9.6.4. Проверка приборов зажигания на стенде. Датчик распределитель зажигания


9.6.4. Проверка приборов зажигания на стенде

9.6.4. Проверка приборов зажигания на стенде

9.6.4.1. Распределитель зажигания
ОБЩИЕ СВЕДЕНИЯ

Датчик-распределитель зажигания 38.3706-01

1 - валик датчика-распределителя зажигания; 2 - маслоотражательная муфта валика; 3 - корпус датчика-распределителя; 4 - штепсельный разъем; 5 - корпус вакуумного регулятора; 6 - диафрагма; 7 - крышка вакуумного регулятора; 8 - тяга вакуумного регулятора; 9 - опорная (ведомая) пластина регулятора опережения зажигания; 10 - ротор распределителя зажигания; 11 - боковой электрод с клеммой для провода к свече зажигания; 12 - крышка распределителя зажигания; 13 - центральный электрод с клеммой для провода от катушки зажигания; 14 - уголек центрального электрода; 15 - центральный контакт ротора; 16 - резистор 1000 Ом для подавления радиопомех; 17 - наружный контакт ротора; 18 - ведущая пластина центробежного регулятора; 19 - грузик регулятора опережения зажигания; 20 - экран; 21 - подвижная (опорная) пластина бесконтактного датчика; 22 - бесконтактный датчик; а - канавка для отличия датчиков-распределителей 38.3706
Предупреждение

На автомобилях с бесконтактной системой зажигания применяется датчик-распределитель зажигания 38.3706-01 (см. рис. Датчик-распределитель зажигания 38.3706-01).

Контакты должны соприкасаться всей поверхностью. Если этого не происходит, то подгибая кронштейн стойки, отрегулируйте положение неподвижного контакта. Нельзя подгибать рычажок с подвижным контактом.

Проверка работы

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Перед установкой распределителя зажигания на стенд проверьте состояние контактов прерывателя, не заедает ли на оси рычажок с подвижным контактом и усилие прижатия контактов, которое должно быть 4,9-5,88 Н (500-600 гс).
2. Проверьте износ текстолитовой колодки рычажка прерывателя. В случае износа установите требуемый зазор между контактами прерывателя. Если рычажок заедает на оси или ослабла его пружина, замените контактную группу.
3. Если контакты прерывателя загрязнены, пригорели или подверглись эрозии, то зачистите их бархатным надфилем. Применять для этой цели шлифовальную шкурку и другие абразивные материалы нельзя.
4. После зачистки протрите контакты прерывателя замшей, смоченной в бензине.
5. Затем оттяните рычажок, чтобы испарился бензин, и протрите контакты еще раз сухой замшей. Вместо замши можно использовать любой материал, не оставляющий волокон.
6. Протрите крышку распределителя зажигания от грязи и масла.
7. Слегка приподняв крышку распределителя зажигания, проверьте, находится ли наружный контакт ротора против электрода крышки в момент размыкания контактов прерывателя.
8. Установите распределитель (или датчик-распределитель) на контрольно- испытательный стенд для проверки электрических приборов зажигания и соедините его с электродвигателем, частота вращения которого регулируется.
9. Выполните соединения с катушкой зажигания, аккумуляторной батареей и с коммутатором (для датчика-распределителя 38.3706-01) аналогично схеме системы зажигания автомобиля. Четыре клеммы на крышке соедините на стенде с искровыми разрядниками, зазор между электродами которых регулируется.
10. Установите зазор 5 мм между электродами разрядников, включите электродвигатель стенда и вращайте валик распределителя зажигания несколько минут по часовой стрелке с частотой 2000 мин-1.
11. Затем увеличьте зазор между электродами до 10 мм и следите, нет ли внутренних разрядов в распределителе. Они выявляются по звуку или по ослаблению и перебою искрения на разряднике испытательного стенда.
12. Во время работы распределитель зажигания не должен производить шума при любой частоте вращения валика.

Снятие характеристики автоматического опережения зажигания

Схема для снятия характеристик датчика-распределителя зажигания на стенде

1 - коммутатор; 2 - датчик-распределитель зажигания; А - к клемме "+" стенда; В - к клемме "прерыватель " стенда

Характеристики центробежного (а) и вакуумного (б) регуляторов опережения зажигания

А - угол опережения зажигания, град; n - частота вращения валика распределителя зажигания, мин-1; Р - разрежение, мм рт. ст.
ПОРЯДОК ВЫПОЛНЕНИЯ
1. Установите распределитель зажигания (или датчик-распределитель) на стенд и выполните электрические соединения в соотвветствии с инструкцией на стенд.
2. Для датчика-распределителя зажигания 38.3706-01 выполните соединения по схеме на рис. Схема для снятия характеристик датчика-распределителя зажигания на стенде. Установите зазор 7 мм между электродами разрядника.
3. Включите электродвигатель стенда и вращайте валик распределителя зажигания с частотой 150-200 мин-1. По градуированному диску стенда отметьте значение в градусах, при котором наблюдается одно из четырех искрений.
4. Повышая ступенчато частоту вращения на 200-300 мин-1, определяйте по диску число градусов опережения зажигания, соответствующее частоте вращения валика распределителя зажигания. Полученную характеристику центробежного регулятора опережения зажигания сопоставьте с характеристикой на см. рис. Характеристики центробежного (а) и вакуумного (б) регуляторов опережения зажигания, а.

