Автомат опережения впрыскивания. Датчик опережения зажигания тнвд
Автомат опережения впрыскивания | Дизельная топливная аппаратура
Более раннее зажигание при увеличении частоты вращения коленчатого вала способствует увеличению мощности дизельного двигателя. При увеличении частоты вращения коленчатого вала впрыск начинается раньше, что обеспечивается автоматом (муфтой) опережения впрыскивания.
Рис. Автомат опережения впрыскивания:а – исходное положение; b – рабочее положение; 1 – корпус ТНВД; 2 – кольцо с роликами; 3 – ролик; 4 – палец; 5 – канал; 6 – крышка; 7 – поршень; 8 – опора; 9 – пружина; α – угол поворота стержня
Автомат опережения впрыскивания расположен в нижней части корпуса 1 насоса перпендикулярно оси вала ТНВД. Поршень 7 автомата закрыт с обеих сторон крышками 6, с одной стороны в поршне просверлен канал 5 для прохода топлива под давлением из внутренней полости корпуса насоса, с другой стороны установлена пружина сжатия 9. Поршень автомата посредством шарнира 8 и стержня (цапфы) 4 связан с кольцом 2 несущего ролика 3.
Работа автомата опережения впрыскивания топлива происходит следующим образом. В исходном положении поршень автомата находится под действием пружины 9. Давление топлива во внутренней полости корпуса насоса возрастает пропорционально скоростному режиму двигателя и определяется регулировкой перепускного клапана низкого давления и работой жиклера на выходе из насоса. Это давление по каналу 5 передается в рабочий цилиндр автомата с одной стороны поршня, который под действием силы давления топлива в определенный момент начинает перемещаться влево, преодолевая сопротивление пружины 9. Осевое перемещение поршня посредством шарнира 8 и стержня 4 передается кольцу с роликами, которое поворачивается и меняет свое положение относительно кулачковой шайбы таким образом, что кулачки набегают на ролики 3 раньше, обеспечивая фазовое смещение на величину до 12° по углу поворота кулачковой шайбы (до 24° по углу поворота коленчатого вала).
Корректирование угла опережения впрыскивания при холодном пуске дизеля осуществляется вручную водителем из кабины посредством троса или автоматически посредством устройства, устанавливающего угол опережения впрыскивания в зависимости от температуры охлаждающей жидкости.
Привод устройства монтируется на корпусе ТНВД, как это показано на рисунке. Рычаг устройства крепится на валу 12, на другом конце которого эксцентрично расположена поворотная цапфа 3, взаимодействующая при повороте с кольцом 6, несущим ролики 7, т.е. с автоматом опережения впрыскивания топлива.
Рис. Устройство для установки угла опережения впрыскивания в зависимости от температуры двигателя:1 – рычаг; 2 – окно; 3 – поворотная цапфа; 4 – продольная прорезь; 5 – корпус насоса; 6 – кольцо с роликами; 7 – ролик; 8 – поршень; 9 – поворотный стержень; 10 – шарнир; 11 – пружина автомата опережения впрыскивания; 12 – ось устройства; 13 – пружина шпилечная
Исходное положение рычага определяется упором 3 и пружиной 4. К верхней части рычага устройства крепится трос 2 управления с места водителя или шток автомата привода 6.
Рис. Схема автоматического привода устройства для установки угла опережения впрыскивания в зависимости от температуры двигателя: 1 – тяга; 2 – трос; 3 – упор; 4 – пружина; 5 – рычаг; 6 – корпус автомата
Работа устройства, ручного или автоматического, происходит следующим образом. При ручном приводе водитель поворачивает рычаг 1 перед пуском дизеля посредством троса из кузова автомобиля. При этом поворачиваются вал 12 и цапфа 3, под воздействием которой через прорезь 4 кольцо 6 с роликами 7 изменяет свое положение, поворачиваясь против часовой стрелки за счет сжатия пружины 11 и соответствующих перемещений деталей 8, 9 и 10, устанавливая необходимый угол опережения впрыскивания топлива.
При автоматическом приводе автомат, внутри которого находится легко расширяющийся специальный состав, на холодном двигателе обеспечивает нужное опережение впрыскивания, за счет уменьшения объема состава. По мере увеличения температуры охлаждающей жидкости расширительный элемент в корпусе 6 автомата прекращает свое воздействие на кольцо с роликами, за счет увеличения объема состава, находящегося внутри корпуса автомата.
Диагностика и ремонт систем управления двигателем. Коды неисправностей_DTC, диагностика автомобилей, 02 sensor,Лямбда-зонд, Diagnostic, Trouble Codes, Fuel Injection System, Gasolin Direct Injection, Toyota,Nissan,Mitsubishi,Honda,Isuzu
То, что опережение впрыска топлива для дизельных двигателей очень важно, объяснять никому не надо. Естественно, для каждой частоты вращения двигателя оптимальным будет какое-то определенное значение угла опережения, например, для холостого хода 800 об/мин – это 3°, 1000 об/мин - 4°, 1500 об/мин - 5° и т.д. Для достижения такой зависимости, которая, кстати, не является линейной, в корпусе ТНВД есть специальный механизм. Впрочем, это просто поршень (иногда в литературе его именуют таймером), который перемещается внутри ТНВД давлением топлива и через специальный поводок на тот или иной угол разворачивает специальную шайбу с волновым профилем. Будет поршень задвинут дальше – волна шайбы чуть раньше набежит на плунжер, тот начнет движение и раньше начнет подавать топливо к форсунке. Другими словами, угол опережения впрыска зависит от давления топлива внутри корпуса ТНВД и от степени износа волнового профиля шайбы. С давлением топлива, как правило, никаких проблем не бывает. Ну, разве что засорится топливный фильтр, заклинит в открытом состоянии плунжерок редукционного клапана или западут лопасти питающего насоса (внутри ТНВД).Рис. 38. Чтобы полностью проверить редукционный клапан, его можно вывернуть из ТНВД. Плунжер внутри этого редукционного клапана не должен быть заклинен. Так это или не так, можно проверить, надавив на плунжер спичкой. Под воздействием руки плунжер должен легко перемещаться, сжимая пружину.
