конструкции с вмонтированными в ней, указанными автономными опорами качения;
- принадлежащих к одной из кинематических групп цилиндров с устройствами подачи горючей смеси;
- принадлежащих к другой из кинематических групп поршней, установленных с возможностью скольжения в цилиндрах, указанной ранее одной из кинематических групп;
- смонтированной в кинематической группе, несущей цилиндры с устройствами подачи горючей смеси, системы смешивания и эмульгирования компонентов указанной горючей смеси;
- автономной системы трубопроводов для подачи компонентов горючей смеси;
- опционально имеющий автономный модуль для синтезирования, по крайней мере, одного из компонентов указанной горючей смеси из газовой среды, окружающей указанный двигатель внутреннего сгорания.
Из принципиального решения двигателя вытекает дополнительное решение на Усилитель моментов и способ производства электроэнергии на его основе, состоящий из:
- установленных на автономных опорах качения, с возможностью независимого вращения одной относительно другой, кинематических групп;
- опорной несущей конструкции с вмонтированными в ней, указанными автономными опорами качения;
- принадлежащих к одной из кинематических групп, установленных на шарнирных опорах, корпусов броневых магнитов с планарными катушками, введёнными в магнитопровод указанных броневых магнитов посредством шлицевого соединения;
- принадлежащих к другой из кинематических групп, сердечников указанных броневых магнитов, установленных в указанных кинематических группах на шарнирных опорах, причём указанные сердечники,имеющие форму шлицевого вала, введены в шлицевое отверстие корпусов указанных броневых магнитов;
- электронной координирующей системы, связующей все магниты указанного усилителя моментов.
Теперь, как производное техническое решение, может быть представлен и Способ производства электроэнергии, включающий:
- создание крутящего момента двигателем внутреннего сгорания;
- передачу полученного крутящего момента на вал генератора и производство эквивалентного крутящему моменту количества электроэнергии;
- передачу полученной электроэнергии на импульсный преобразователь;
- подачу полученных импульсов на электромагнитный преобразователь электрических импульсов в вращательное движение;
- усиление крутящего момента от указанного вращательного движения;
- передачу полученного крутящего момента на вал планарного низкооборотного генератора.
источник: Интернет-сайт "ВЯПат"
полезный материал? Нажмите:patent.km.ua