Проверка угла замкнутого состояния контактов

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Включите электродвигатель стенда и доведите частоту вращения валика распределителя зажигания до 1000 мин-1.
2. По освещенным участкам шкалы замерьте величину угла замкнутого состояния контактов, которая должна быть 55&plusmn3&deg.
3. Затем проверьте углы между моментами размыкания контактов по цилиндрам относительно первого (асинхронизм), которые не должны отличаться от номинальных более чем на &plusmn1&deg.

Снятие характеристики вакуумного регулятора

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Соедините шлангом вакуумный регулятор распределителя зажигания с ваккумным насосом стенда.
2. Включите электродвигатель стенда и вращайте валик распределителя зажигания с частотой 1000 мин-1.
3. По градуированному диску установите условный "нуль" по моменту искрения в любом из цилиндров.
4. Плавно увеличивая разрежение, через каждые 20 мм рт. ст. отмечайте число градусов опережения зажигания относительно первоначального значения. Полученную характеристику сравните с характеристикой на рис. Характеристики центробежного (а) и вакуумного (б) регуляторов опережения зажигания, б.
5. Обратите внимание на четкость возврата в исходное положение после снятия вакуума подвижной пластины 26 (см. рис. Распределитель зажигания 30.3706-01) прерывателя.

Проверка сопротивления изоляции

ПОРЯДОК ВЫПОЛНЕНИЯ
1. Сопротивление изоляции между высоковольтными клеммами и массой проверяется мегомметром и должно быть не меннее 10 Ом при (25&plusmn5)&deg С.
2. Сопротивление между низковольтной клеммой прерывателя и массой должно быть таким же. Оно измеряется при разомкнутых контактах прерывателя.

Проверка конденсатора

Емкость конденсатора, замеряемая в диапазоне частоты между 50 и 1000 Гц, должна находиться в пределах 0,20-0,25 мкФ.

Проверка бесконтактного датчика в датчике-распределителе зажигания 38.3706-01

Схемы для проверки бесконтактного датчика на автомобиле (а) и на снятом датчике-распределителе зажигания (б)

1 - датчик-распределитель зажигания; 2 - переходной разъем c вольтметром; 3 - жгут проводов автомобиля; 4 - штекерный разъем, присоединяемый к датчику-распределителю зажигания; 5 - резистор 2 кОм; 6 - вольтметр с пределом шкалы не менее 15 В и внутренним сопротивлением не менее 100 кОм

С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.

ПОРЯДОК ВЫПОЛНЕНИЯ
1. На автомобиле датчик можно проверить по схеме, приведенной на рис. Схемы для проверки бесконтактного датчика на автомобиле (а) и на снятом датчике-распределителе зажигания (б), а. Между штепсельным разъемом датчика-распределителя зажигания и разъемом жгута проводов подключите переходной разъем 2 с вольтметром.
2. Включите зажигание и, медленно поворачивая специальным ключом 67.7811.9508 коленчатый вал, вольтметром проверьте напряжение на выходе датчика. Оно должно резко меняться от минимального - не более 0,4 В, до максимального - не более, чем на 3 В меньшего напряжения питания.
3. На снятом c двигателя датчике-распределителе зажигания датчик можно проверить по схеме на рис. Схемы для проверки бесконтактного датчика на автомобиле (а) и на снятом датчике-распределителе зажигания (б) (при напряжении питания 8-14 В).
4. Медленно вращая валик датчика-распределителя зажигания, измерьте вольтметром напряжение на выходе датчика. Оно должно быть в указанных выше пределах.

carmanz.com

Бесконтактная система зажигания.Датчик распределитель зажигания 38.3706

Датчик-распределитель зажигания 38.3706

1 – валик; 2 – корпус датчика-распределителя зажигания; 3 – запорная пружина крышки; 4 – бесконтактный датчик; 5 – корпус вакуумного регулятора; 6 – диафрагма; 7 – тяга вакуумного регулятора; 8 – опорная пластина центробежного регулятора; 9 – ротор распределителя зажигания; 10 – боковой электрод с клеммой; 11 – крышка; 12 – центральный электрод с клеммой; 13 – уголек центрального электрода; 14 – резистор; 15 – наружный контакт ротора; 16 – ведущая пластина центробежного регулятора; 17 – грузик центробежного регулятора; 18 – опорная пластина бесконтактного датчика; 19 – экран.

Датчик-распределитель зажигания четырехискровой, с бесконтактным датчиком управляющих импульсов и встроенным вакуумным и центробежным регуляторами опережения зажигания.

Датчик-распределитель зажигания передает управляющие сигналы на коммутатор, задавая момент искрообразования, и распределяет импульсы тока высокого напряжения по свечам зажигания.

Датчик установлен в передней части блока цилиндров с левой стороны.