Рис. 39. Выкручивать редукционный клапан на уже снятом насосе не сложно. Проделать то же, не снимая ТНВД, уже сложнее.
Все эти проблемы возникают довольно редко и легко вычисляются. Оценить состояние топливного фильтра можно легко и однозначно, если перевести двигатель на внешнее питание, то есть под капот двигателя поместить пластиковую бутылку с дизельным топливом, а трубки питания ТНВД и «обратки» отсоединить от своих штатных мест и опустить в эту бутылку. После этого запускаем двигатель и проверяем его работу. Можно даже проехать несколько километров. Если в поведении двигателя ничего не изменилось, значит, топливный фильтр и все, что расположено дальше, к топливному баку, исправно. Кстати, если в бутылку с топливом добавить 30-50% любого моторного масла, то ТНВД будет вынужден подавать более густое топливо (смесь солярки с маслом). И если в ТНВД есть какой-то износ (например, плунжерных пар), износ этот как бы станет сказываться в меньшей степени, и работа двигателя станет лучше. Например, двигатель в горячем состоянии запускается очень тяжело. Причиной этого часто является недостаточный объем подаваемого топлива вследствие износа главной плунжерной пары. И если с густым топливом этот дефект (тяжелый запуск) почти исчезнет, можно с уверенностью снимать ТНВД и менять ему изношенную пару. Хотя в этом случае в ТНВД обычно надо менять все, и его проще выкинуть, чем чинить и потом регулировать. Впрочем, об этом уже выше писалось.
Состояние редукционного клапана (может находиться в заклиненном состоянии) и питающего насоса, можно оценить, используя насос ручной подкачки топлива. Если работа двигателя изменится после того, как вы при работающем двигателе начнете качать ручным насосом, т.е. начнете вручную поднимать давление в корпусе ТНВД, значит или клапан, или насос неисправен. Редукционный клапан легко вывернуть, не снимая ТНВД, и проверить. Только на большинстве дизельных двигателей фирмы «Mitsubishi» для этого приходится тонким зубилом удалять уголок кронштейна, после чего головка редукционного клапана становится доступной для специального ключа. Кстати, этот редукционный клапан можно вывернуть и с помощью длинного бородка (зубильца), не используя ключ.
Рис. 40. Поднять давление в корпусе ТНВД можно путем осаживания заглушки (1) редукционного клапана (2) тонким бородком. В результате этих ударов пружина (3) сильнее надавит на плунжер (4) и тот перекроет отверстие для сброса топлива (5). Чтобы вернуть заглушку обратно (снизить давление в корпусе ТНВД), надо сильнее пробить заглушку вниз, чтобы она сжала пружину полностью и надавила на плунжер таким образом, чтобы вытолкнуть стопор (6). После этого и плунжер и пружина легко вываливаются. Дальше надо перевернуть редукционный клапан и тонким бородком пробить заглушку обратно. Далее все собрать на место и повторить попытку регулировки давления.
Там все уплотнения сделаны на резиновых колечках (ториках) и сильной затяжки не требуется. Если этот клапан целый, его плунжер не заклинен в открытом положении, то следует подозревать неисправность питающего насоса. При условии, что при подкачке топлива работа двигателя становится ровнее. Правда, если из линии перелива (обратки) при работе двигателя льется топливо с пузырьками воздуха, то в первую очередь надо устранить подсос воздуха. Потому что если будет подсос воздуха, то сложно создать требуемое давление в ТНВД, даже с полостью исправным питающим насосом. Но проблемы с подсосом воздухом – это отдельная тема. Тут только заметим, что подсос воздуха, даже при внешнем питании, т.е. когда канистра с топливом находится выше ТНВД, возможен через сальник ТНВД и через не плотности центральной заглушки на чугунной части ТНВД. Эта заглушка используется для точной установки ТНВД по углу подачи топлива (ее вывинчивают, устанавливают микрометрическую головку и меряют ход плунжера, эта процедура описана почти во всех руководствах по ремонту ТНВД). При полностью исправном ТНВД, даже если он был ранее завоздушен, через 10 минут работы двигателя в линии перелива пузырьков воздуха нет.
Итак, угол опережения впрыска зависит от оборотов двигателя. Для экономии топлива, достижения высокой мощности и в плане экологии будет лучше, если этот угол опережения будет изменяться с учетом и других условий работы двигателя, таких, как величина нагрузки на двигатель, давление наддува, температура и др. Но полностью учет всех этих условий возможен только у ТНВД с электронным управлением. У обычных механических учитывается только давление топлива в корпусе ТНВД и, на более современных агрегатах, температура охлаждающей жидкости двигателя. Поршень в нижней части ТНВД перемещается в зависимости от давления топлива и через специальный стальной «палец» немного разворачивает профильную шайбу (эту же шайбу принудительно поворачивает поводок от механизма прогревного устройства). В результате волновой выступ шайбы будет раньше набегать на плунжер, и тот раньше начнет свое движение. Вся эта система была рассчитана и сделана на заводе и худо-бедно справлялась со своими обязанностями. До тех пор, пока не начался интенсивный износ. Интенсивным он стал потому, что в ТНВД стало поступать топливо без смазки (наше «сухое» зимнее топливо, так же как и керосин, почти не содержит тяжелых фракций, которые и обеспечивают смазку всех трущихся деталей), топливо с воздухом и просто грязное топливо (с абразивом). Впрочем, обычная старость тоже делает свое дело. В результате выступ на шайбе начинает чуть позже набегать на плунжер и тот в свою очередь начинает чуть позже свое движение. Другими словами начинается более поздний впрыск. Начало этого явления выглядит так. Двигатель работает на холостом ходу и, вследствие разного износа форсунок, немного трясется. Добавляем ему оборотов. Примерно на 1000 об/мин двигатель перестает трястись и как бы замирает – работает ровненько – ровненько. Еще повышаем обороты. И вдруг в диапазоне 1500 – 2000 об/мин появляются вздрагивания. Эти вздрагивания (тряска) могут появляться как при плавном, но интенсивном, так и при медленном повышении оборотов. Во время тряски из выхлопной трубы идет синий дым. Когда двигатель полностью прогреется, тряска в районе 1500 – 2000 об/мин исчезает. Это в самом начале развития дефекта. Потом тряска не пропадает и после прогрева двигателя. Точно такая же тряска появляется, если