Корпус датчика-распределителя отлит из алюминиевого сплава. В хвостовик корпуса запрессованы два подшипника скольжения, в которых вращается валик. При вращении валика через прорезь бесконтактного датчика проходят зубцы специального экрана, создавая в электрической цепи датчика управляющие импульсы. В верхней части валика смонтирован центробежный регулятор, на опорной пластине которого закреплен ротор (бегунок). При вращении валика грузики центробежного регулятора под действием центробежных сил расходятся, поворачивая экран на определенный угол в направлении вращения валика. Управляющие импульсы создаются при этом с опережением, которое тем больше, чем быстрее вращение. Угол поворота ограничен величиной паза в опорной пластине центробежного регулятора.

Опорная пластина бесконтактного датчика установлена на шарикоподшипнике, который позволяет ей поворачиваться вокруг оси валика. Пластина соединена тягой с диафрагмой вакуумного регулятора опережения зажигания. Разрежение (подводимое по шлангу из задроссельного пространства карбюратора) действует на диафрагму вакуумного регулятора, и тяга поворачивает опорную пластину вместе с датчиком относительно экрана, обеспечивая тем самым оптимальный момент зажигания в зависимости от нагрузки двигателя.

Сверху корпус датчика-распределителя закрыт крышкой с гнездами для проводов высокого напряжения. С внутренней стороны крышки в ее центральный электрод вмонтирован подпружиненный уголек. Ротор с контактной пластиной (бегунок) распределяет ток высокого напряжения по свечам зажигания в соответствии с порядком работы цилиндров (1 – 3 – 4 – 2). Валик датчика-распределителя зажигания вращается по часовой стрелке при виде сверху.

Распределитель 30.3706 и датчик-распределитель 38.3706 одинаковы по посадочным местам и способу крепления на двигателе, а их крышки и роторы (бегунки) взаимозаменяемы. 

www.autofizik.ru

Датчик-распределитель зажигания 38.3706 | AUTOFIZIK.RU / авторемонт

1 – валик;2 – корпус датчика-распределителя зажигания;3 – запорная пружина крышки;

4 – бесконтактный датчик; 5 – корпус вакуумного регулятора; 6 – диафрагма; 7 – тяга вакуумного регулятора; 8 – опорная пластина центробежного регулятора; 9 – ротор распределителя зажигания; 10 – боковой электрод с клеммой; 11 – крышка; 12 – центральный электрод с клеммой; 13 – уголек центрального электрода; 14 – резистор; 15 – наружный контакт ротора; 16 – ведущая пластина центробежного регулятора; 17 – грузик центробежного регулятора опережения зажигания; 18 – опорная пластина бесконтактного датчика; 19 – экран.

Датчик-распределитель зажигания четырехискровой, с бесконтактным датчиком управляющих импульсов и встроенным вакуумным и центробежным регуляторами опережения зажигания.

Датчик-распределитель зажигания передает управляющие сигналы на коммутатор, задавая момент искрообразования, и распределяет импульсы тока высокого напряжения по свечам зажигания.

Датчик установлен в передней части блока цилиндров с левой стороны.

Корпус датчика-распределителя отлит из алюминиевого сплава. В хвостовик корпуса запрессованы два подшипника скольжения, в которых вращается валик. На валике закреплен экран. При вращении валика зубцы экрана проходят через прорезь бесконтактного датчика, создавая в электрической цепи датчика управляющие импульсы. В верхней части валика смонтирован центробежный регулятор, на опорной пластине которого закреплен ротор (бегунок). При вращении валика грузики центробежного регулятора под действием центробежных сил расходятся, поворачивая экран на определенный угол в направлении вращения валика. Управляющие импульсы создаются с опережением, которое тем больше, чем быстрее вращение. Угол поворота ограничен величиной паза в опорной пластине центробежного регулятора.

Опорная пластина бесконтактного датчика установлена на шарикоподшипнике, который позволяет ей поворачиваться вокруг оси валика. Пластина соединена тягой с диафрагмой вакуумного регулятора опережения зажигания. Разрежение (подводимое по шлангу из задроссельного пространства карбюратора) действует на диафрагму вакуумного регулятора, и тяга поворачивает опорную пластину вместе с датчиком относительно экрана, обеспечивая тем самым оптимальный момент зажигания в зависимости от нагрузки двигателя.

Сверху корпус датчика-распределителя закрыт крышкой с гнездами для проводов высокого напряжения. С внутренней стороны крышки в ее центральный электрод вмонтирован подпружиненный уголек. Ротор с контактной пластиной (бегунок) распределяет ток высокого напряжения по свечам зажигания в соответствии с порядком работы цилиндров (1 – 3 – 4 – 2). Валик датчика-распределителя зажигания вращается по часовой стрелке при виде сверху.

Распределитель 30.3706 и датчик-распределитель 38.3706 одинаковы по посадочным местам и способу крепления на двигателе, а их крышки и роторы (бегунки) взаимозаменяемы. 

www.autofizik.ru

Датчик-распределитель зажигания 38.3706

bs1

 

1 – валик;2 – корпус датчика-распределителя зажигания;3 – запорная пружина крышки;4 – бесконтактный датчик;5 – корпус вакуумного регулятора;6 – диафрагма;7 – тяга вакуумного регулятора;8 – опорная пластина центробежного регулятора;9 – ротор распределителя зажигания;10 – боковой электрод с клеммой; 11 – крышка;12 – центральный электрод с клеммой;13 – уголек центрального электрода;14 – резистор;15 – наружный контакт ротора;16 – ведущая пластина центробежного регулятора;17 – грузик центробежного регулятора опережения зажигания;18 – опорная пластина бесконтактного датчика;19 – экран

Датчик-распределитель зажигания четырехискровой, с бесконтактным датчиком управляющих импульсов и встроенным вакуумным и центробежным регуляторами опережения зажигания.