поднять давление впрыска на форсунках. В этом случае, если ТНВД изношен, тоже получится поздний впрыск топлива. Избавляемся мы от этого явления, повернув корпус ТНВД на более ранний впрыск. Иногда приходится доворачивать ТНВД почти до упора. Но прежде чем это сделать, послушайте работу двигателя. Когда у дизельного двигателя слишком ранний впрыск, он начинает работать более жестко (еще говорят, что у него стучат клапана). И если вы убедитесь, что оборотов за 50-100 до начала тряски эта жесткая составляющая в акустическом фоне дизеля исчезла, значит точно надо поворачивать ТНВД. Тут следует заметить, что у изношенных дизелей зазор поршень – цилиндр очень большой и поэтому они начинают работать жестко даже при абсолютно правильном угле опережения впрыска. Использование для установки опережения впрыска стробоскопа в нашем случае не совсем оправдано. Не будем говорить о том, что стробоскопы более уверенно ловят своим микрофоном стук уже сильно изношенной форсунки. Если же форсунка в приличном состоянии, а трубка подачи топлива закреплена штатно, лампа стробоскопа, как правило, дает сбои. Установить с помощью стробоскопа можно опережение впрыска при холостом ходе. Именно это опережение дается в технической документации. Но износ в ТНВД неравномерный. И очень часто установив опережение по метке с помощью стробоскопа при оборотах холостого хода, мы не избавляемся от тряски на оборотах, вызванной поздней подачей топлива. Поэтому мы и рекомендуем выставлять опережение на слух. При том износе, который имеют эксплуатируемые нами дизеля, это более приемлемый способ. Ведь только таким образом можно скомпенсировать поздний впрыск, вызванный низким давлением топлива в корпусе ТНВД из-за износа питающего насоса. Это почти то же самое, что и регулировка опережения зажигания у бензинок. Вы можете с помощью приборов установить опережение зажигания только при оборотах холостого хода (а другого и не предлагается руководствами по ремонту), но из-за неисправности, например, центробежного регулятора, машина ехать не будет. Ясно дело, что его надо чинить или менять. Но можно, повернув трамблер, выставить на слух приемлемый угол опережения зажигания. Разница только в том, что у бензиновых двигателей критерием правильности установки опережения зажигания без использования приборов будут детонационные стуки и мощность двигателя, а у дизелей – тряска, дымность и стуки в двигателе.
Выше уже упоминалось, что большинство проблем ТНВД происходят из-за всяческого рода утечек и протечек. Износился, например, плунжер, возникла протечка, вот и не создает он давление. А если заменить топливо более густым? Тогда повышенные зазоры в сопрягаемых деталях как бы станут меньше. И ТНВД заработает так, будто у него и нет никакого износа. Сделать топливо густым очень просто. Добавьте, как говорилось выше, в него любого моторного масла. Конечно, ездить так не хочется – слишком дорогое топливо получается (да и хлопотно это, постоянно приготавливать густое топливо). Но для проверки состояние ТНВД (как и для успешной продажи сильно подержанного автомобиля на базаре) этот прием полезен. В холодное время года мы, из-за природной лени, для того, чтобы сделать топливо густым, просто охлаждаем ТНВД. Например, приходит машина с дизельным двигателем с жалобой на то, что плохо заводится, если постоит минут пять, но двигатель еще горячий. Мы заводим эту машину (действительно, иногда приходится крутить стартером секунд 30), прогреваем ее еще минут 10 и глушим. После этого открываем ей капот и снегом охлаждаем ТНВД. В течение тех же 5 минут. Если после этой операции двигатель запустится лучше, чем в первый раз, уже можно говорить о сильном износе ТНВД. Конечно, оба эти трюка (с густым топливом и с охлаждением ТНВД) не описываются в заводских руководствах по ремонту двигателя и, поэтому их нельзя считать очень уж научными. В тех руководствах измеряется объем подачи топлива при запуске (есть в технических данных такой параметр – объем подачи при скорости вращения 200 об/мин) и проверить этот параметр в домашних условиях тоже несложно. Для этого надо выкрутить все свечи накаливания и снять трубку с одной форсунки. Потом на эту трубку надеть корпус одноразового медицинского шприца и стартером покрутить двигатель. Естественно, считая «пшики». 200 «пшиков», это, конечно, много. Достаточно и 50, а потом полученный результат сравнить с техническими данными. При этом можно считать, что объем впрыска при 200 об/мин для всех японских дизелей, если у них одинаковый объем, будет один и тот же. Если объем вашего двигателя чуть другой, несложно составить пропорцию с объемом дизеля, данные на который у вас имеются. Все это мы тоже проделываем, когда горячий двигатель плохо заводится, хотя, как следует из практики, можно все проверить и проще. Используя снег и моторное масло. Другими словами, если работа ТНВД с густым топливом становится более приемлемой, надо проверять объем впрыска. Лучше, конечно, это все сделать на стенде (там можно провести проверить все режимы работы у ТНВД), но в режиме запуска (т.е. при 200 об/мин) проверку можно сделать и в гараже.
Итак, если у дизельного двигателя есть тряска в районе 1500 – 2000 об/мин, сопровождаемая к тому же синим цветом выхлопных газов, надо ремонтировать топливную систему. И в частности, сделать впрыск топлива раньше. Для этого в простейшем случае надо повернуть ТНВД на более ранний впрыск.
Корниенко Сергей © Легион-Автодата
Диагност г. Владивосток
autodata.ru
Опережение момента впрыска топлива
Наиболее важными критериями для оптимизации работы дизельного двигателя являются следующие:
- низкая токсичность выхлопных газов;
- низкий шум от процесса сгорания;
- низкий удельный расход топлива.
Момент времени, в который ТНВД начинает подавать топливо, называется началом подачи (или закрывания канала). Этот момент времени подбирается в соответствии с периодом задержки воспламенения (или просто задержкой воспламенения). Они являются переменными параметрами, которые зависят от конкретного рабочего режима. Период задержки впрыска определяется как период между началом подачи и началом впрыска, а период задержки воспламенения — как период между началом впрыска и началом сгорания. Начало впрыска определяется как угол поворота коленчатого вала в области ВМТ, в которой форсунка впрыскивает топливо в камеру сгорания.
Начало сгорания определяется как момент воспламенения топливо-воздушной смеси, на который может влиять начало впрыска. У ТНВД регулировка начала подачи (закрывания канала) в зависимости от числа оборотов лучше всего осуществляется с помощью устройства опережения впрыска.
Назначение устройства опережения впрыска
Из-за того, что устройство опережения впрыска непосредственно изменяет момент начала подачи, оно может быть определено как регулятор начала подачи. Устройство опережения впрыска (называемое еще муфтой опережения впрыска) эксцентрикового типа преобразует приводной крутящий момент, поступающий к ТНВД, в то же самое время, осуществляя свои регулирующие функции. Крутящий момент, требуемый ТНВД, зависит от размера насоса, количества плунжерных пар, количества впрыскиваемого топлива, давления впрыска, диаметра плунжера и формы кулачка. Тот факт, что крутящий момент привода имеет непосредственное влияние на характеристики опережения впрыска, следует учитывать при конструировании наряду с возможной отдачей мощности.
Давление в цилиндре
Рис. Давление в цилиндре: А. Начало впрыска; В. Начало сгорания; С. Задержка воспламенения. 1. Такт впуска; 2. Такт сжатия; 3. Рабочий ход; 4. Такт выпуска ОТ-ВМТ, UT-НМТ; 5. Давление в цилиндре, бар; 6. Положение поршня.
Конструкция устройства опережения впрыска
Устройство опережения впрыска для рядного ТНВД устанавливается непосредственно на конце кулачкового вала ТНВД. В основном различаются между собой устройства опережения впрыска открытого типа и закрытого типа.
Устройство опережения впрыска закрытого типа имеет собственный резервуар для смазывающего масла, который делает устройство независимым от системы смазки двигателя. Открытая конструкция подсоединена непосредственно к системе смазки двигателя. Корпус устройства прикреплен винтами к зубчатой шестерне, а компенсирующие и регулировочные эксцентрики установлены в корпусе так, что они свободно поворачиваются. Компенсирующие и регулировочные эксцентрики направляются штифтом, который жестко соединен с корпусом. Кроме более низкой цены, «открытый» тип имеет еще преимущество в том, что ему нужно меньше места, и он более эффективно смазывается.
Принцип работы устройства опережения впрыска
Устройство опережения впрыска приводится в движение зубчатой шестерней, которая установлена в кожухе привода газораспределительного механизма двигателя. Соединение между входом и выходом для привода (ступицей) осуществляется через блокировочные пары эксцентриковых элементов.
Наибольшие из них, регулировочные эксцентриковые элементы (4) расположены в отверстиях в стопорном диске (8), который, в свою очередь, крепится болтами к элементу привода (1). Компенсирующие эксцентриковые элементы (5) установлены в регулировочные эксцентриковые элементы (4) и направляются ими и болтом в ступицы (6). С другой стороны, болт ступицы непосредственно соединен со ступицей (2). Грузики (7) соединены с регулировочным эксцентриковым элементом и удерживаются в исходных положениях пружинами с переменной жесткостью.
Рис. а) В начальном положении; b) Низкие обороты; с) Средние обороты; d) Конечное положение при высоких оборотах; а — угол опережения впрыска.
Размеры устройства опережения впрыска
Размер устройства опережения впрыска, определяемый наружным диаметром и глубиной, в свою очередь определяет массу устанавливаемых грузиков, расстояние между центрами тяжести и возможный ход грузиков. Эти три фактора также определяют отдачу мощности и область применения.
ТНВД размера М
Рис. ТНВД размера М
Рис. 1. Нагнетательный клапан; 2. Гильза; 7. Кулачковый вал; 8. Кулачок.
ТНВД размера М является самым маленьким насосом в ряду рядных ТНВД. Он имеет корпус из легкого сплава и укреплен на двигателе с помощью фланца. Доступ к внутренней части насоса возможен после снятия пластины основания и боковой крышки, и поэтому насос размера М определяется как ТНВД открытого типа. Пиковое давление впрыска ограничивается величиной 400 бар.
После снятия боковой крышки насоса количество подаваемого топлива плунжерных пар может быть отрегулировано и установлено на одинаковом уровне. Индивидуальная регулировка осуществляется перемещением зажимных деталей на тяге управления (4).
При работе установка плунжеров насоса и вместе с ними количества подаваемого топлива регулируется тягой управления в диапазоне, определяемом конструкцией насоса. Тяга управления ТНВД размера М является круглым стальным стержнем с плоскостью, на котором установлены зажимные элементы (5) с проточками. Рычаги (3) плотно соединяются с каждой втулкой управления, а стержень, приклепанный к его концу, входит в проточку зажимного элемента тяги управления. Эта конструкция известно как рычажное управление.
Плунжеры ТНВД находятся в непосредственном контакте с роликовыми толкателями (6), а регулировка предварительного хода осуществляется подбором роликов с соответствующими диаметрами для толкателя.
Смазка ТНВД размера М осуществляется путем обычной подачи масла от двигателя. ТНВД размера М выпускается с 4,5 или 6 плунжерными парами (4-, 5- или 6-цилиндровый ТНВД) и предназначен только для дизельного топлива.
ТНВД размера А
Рис. ТНВД размера А
Рядные ТНВД размера А с большим диапазоном подачи следуют непосредственно после ТНВД размера М. Этот насос также имеет корпус из легкого сплава и может быть соединен с двигателем фланцем или на раме. ТНВД типа А также имеет «открытую» конструкцию, а гильзы (2) насоса вставлены прямо сверху в алюминиевый корпус, причем нагнетательный клапан (1) в сборе запрессован в корпус ТНВД с помощью держателя клапана. Давление уплотнения, которое намного больше гидравлического давления при подаче, должно поглощаться корпусом ТНВД. По этой причине пиковое давление впрыска ограничивается величиной 600 бар.
В отличие от ТНВД типа М, ТНВД типа А снабжен регулировочным винтом (с контргайкой) (7) в каждом роликовом толкателе (8) для установки предварительного хода.