Датчик-распределитель зажигания передает управляющие сигналы на коммутатор, задавая момент искрообразования, и распределяет импульсы тока высокого напряжения по свечам зажигания.

Датчик установлен в передней части блока цилиндров с левой стороны.

Корпус датчика-распределителя отлит из алюминиевого сплава. В хвостовик корпуса запрессованы два подшипника скольжения, в которых вращается валик. На валике закреплен экран. При вращении валика зубцы экрана проходят через прорезь бесконтактного датчика, создавая в электрической цепи датчика управляющие импульсы. В верхней части валика смонтирован центробежный регулятор, на опорной пластине которого закреплен ротор (бегунок). При вращении валика грузики центробежного регулятора под действием центробежных сил расходятся, поворачивая экран на определенный угол в направлении вращения валика. Управляющие импульсы создаются с опережением, которое тем больше, чем быстрее вращение. Угол поворота ограничен величиной паза в опорной пластине центробежного регулятора.

Опорная пластина бесконтактного датчика установлена на шарикоподшипнике, который позволяет ей поворачиваться вокруг оси валика. Пластина соединена тягой с диафрагмой вакуумного регулятора опережения зажигания. Разрежение (подводимое по шлангу из задроссельного пространства карбюратора) действует на диафрагму вакуумного регулятора, и тяга поворачивает опорную пластину вместе с датчиком относительно экрана, обеспечивая тем самым оптимальный момент зажигания в зависимости от нагрузки двигателя.

Сверху корпус датчика-распределителя закрыт крышкой с гнездами для проводов высокого напряжения. С внутренней стороны крышки в ее центральный электрод вмонтирован подпружиненный уголек. Ротор с контактной пластиной (бегунок) распределяет ток высокого напряжения по свечам зажигания в соответствии с порядком работы цилиндров (1 – 3 – 4 – 2). Валик датчика-распределителя зажигания вращается по часовой стрелке при виде сверху.

Распределитель 30.3706 и датчик-распределитель 38.3706 одинаковы по посадочным местам и способу крепления на двигателе, а их крышки и роторы (бегунки) взаимозаменяемы.

jonrud.ru

Ремонт датчика-распределителя зажигания | AUTOFIZIK.RU / авторемонт

Снимаем датчик-распределитель зажигания (так же, как контактный распределитель, см. Замена распределителя зажигания).Измерить характеристики вакуумного и центробежного регуляторов можно только на специальном оборудовании.

Отверткой отворачиваем два винта крепления ротора.

Снимаем ротор.

При установке ротора на место квадратный выступ должен ставиться в прорезь, а круглый в отверстие опорной пластины.

Тонким бородком выбиваем шплинт.

Снимаем маслоотражатель и шайбу с вала.

Вынимаем валик из корпуса распределителя.

Поддев тонкой отверткой, снимаем запорную шайбу тяги вакуумного регулятора опережения зажигания.

Снимаем тягу со штифта поворотной пластины.

Отворачиваем два винта крепления вакуумного регулятора опережения зажигания

Один из винтов имеет удлинение для фиксации электропроводки датчика.

Снимаем вакуумный регулятор.

Для проверки вакуумного регулятора утапливаем его шток и пальцем закрываем отверстие штуцера. У исправного регулятора шток должен выдвинуться только на часть длины, если шток сразу выдвигается на всю длину – деталь неисправна. Заменяем регулятор.

Отворачиваем два винта крепления датчика.

Вынимаем электропроводку датчика.

Отворачиваем два винта крепления соединительного разъема…

…и снимаем датчик. Неисправности датчика чаще связаны с механическими повреждениями проводов.

Отворачиваем два винта…

…и вынимаем подшипник с поворотной пластиной.

Подшипник при вращении не должен заедать и иметь люфты. Собираем распределитель зажигания в порядке, обратном разборке.

Перед установкой вакуумного регулятора аккуратно укладываем проводку датчика.

Смазываем втулки валика, оси грузиков центробежного регулятора и подшипник поворотной пластины.

www.autofizik.ru

Распределитель зажигания ВАЗ 2105 (ВАЗ 2104)

Датчик-распределитель зажигания 38.3706-01

1 – валик датчика-распределителя зажигания;2 – маслоотражательная муфта валика;3 – корпус датчика-распределителя;4 – штепсельный разъем; 5 – корпус вакуумного регулятора;6 – диафрагма;7 – крышка вакуумного регулятора; 8 – тяга вакуумного регулятора; 9 – опорная (ведомая) пластина регулятора опережения зажигания;10 – ротор распределителя зажигания; 11 – боковой электрод с клеммой для провода к свече зажигания;12 – крышка распределителя зажигания; 13 – центральный электрод с клеммой для провода от катушки зажигания; 14 – уголек центрального электрода;15 – центральный контакт ротора; 16 – резистор 1000 Ом для подавления радиопомех; 17 – наружный контакт ротора; 18 – ведущая пластина центробежного регулятора;19 – грузик регулятора опережения зажигания;20 – экран;21 – подвижная (опорная) пластина бесконтактного датчика;22 – бесконтактный датчик;а – канавка для отличия датчиков-распределителей 38.3706

Внимание На автомобилях с бесконтактной системой зажигания применяется датчик-распределитель зажигания 38.3706-01 (смотрите рисунок Датчик-распределитель зажигания .-).