Для регулировки количества подаваемого топлива с помощью управляющей рейки (4) ТНВД типа А, в отличие от ТНВД типа М, оснащен управлением с помощью шестерни вместо рычажного управления. Зубчатый сегмент, зажатый на втулке управления (5) плунжера, находится в зацеплении с управляющей рейкой и для регулировки плунжерных пар на одинаковую подачу фиксирующие винты нужно отпустить, а втулку управления повернуть относительно зубчатого сегмента и, таким образом, относительно управляющей рейки.
Все регулировочные работы на этом типе ТНВД должны проводиться на насосе, установленном на стенде и с открытым корпусом. Подобно ТНВД М, ТНВД типа А имеет боковую подпружиненную крышку, которую для получения доступа к внутренней части ТНВД нужно снять.
Для смазки ТНВД соединяется с системой смазки двигателя. ТНВД типа А выпускается в вариантах с числом цилиндров до 12, и, в отличие от ТНВД типа М, подходит для работы на топливах различного типа (а не только на дизельном).
ТНВД размера WM
Рис. ТНВД размера WM
Рядный ТНВД размера (типа) MW был разработан для удовлетворения потребности в повышенном давлении. ТНВД MW является рядным ТНВД закрытого типа, а его пиковое давление впрыска ограничивается величиной 900 бар. Он также имеет корпус из легкого сплава и крепится к двигателю с помощью рамы, плоского основания или фланца.
Конструкция ТНВД MW заметно отличается от конструкции ТНВД типов А и М. Основная разница состоит в использовании плунжерной пары, включающей в себя гильзу (3), нагнетательный клапан и держатель нагнетательного клапана. Она собрана вне двигателя и вставлена сверху в корпус ТНВД. На ТНВД MW держатель нагнетательного клапана вкручен непосредственно в гильзу, которая выступает вверх. Предварительный ход регулируется с помощью регулировочных шайб, которые вставляются между корпусом и гильзой с клапаном в сборе. Регулировка однородной подачи отдельных плунжерных пар производится снаружи ТНВД поворотом плунжерных пар. Фланцы крепления плунжерных пар (1) для этой цели снабжены пазами.
Рис. 1. Фланец крепления для плунжерной пары; 2. Нагнетательный клапан; 3. Гильза; 4. Плунжер; 5. Управляющая рейка; 6. Втулка управления; 7. Роликовый толкатель; 8. Кулачковый вал; 9. Кулачок.
Положение плунжера ТНВД остается неизменным, когда гильза в сборе с нагнетательным клапаном (2) поворачивается. ТНВД типа MW выпускается в версиях с числом гильз до 8 (8-цилиндровый) и подходит для различных способов крепления. Он работает на дизельном топливе, а смазка осуществляется через систему смазки двигателя.
ТНВД размера P
Рис. ТНВД размера P
Рис. 1. Нагнетательный клапан; 2. Гильза; 3. Тяга управления; 4. Втулка управления; 5. Роликовый толкатель; 6. Кулачковый вал; 7. Кулачок.
Рядный ТНВД размера (типа) Р был также разработан для обеспечения высокого пикового давления впрыска. Подобно ТНВД типа MW, он является насосом закрытого типа и крепится к двигателю с помощью основания или фланца. В случае ТНВД типа Р, сконструированных для пикового давления впрыска 850 бар, гильза (2) вставляется во фланцевую втулку, которая уже снабжена резьбой для держателя нагнетательного клапана (1). При этой версии установки гильзы сила уплотнения не дает нагрузку на корпус насоса. Регулировка предварительного хода производится так же, как и у ТНВД типа MW.
Рядные ТНВД, рассчитанные на невысокое давление впрыска, используют обычное наполнение топливной магистрали. При этом топливо проходит топливные магистрали отдельных гильз одну за другой и в направлении продольной оси ТНВД. Топливо поступает в магистраль и выходит через систему возврата топлива.
Рассматривая в качестве примера версию Р8000 ТНВД типа Р, которая разработана для давления впрыска до 1150 бар (на стороне ТНВД), этот метод наполнения может привести к избыточной разнице температуры топлива (до 40°С) внутри ТНВД между первой и последней гильзами. Так как плотность энергии топлива уменьшается с увеличением его температуры и, в результате, с увеличением обьема, то это приведет к впрыску различного количества энергии в камеры сгорания двигателя. В связи с этим такие ТНВД используют поперечное наполнение, т.е. метод, при котором топливные магистрали отдельных гильз отделяются друг от друга с помощью дросселирующих отверстий. Это означает, что они могут наполняться параллельно друг другу (под прямыми углами к продольной оси ТНВД при практически идентичных температурных условиях).
Этот ТНВД также подсоединяется к системе смазки двигателя для смазки. ТНВД типа Р также выпускается в версиях с числом гильз (цилиндров) до 12 и подходит для работы как на дизельном, так и на других топливах.
ustroistvo-avtomobilya.ru
Устройство автомата опережения впрыском топлива в ТНВД VP44
Автомат относится к гидромеханическим устройствам, которые применяются для изменения угла опережения впрыска топлива в ТНВД с механическими форсунками, открываемыми давлением топлива. Угловое положение кулачкового кольца изменяется автоматом опережения впрыска, исполнительным устройством которого является гидравлический поршень. Изменение положения поршня, вызывающего поворот кулачкового кольца, обеспечивается регулирования электромагнитным клапаном давления топлива в камере управляющего давления. Давление топлива, изменяемое от режима работы двигателя, называется управляющим давлением, его величина передается на исполнительный поршень. Величина управляющего давления зависит в основном от скорости двигателя.
П — поздний впрыск Р — ранний впрыск
1 — кулачковое кольцо. 2 — поршень, 3 — золотник, 4 — подкачивающий насос, 5 — полость нагнетания, 6 — полость всасывания, 7 — входной канал, 8 — управляющий поршень, 9 — камера низкого давления, 10–управляющее давление, 11 – перепускное отверстие, 12 — электромагнитный клапан
Электромагнитный клапан встроен в сливной канал, поэтому при открытом положении клапана, как показано на рисунке, топливо из полости нагнетания 5 подкачивающего насоса 4, поступая к автомату, сливается черев перепускное отверстие 11 и открытый топливный канал, показанный красным цветом. Топливо при этом предварительно проходит через камеру управляющего давления 10. Поршень перемещается в расточке корпуса под воздействием регулируемого давления топлива, действующего на левый по схеме торец, являющийся днищем поршня. Возврат в исходное положение поршня обеспечивается внешней возвратной пружиной, установленной с противоположной стороны поршня. Внутри поршня размешен золотник 3, автоматически регулирующий проходное сечение перепускного отверстия 11. Золотник обеспечивает повышение точности установки давления топлива, действующего на исполнительный поршень. Золотник в расточке поршня может перемещаться вправо по схеме совместно с управляющим поршнем 8. Перемещение золотника возможно благодаря усилию, действующему на управляющий поршень и развиваемому давлением топлива в камере управляющего давления, давление топлива, развиваемое подкачивающим насосом 4, поступает через левое по схеме отверстие в полость, образованную в средней часта золотника цилиндрической расточкой и корпусом поршня. Полости и каналы, на которые распространяется развиваемое топливоподкачивающим насосом 4 давление, изображены синим цветом. Это топливо необходимо для смазки золотника и создает дополнительное, действующее на золотник, усилие. С правой стороны на золотник действует давление топлива внутренней полости поршня, связанной каналом с полостью всасывания 6 насоса. При наличии разности давлений топлива между полостями нагнетания и всасывания на золотнике всегда имеется перепад давления топлива во время работы двигателя. Полости и каналы с низким давлением топлива показаны зеленым цветом.
Управляющий поршень 8 служит для точной регулируемой установки золотника и перемещается внутри цилиндрической расточки в головке автомата. На поршень с одной стороны действует давление топлива камеры управляющего давления 10. Под воздействием этого давления убавляющий поршень может перемещаться вправо по схеме. Это перемещение возможно, так как величина управляющего давления не может быть ниже величины давления в камере 9. То есть управляющий поршень перемешается благодаря перепаду давлений топлива. В результате снижения величины управляющего давления поршень 8 будет, перемещается в обратном направлении под воздействием внутренней возвратной пружины, опирающейся на тарелку, закрепленную на основании поршня. Положение управляющего поршня и, соответственно, золотника будет зависеть от баланса сил, который определяется силой упругости внутренней возвратной пружины с одной стороны и силой, развиваемой от величины перепада давлений на управляющем поршне и золотнике с другой стороны. Каналы и полости, в которых действует управляющее давление, показаны красным цветом.
Величина управляющего давления определяется размером проходного сечения сливного канала, изменяемого электромагнитным клапаном 12 опережения впрыска. Клапан соленоидного типа с втягивающимся сердечником. В исходном состоянии при отсутствии тока в обмотке соленоид выдвинут из корпуса, и полностью запирает сливной канал. В рабочем положении при прохождении через обмотку клапана тока управления соленоид втягивается внутрь корпуса, сечение сливного каната при этом изменяется. Если ток управления максимальный, то сливной канал открыт полностью, и топливо сливается из камеры управляющего давления 10 беспрепятственно. Давление в камере понижается до уровня давления в полости всасывания 6. При уменьшении силы тока в обмотке клапана соленоид начинает закрывать сливной канал, благодаря чему повышается давление топлива в камере управляющего давления. При закрытом канале и отсутствии слива топлива давление топлива в камере управляющего давления 10 устанавливается максимальным и равным давлению, развиваемому подкачивающим насосом в полости нагнетания 5. Ток управления клапаном импульсный переменной скважности, изменением скважности устанавливается с достаточной точностью средняя сила тока, при которой соленоид занимает промежуточное положение в сливном канате, В этом случае величина управляющего давления изменяется, промежуточное значение давления будет зависеть от сечения сливного отверстия или силы тока управления клапаном.
Установка угла запаздывания
Начальный угол запаздывания впрыска устанавливается при полностью открытом сливном канале, когда в обмотку клапана поступает максимальный электрический ток. На работающем двигателе в камере низкого давления 9 поддерживается низкое давление топлива, в то же время при полностью открытом клапаном 12 сливном канале в камере управляющего давления 10 устанавливается практически не отличающаяся величина давления. При практически равном давлении в камерах 9 и 10 управляющий ток полностью открывает перепускное отверстие 11, через которое топливо беспрепятственно истекает из камеры нагнетания 5. Направление течения топлива по топливным каналам автомата показано стрелками. На левый торец поршня 2, являющийся днищем, в этом случае будет действовать низкое давление топлива, и поршень будет смещен внешней возвратной пружиной в крайнее левое положение. В результате перемещения поршня золотник 3 под воздействием внутренней возвратной пружины также будет перемещаться влево по схеме вслед за поршнем 2.
Перемещение золотника совместно с поршнем 2 необходимо для поддержания постоянно открытым перепускного отверстия 11, и обеспечения постоянно низкого давления топлива над днищем поршня 2. В результате перемещения влево по схеме поршень 2 развернет кулачковое кольцо 1 в сторону уменьшения угла опережения впрыска до начального значения. Для подвижного соединения кулачкового кольца с поршнем кольцо имеет шарнирный палец, входящий в зацепление с пазом поршня. Общий вид кулачкового кольца для шестицилиндрового двигателя представлен на рисунке.
Автомат устроен так, что при дальнейшем перемещении поршня 2 влево по схеме кромка золотника 3 начнет перекрывать перепускное отверстие 11, благодаря чему будет уменьшаться сток топлива из полости нагнетания 5, и давление топлива, развиваемое подкачивающим насосом, прекратит понижаться. Установившееся давление, действуя на днище поршня 2, ограничит его перемещение в сторону уменьшения угла запаздывания впрыска. Окончательное положение поршня и угол впрыска будут определяться балансом сил, действующих на поршень. С одной стороны баланс будет зависеть от силы упругости внешней пружины, действующей на поршень, а с другой стороны — от силы, развиваемой давлением топлива, действующего на днище поршня. Величина давления топлива будет определяться частотой вращения двигателя.