Контакты должны соприкасаться всей поверхностью. Если этого не происходит, то подгибая кронштейн стойки, отрегулируйте положение неподвижного контакта. Нельзя подгибать рычажок с подвижным контактом.

Проверка работы

1. Перед установкой распределителя зажигания на стенд проверьте состояние контактов прерывателя, не заедает ли на оси рычажок с подвижным контактом и усилие прижатия контактов, которое должно быть 4,9–5,88 Н (500–600 гс).
2. Проверьте износ текстолитовой колодки рычажка прерывателя. В случае износа установите требуемый зазор между контактами прерывателя. Если рычажок заедает на оси или ослабла его пружина, замените контактную группу.
3. Если контакты прерывателя загрязнены, пригорели или подверглись эрозии, то зачистите их бархатным надфилем. Применять для этой цели шлифовальную шкурку и другие абразивные материалы нельзя.
4. После зачистки протрите контакты прерывателя замшей, смоченной в бензине.
5.Затем оттяните рычажок, чтобы испарился бензин, и протрите контакты еще раз сухой замшей. Вместо замши можно использовать любой материал, не оставляющий волокон.
6.Протрите крышку распределителя зажигания от грязи и масла.
7.Слегка приподняв крышку распределителя зажигания, проверьте, находится ли наружный контакт ротора против электрода крышки в момент размыкания контактов прерывателя.
8.Установите распределитель (или датчик-распределитель) на контрольно- испытательный стенд для проверки электрических приборов зажигания и соедините его с электродвигателем, частота вращения которого регулируется.
9.Выполните соединения с катушкой зажигания, аккумуляторной батареей и с коммутатором (для датчика-распределителя 38.3706-01) аналогично схеме системы зажигания автомобиля. Четыре клеммы на крышке соедините на стенде с искровыми разрядниками, зазор между электродами которых регулируется.
10.Установите зазор 5 мм между электродами разрядников, включите электродвигатель стенда и вращайте валик распределителя зажигания несколько минут по часовой стрелке с частотой 2000 мин–1.
11.Затем увеличьте зазор между электродами до 10 мм и следите, нет ли внутренних разрядов в распределителе. Они выявляются по звуку или по ослаблению и перебою искрения на разряднике испытательного стенда.
12.Во время работы распределитель зажигания не должен производить шума при любой частоте вращения валика.

Снятие характеристики автоматического опережения зажигания

Схема для снятия характеристик датчика-распределителя зажигания на стенде

1 – коммутатор; 2 – датчик-распределитель зажигания; А – к клемме “ ” стенда; В – к клемме “прерыватель “ стенда

Характеристики центробежного (а) и вакуумного (б) регуляторов опережения зажигания

А – угол опережения зажигания, град;n – частота вращения валика распределителя зажигания, мин-1; Р – разрежение, мм рт. ст.
1. Установите распределитель зажигания (или датчик-распределитель) на стенд и выполните электрические соединения в соотвветствии с инструкцией на стенд.
2. Для датчика-распределителя зажигания 38.3706-01 выполните соединения по схеме на рисунке Схема для снятия характеристик датчика-распределителя зажигания на стенде. Установите зазор 7 мм между электродами разрядника.
3. Включите электродвигатель стенда и вращайте валик распределителя зажигания с частотой 150–200 мин–1. По градуированному диску стенда отметьте значение в градусах, при котором наблюдается одно из четырех искрений.
4. Повышая ступенчато частоту вращения на 200–300 мин–1, определяйте по диску число градусов опережения зажигания, соответствующее частоте вращения валика распределителя зажигания. Полученную характеристику центробежного регулятора опережения зажигания сопоставьте с характеристикой на смотрите рисунок Характеристики центробежного (а) и вакуумного (б) регуляторов опережения зажигания, а.

Проверка угла замкнутого состояния контактов

1. Включите электродвигатель стенда и доведите частоту вращения валика распределителя зажигания до 1000 мин–1.
2. По освещенным участкам шкалы замерьте величину угла замкнутого состояния контактов, которая должна быть 55±3°.
3. Затем проверьте углы между моментами размыкания контактов по цилиндрам относительно первого (асинхронизм), которые не должны отличаться от номинальных более чем на ±1°.

Снятие характеристики вакуумного регулятора

1. Соедините шлангом вакуумный регулятор распределителя зажигания с ваккумным насосом стенда.
2. Включите электродвигатель стенда и вращайте валик распределителя зажигания с частотой 1000 мин–1.
3. По градуированному диску установите условный “нуль” по моменту искрения в любом из цилиндров.
4. Плавно увеличивая разрежение, через каждые 20 мм рт. ст. отмечайте число градусов опережения зажигания относительно первоначального значения. Полученную характеристику сравните с характеристикой на рисунке Характеристики центробежного (а) и вакуумного (б) регуляторов опережения зажигания, б.
5.Обратите внимание на четкость возврата в исходное положение после снятия вакуума подвижной пластины 26 (смотрите рисунок Распределитель зажигания .-) прерывателя.