Общий вид кулачкового кольца
Установка угла опережения
Максимальный угол опережения впрыска топлива устанавливается при практически полностью закрытом сливном канале, когда в обмотку клапана поступает слабый ток. Как только электромагнитный клапан 12 закроет сливной топливный канал, в камере управляющего давления 10 давление топлива повысится, и на управляющий поршень 8 начнет действовать полное давление, развиваемое топливоподкачивающим насосом 4. Под воздействием давления топлива управляющий поршень 8 переместится в направлении направо согласно схеме совместно с золотником 3. Это же давление топлива начинает действовать во внутренней полости золотника, увеличивая усилие на золотник. При перемещении золотника он своей кромкой начинает перекрывать перепускное отверстие 11. В результате закрытия сливного канала клапаном 12 и перепускного отверстия 11 золотником на днище поршня 2 начнёт действовать полное давление топлива, которое способен развить топливоподкачивающий насос при установившейся частоте вращения двигателя. Поршень 2 автомата начнёт перемещаться вправо по схеме, вслед за управляющим поршнем и разворачивать кулачковое кольцо в направлении опережения впрыска топлива. Если в результате повышения оборотов и роста давления топлива золотник 3 с управляющим поршнем 3 переместятся до упора, то поршень 2 автомата при своем дальнейшем перемещении вправо начнёт вновь открывать перепускное отверстие 11. При открытии перепускного отверстия восстанавливается слив топлива из полости нагнетания 5 и предотвращается тем самым дальнейший рост давления топлива. В результате стабилизации давления топлива поршень 2 останавливается, чем ограничивается максимальное значение угла опережения впрыска топлива.
Изменение момента впрыска топлива
Для изменения угла опережения впрыска с модуля топливного насоса на электромагнитный клапан начинает поступать ток управления заданной скважности, и электромагнитный клапан 12 открывает сливной канал.
Электронный модуль управления насосом обеспечивает срабатывание автомата на опережение или запаздывание момента впрыска посредством изменения кратности закрытия или открытия электромагнитного клапана. Клапан управляется импульсным током переменной скважности, позволяющим бесступенчато изменять угол опережения впрыска. При скважности тока управления более 50% и высокой средней силе клапан открывает сливной канал, чем обеспечивается позднее начало подачи топлива. Для обеспечения легкого запуска угол опережения впрыска должен быть установлен близким к 0, поэтому в момент старта на клапан поступает постоянный ток, сила которого является максимальной. При скважности тока управления менее 50% и низкой средней силе тока клапан закрывает сливной канал, чем обеспечивается более раннее начало подачи топлива.
faqpatrol.ru
Устройство и принцип работы ТНВД Denso
Со временем, из-за достаточного количества факторов, в том числе и морального устаревания. Устаревшие топливные насосы высокого давления (ТНВД), устройство которых значительно отставало от развития двигателей сталид потихоньку исчезать. По мере их исчезновения стали разрабатываться новые варианты насосов, и кампания Denso стала, и остается флагманом развития.
Denso разработали ТНВД, который подчиняется электронному блоку управлению. Благодаря такому решению удалось добиться ощутимого повышения точности дозировки топлива и значительного повышения равномерности и плавности работы двигателя.
На некоторых насосах от Denso можно найти быстродействующий клапан, устройство которого позволяет разделить на две фазы процесс впуска топлива в цилиндры, за счет чего значительно повышается качество сгорания топливной смеси. Также точная работа ТНВД способствует снижению выброса негативных веществ в атмосферу.
ТНВД denso
Электронная система
Как правило, в таких электронных системах принято использовать насосы распределительного типа так как в них установлены дополнительные устройства. Они регулируют положение дозатора и клапана автоматического опережения на впрыске топлива.
Блок управления ТНВД Denso и само его устройство очень похоже на принцип работы инжекторного двигателя и его ЭБУ. Блок управления воспринимает сигналы от большого количества датчиков, которые также присущи известному нам инжекторному двигателю. Это датчик положения педали акселератора, частоты вращение распределительного и коленчатого валов, температуры воздуха и прочие.
Зачем нужны сигналы
Эти сигналы обрабатывает блок управления и складываются в определенный посыл для топливного насоса после чего и отправляются туда. Получая сигнал, он обеспечивает соизмеримую подачу топлива в цилиндры, выбирает давление форсунки и, определяет нужный и лучший угол опережения впрыска. Система, основанная на датчиках довольно эффективна. К примеру, если на двигатель опускается дополнительная нагрузка, печка, например, или кондиционер, то ЭБУ моментально это замечает по поступающим сигналам и в режиме реального времени корректирует работу ТНВД так, чтобы компенсировать новую нагрузку.
Устройство системы
Устройство такого сложного электронного насоса начинается с самого главного – с исполнительного механизма. Принцип его основан на действии электрических магнитов, а задача заключается в изменении положения дозирующей муфты. Управляет ей непосредственно электронный блок. Теперь нужно понять устройство и разобраться в том, с каких же конкретно датчиков блок воспринимает сигналы, так как это может серьезно помочь в решении неполадок и диагностике появившихся проблем. В блок поступает информация с датчика начала впрыска, который расположен в одной из форсунок насоса Denso, с датчика ВМТ и частоты вращения коленчатого вала, он нашел себе место в головке блока. По этому же датчику водителю сообщаются и показания тахометра. Также участие принимают датчики массового расхода воздуха, температуры воздуха и температуры охлаждающей жидкости, положения педали газа. Далее, компьютер основываясь на заданных характеристиках и показаниях датчика создает сигналы, которые уходят в насос. Если конкретнее, то эти сигналы получают механизм цикловой подачи топлива и механизм контроля опережения. Таким образом, работа ТНВД Denso корректируется в зависимости от режима работы: от холостого хода до работы на полную мощность. Для большей надежности каждый из механизмов получил встроенный потенциометр, который отправляет сигнал в обратную сторону для получения надежных сведений о положениях муфты и необходимого угла опережения.