Проверка сопротивления изоляции

1. Сопротивление изоляции между высоковольтными клеммами и массой проверяется мегомметром и должно быть не меннее 10 Ом при (25±5)° С.
2. Сопротивление между низковольтной клеммой прерывателя и массой должно быть таким же. Оно измеряется при разомкнутых контактах прерывателя.

Проверка конденсатора

Емкость конденсатора, замеряемая в диапазоне частоты между 50 и 1000 Гц, должна находиться в пределах 0,20–0,25 мкФ.

Проверка бесконтактного датчика в датчике-распределителе зажигания 38.3706-01

Схемы для проверки бесконтактного датчика на автомобиле (а) и на снятом датчике-распределителе зажигания (б)

1 – датчик-распределитель зажигания;2 – переходной разъем c вольтметром; 3 – жгут проводов автомобиля;4 – штекерный разъем, присоединяемый к датчику-распределителю зажигания; 5 – резистор 2 кОм; 6 – вольтметр с пределом шкалы не менее 15 В и внутренним сопротивлением не менее 100 кОм

С выхода датчика снимается напряжение, если в его зазоре находится стальной экран. Если экрана в зазоре нет, то напряжение на выходе датчика близко к нулю.

2105vaz.ru

датчик-распределитель зажигания двигателя внутреннего сгорания - патент РФ 2452066

Изобретение относится к области электротехники, в частности к устройствам для прерывистого токосъема, и может быть использовано в системах зажигания двигателей внутреннего сгорания (ДВС), а также в системах коммутации, телеметрии и вооружений, например для управления активизацией боевых зарядов. Предлагаемый датчик-распределитель зажигания двигателя внутреннего сгорания, включающий неподвижный статор, снабженный крышкой с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов с выводами на свечи зажигания, и вращающийся ротор, расположенный внутри статора по его оси симметрии, на котором соосно и параллельно закреплены токораздаточная пластина и экранирующая цилиндрическая оболочка с равномерно распределенными по окружности прорезями, разделяющая установленную на статоре радиально с малым зазором сенсорную пару, отличающийся тем, что токораздаточная пластина ротора выполнена в виде правильной (n+1) или (n-1) - лучевой звезды, а экран-цилиндр содержит (n+1)n или (n-1)n прорезей, соответственно, для прямого или обратного искрообразования, где n - число цилиндров двигателя внутреннего сгорания. Технический результат, достигаемый при использовании настоящего изобретения, состоит в обеспечении (n+1) или (n-1) - кратного увеличения времени действия искрового разряда на свечи зажигания, а также снижения износа, тепловыделения и вибраций элементов датчика-распределителя. 2 з.п. ф-лы, 7 ил. датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066

Изобретение относится к устройствам для прерывистого токосъема и может быть использовано в системах зажигания двигателей внутреннего сгорания (ДВС), а также в системах коммутации, телеметрии и вооружений, например, для управления активизацией боевых зарядов.

Широко известен датчик-распределитель зажигания, подающий высокое напряжение на свечи цилиндров, включающий неподвижный статор, снабженный крышкой с внутренней круглой поверхностью, на которой по окружности равномерно расположены контакты с выводами на свечи зажигания, и вращающийся ротор, расположенный внутри крышки по ее оси симметрии и снабженный токораздаточной пластиной в виде луча, исходящего из центра ротора к его периферии. Высокое напряжение подается на токораздаточную пластину в центре ротора через центральный угольный контакт крышки распределителя от катушки зажигания. Другой конец токораздаточной пластины взаимодействует с боковыми контактами на крышке распределителя. За время одного оборота ротора датчика-распределителя высокое напряжение подается последовательно на свечи всех цилиндров в порядке их работы. Сами же импульсы высокого напряжения вырабатываются катушкой зажигания через коммутатор на основе сигналов низкого напряжения датчика углового положения коленвала. Очевидно дальнейшее использование бесконтактных датчиков, прогрессивно заменяющих контактные и использующие различные физические явления: эффект Холла, магнитоэлектрические, оптоэлектронные, фотоэлектрические, т.д. Такие датчики-распределители зажигания установлены на большинстве автомобильных ДВС с принудительным воспламенением.

Например, известен датчик-распределитель 38.3706 /Автомобили ВАЗ-2107. Руководство по техническому обслуживанию и ремонту. К.Б.Пятков, А.П.Игнатов, С.Н.Косарев и др. М., Издательство "За рулем", 2001 г./, включающий ротор с однолучевой токораздаточной пластиной, контактирующей при вращении с боковыми контактами на крышке распределителя, датчиком углового положения коленвала которого служит система, включающая неподвижные радиально установленные с малым зазором датчик Холла (дополненный до магнитоуправляемой интегральной схемы), постоянный магнит и вращающийся между ними стальной экран с числом прорезей, равным числу цилиндров, принятый за прототип.

Недостатком такого датчика-распределителя является высокая частота вращения его ротора. Так, за два оборота коленчатого вала четырехтактного двигателя ротор датчика-распределителя должен совершить один оборот, т.е. частота вращения ротора равна половине частоты вращения коленвала двигателя. Частоты вращения коленчатых валов автомобильных двигателей постоянно возрастают и в настоящее время достигают 5000-8000 об/мин /В.Е.Ютт. Электрооборудование автомобилей. М., 2006/. Это обусловлено исключительно особенностями функционирования ДВС: максимумы вырабатываемых ДВС мощностей и крутящих моментов лежат в достаточно узких высокочастотных диапазонах оборотов коленвала.

Соответственно частоты вращения ротора датчика-распределителя должны составлять 2500-4000 об/мин. Но высокие частоты вращения ротора датчика-распределителя совершенно не требуются для его оптимального функционирования. Более того, они вредны и весьма опасны. Действительно, столь высокая частота вращения ротора такого точного и ответственного устройства, каким является датчик-распределитель, приводит к целому ряду причин, резко снижающих его функционально-эксплуатационные качества. Перечислим только некоторые из них.

1. Повышенный износ подшипниковых узлов, высокий уровень механических вибраций и тепловыделения.

2. Проблемы разбалансировки ротора вследствие изначально конструктивно несамоурановешенной схемы однолучевой токораздаточной пластины.

3. Высокая частота вращения приводит к весьма малому промежутку времени замкнутого состояния токораздаточной пластины с боковыми контактами крышки распределителя и, как следствие, небольшой продолжительности существования искрового разряда на контактах свечей, что не обеспечивает высокой надежности процесса воспламенения рабочей смеси. Существуют работы, специально посвященные увеличению контактирующей поверхности токораздаточной пластины с целью увеличения продолжительности искрового разряда на контактах свечей /Агошков О.Г., Белов А.В., Вандышев В.Н. и др. Распределитель зажигания двигателя внутреннего сгорания. Патент на изобретение № 2166818, 1999/.

4. Зависимость импульса высокого напряжения от частоты вращения коленвала.

5. Единственный проводящий луч традиционной токораздаточной пластины, последовательно обслуживающий все свечи цилиндров ДВС и поэтому вращающийся с весьма высокой угловой скоростью, непрерывно испытывает весьма интенсивные высокие токовые нагрузки, вызывающие износ контактов, джоулево тепловыделение и температурный уход электрических свойств, помимо упомянутой высокой частоты вращения, приводящей к механическим потерям на трение. Представляется рациональным эту высокую механическую и электрическую нагрузку на один токопроводящий луч поровну распределить между несколькими осесимметричными токопроводящими лучами. Тогда и скорость вращения ротора распределителя, и его нагруженность уменьшится в это же число раз. Такое решение применительно к распределителю зажигания ДВС было запатентовано в /Свияженинов Е.Д. Распределитель зажигания двигателя внутреннего сгорания. Патент на изобретение № 2362242. Приоритет 21.05.2008/.

Иначе говоря, если для коленчатого вала ДВС высокооборотность - необходимое эксплуатационное условие, то для роторного устройства его системы зажигания - существенный конструктивный недостаток.

Эти проблемы, как правило, приводят к постепенному отказу от применения роторных датчиков-распределителей в пользу систем зажигания, совсем не имеющих вращающихся частей /Р.Демидович. Система зажигания легковых автомобилей. Минск, 1998/.

Задачей заявляемого изобретения является многократное снижение частоты вращения ротора датчика-распределителя за счет того, что импульсы высокого напряжения последовательно распределяются по свечам зажигания всех цилиндров в порядке их работы за время не полного оборота ротора датчика-распределителя, а только за время малого его поворота, как и выдача датчиком распределителя управляющих импульсов низкого напряжения на коммутатор. Это устраняет перечисленные выше проблемы. Сопутствующим эффектом является многократное снижение износа узлов трения и контактов токораздаточной пластины, а также более стабильное выходное высокое напряжение на свечи цилиндров.

Поставленная задача решается тем, что в датчике-распределителе зажигания n-цилиндрового двигателя внутреннего сгорания, включающем:

неподвижный статор, снабженный крышкой с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов с выводами на свечи зажигания, и вращающийся ротор, расположенный внутри статора по его оси симметрии с закрепленными на нем соосно и параллельно токораздаточной пластиной и магнитоэкранирующей цилиндрической оболочкой с равномерно распределенными по окружности прорезями, разделяющей установленные на статоре радиально с малым зазором датчик Холла и постоянный магнит, токораздаточная пластина выполнена в виде правильной (n+1) или (n-1) - лучевой звезды, а экран-цилиндр содержит (n+1)n или (n-1)n прорезей соответственно, при этом высокое напряжение подается последовательно на свечи всех цилиндров в порядке их работы за время не полного оборота ротора распределителя, а только за время поворота ротора на угол 2датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 /(n+1) или 2датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 /(n-1) соответственно. Следовательно, требуемая частота вращения ротора датчика-распределителя снижается в (n+1) или (n-1) раз соответственно по сравнению с традиционным датчиком-распределителем, снабженным однолучевой токораздаточной пластиной и экраном с n прорезями.