ТНВД Denso
Также в обязанности ЭБУ (электронный блок управления) на дизельном двигателем входит и контроль всех рутинных процессов. То есть его устройство позволяет с помощью тех же электронных сигналов полностью управлять, к примеру, стабилизацией частоты вращения коленчатого вала или же рециркуляцией охлаждающей жидкости. Помимо этого, в блоке также сохранены все оптимальные значения абсолютно всех показателей двигателя, сделано это для того, чтобы по мере изменения показателей в сторону от эталонных блок мог корректировать процессы, чтобы двигатель работал “идеально”. Также любопытно то, что Denso заложили в устройство ЭБУ программу быстрой диагностики всех систем мотора. Эта программа позволит контролировать и поддерживать работу двигателя при большинстве даже аварийных неполадок, чтобы машина даже в экстремальной ситуации не подвела своего хозяина. Соответственно если что-то случится с блоком управления, то тут уже ничего не поможет запустить двигатель и поехать.
Принцип роботы исполняющих механизмов
Чаще всего для ТНВД Denso устройство исполняющих механизмов представляет собой сложный электромагнит у которого поворотный сердечник. Конец этого сердечника особым образом соединяется с эксцентриком дозирующей муфты. Когда блок пускает по цепи электрический сигнал, то электромагнит его воспринимает и делает поворот сердечника на угол от 0 до 60 градусов, соответственно перемещая дозирующую муфту, которая и изменяет характеристики цикла подачи.
Опережение угла впрыска осуществляется также электромагнитом, только здесь это специальный клапан, который изменяет показатель давления топлива. Клапан работает с огромной скоростью, он всегда либо открыт, либо закрыт. На скорость движения клапана влияет частота вращения распределительного вала. Когда электромагнитный клапан полностью открывается, то давление очень низкое, соответственного и угол опережения также уменьшается. Когда клапан закрывается все происходит с точностью наоборот. На положение клапана воздействует импульс из блока, а ЭБУ формирует его в соответствии с режимом работы двигателя и его температурными показателями. Чтобы компьютер мог определять момент начала впрыска топлива в одной из форсунок есть индукционный датчик подъема иглы форсунки.
Электромагнитные движущие механизмы
В различных видах ТНВД Denso в качестве исполняющих механизмов могут применяться различные электромагнитные устройства, моментные, линейные или шаговые электродвигатели. Они выполняют роль движущего механизма, то есть привода дозатора топлива в насосах. Рассмотрим несколько иной принцип работы электромагнитного клапана, чем был приведен ранее. Для хорошей работы такой системы в корпусе каждой форсунки находится катушка возбуждения, на которую компьютер подает напряжение. Это делается для того, чтобы поддерживать постоянное напряжение в цепи независимо от остальных показателей. Ток, проходящий по этой цепи создает магнитное поле вокруг катушки возбуждения. В один момент, когда точка подъёма иглы достигает своего пика возникает мощный импульс, который сразу же передается в компьютер, который его анализирует и корректирует необходимый угол опережения впрыска. Также на коррекцию влияет и сохраненный в памяти блока эталонный сигнал, его значение учитывается при расчете соответствующих условий работы дизеля. Обработав сигнал, проанализировав и сравнив с эталонным вариантом, ЭБУ посылает обратный сигнал в форсунку. Клапан в форсунке соединён с автоматом, если конкретнее, то с его рабочей камерой. Когда автомат принимает определенный сигнал, то давление, что действует на поршень автомата повышается или уменьшается, и как результат поршень меняет свое положение вследствие чего изменяется и угол опережения.
Особенности работы ТНВД Denso
Далее, разберемся в устройстве непосредственно данного типа ТНВД от Denso. Мы уже разобрались в том, что всеми системами двигателя управляет ЭБУ, который к тому же еще и совмещен, т.е. ему подчиняются и все остальные системы мотора. Начнем с контура низкого давления. Обычно в таких системах применяется топливоподкачивающий насос шиберного типа, он также подчиняется компьютеру. В частности, давления топлива создаваемое им зависит от частоты вращения насосного колеса. Однако ЭБУ так корректирует его работу, что при увеличении частоты его вращения давление растет не пропорционально. В насосе есть отверстие, через которое топливо выходит на клапан, из чего следует, что клапан располагается в непосредственной близости от самого насоса. Клапан изменяет характер своей работы в зависимости от того, сколько топлива потребляет двигатель в данный конкретный момент времени. Соответственно при резком изменении условий работы двигателя, например, при резком разгоне, клапан четко на это отреагирует. Пройдя клапан топливо попадает в соответствующие секции ТНВД и к устройству опережения впрыска.
Также в насосе существуют специальные дренажные отверстия. То есть, если давление, что создает насос слишком высоко для потребляемого в эту секунду топлива, то торцевая кромка поршня отодвигается и открывает эти самые отверстия. Они радиально расположены и благодаря этому солярка сливается обратно по этим каналам. Также очень интересной является система удаления воздуха и охлаждения насоса. В насосе существует специальный клапан дросселирующего перепуска. Топливо проходит сквозь этот специальный канал, в нем есть специальный подпружиненный шарик, который дает вытекать топливо только при наличии определенного его объёма. Это немного похоже на работу поплавковой камеры обычного карбюратора. Далее по каналу располагается дроссель очень маленького диаметра, который обеспечивает автоматический отвод воздуха из корпуса насоса. Собственно, весь контур именно низкого давления рассчитан на то, что под определенным воздействием через него всегда протекает определенное количество солярки.
Теперь пришло время контура высокого давления. Непосредственно созданием высокого давления занимаются специальные секции ТНВД с радиальным движением плунжеров. Эта секция включает в себя: башмаки с роликами, специальную соединительную шайбу, кулачковую шайбу и нагнетающие плунжеры. Крутящий момент, воспринимаемый от приводного вала, принимают соединительная шайба и специальные шлицевые соединения. Эти шлицевые пазы служат для того, чтобы сидящие в них ролики обеспечивали работу плунжеров соответственно виду кулачковой шайбы. То есть, сколько кулачков на шайбе столько и цилиндров в двигателе. Далее с помощью вала распределителя топливо попадает в разные плунжеры. Разбивается этот процесс на фазы. Во время фазы наполнения плунжеры выдвигаются, а запирающая игла переходит в свободное состояние тем самым открывая доступ топливу в камеру высокого давления. В фазе нагнетания давления игла запирается, а плунжеры изменяют свое положение тем самым увеличивая давление в камере высокого давления.
Похожие статьи:
autodont.ru