Изложенная сущность поясняется чертежами, где на фиг.1, 2 изображены соответственно схемы распределителя (высоковольтная часть цепи) и датчика (низковольтная) зажигания двигателя внутреннего сгорания, на фиг.3 - последовательность распределения высокого напряжения по боковым контактам крышки для прямого и обратного искрообразования, на фиг.4 - схема работы распределителя зажигания для прямого и обратного искрообразования, на фиг.5 - последовательность работы датчика управляющего сигнала низкого напряжения для прямого и обратного искрообразования, на фиг.6 - схема работы датчика распределителя зажигания для прямого и обратного искрообразования. Прямое искрообразование показано на правых частях фиг.3, 4, 5, 6, тогда как обратное - на левых. В качестве примера приведена схема прямого искрообразования для 4-цилиндрового двигателя, n=4, и обратного искрообразования для 6-цилиндрового двигателя, n=6. В обоих случаях используется один и тот же ротор с пятилучевой токораздаточной пластиной. В первом случае число прорезей вращающегося магнитного цилиндрического экрана равно 20, тогда как во втором - 30. На фиг.7 приведены частоты вращения роторов традиционного однолучевого датчика-распределителя зажигания и пятилучевого как функции частот вращения коленвала ДВС.

Распределитель зажигания двигателя внутреннего сгорания (фиг.1) содержит статор, снабженный крышкой 1 с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов 2 с выводами на свечи зажигания (на чертеже не показаны), ротор 3, расположенный внутри статора и крышки 1 по ее оси симметрии и снабженный токораздаточной пластиной 4. Токораздаточная пластина 4 выполнена в виде правильной (n+1) или (n-1) - лучевой звезды.

Высокое напряжение подается в центр токораздаточной пластины 4 через центральный угольный контакт крышки распределителя 1. При вращении ротора 3 лучи токораздаточной пластины 4 последовательно взаимодействуют с боковыми контактами 2 на крышке 1 распределителя: в направлении, совпадающем с направлением вращения ротора 3, в случае (n+1) (прямое, или попутное, искрообразование) или в противоположном направлении (обратное, или встречное, искрообразование) в случае (n-1).

Датчик распределителя (фиг.2) состоит из вращающейся вместе с ротором магнитоэкранирующей цилиндрической оболочки 1 с равномерно распределенными по окружности прорезями 2, разделяющей установленные на статоре радиально с малым зазором датчик Холла 3 и постоянный магнит 4. Магнитный экран-цилиндр 1 содержит (n+1)n или (n-1)n прорезей 2.

На фиг.3 справа наглядно видна схема прямого искрообразования для 4-цилиндрового двигателя, на фиг.3 слева - схема обратного искрообразования для 6-цилиндрового двигателя. В обоих случаях использован один и тот же ротор с пятилучевой токораздаточной пластиной.

Принцип работы и анализ прямого и обратного искрообразования на боковых контактах крышки распределителя

Для анализа прямого и обратного искрообразования на боковых контактах крышки распределителя служит фиг.4. На фиг.4 по-прежнему справа изображена схема прямого искрообразования для 4-цилиндрового двигателя, а слева - схема обратного искрообразования для 6-цилиндрового двигателя посредством ротора с пятилучевой токораздаточной пластиной в увеличенном масштабе с указанием опорных углов.

Пусть в начальный момент времени один из (n+1) (справа) или (n-1) (слева) лучей токораздаточной пластины 4 совпадает с одним из n боковых контактов 2 крышки распределителя 1 (фиг.4). Высокое напряжение из центра пластины по этому лучу передается на свечу зажигания соответствующего цилиндра. При повороте ротора 3 на угол датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 (при прямом искрообразовании) или на угол датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 (при обратном) напряжение передается на соседний боковой контакт 2 крышки - по направлению вращения ротора 3 или против вращения ротора 3 через соседний луч. При повороте ротора 3 на угол 2датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 /(n+1)=nдатчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 или на угол 2датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 /(n-1)=nдатчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 напряжение полностью последовательно распределится на все боковые контакты 2 крышки 1 в прямом или обратном направлении.

Следовательно, требуемая частота вращения (n+1) - лучевого или (n-1) - лучевого ротора 3 будет соответственно в (n+1) или в (n-1) раз меньше частоты вращения однолучевого ротора, т.е. импульсы напряжений будут последовательно передаваться на соседние боковые контакты 2 через те же интервалы времени. Таким образом, многолучевой ротор выполняет функцию мультипликатора, т.е. умножителя частоты искрообразования в (n+1) или в (n-1) раз, и его частота вращения должна быть во столько же раз снижена.

Конструкция модифицированного вращающегося экрана:

формула для числа прорезей

Датчик-распределитель предназначен для выдачи управляющих импульсов низкого напряжения на коммутатор и для распределения импульсов высокого напряжения по свечам зажигания. Анализу распределения высокого напряжения по свечам цилиндров посвящен предыдущий раздел.

Для анализа выдачи управляющих импульсов низкого напряжения при соответственно прямом и обратном искрообразовании служат фиг.5, 6, на которых по-прежнему справа изображена схема прямого искрообразования для 4-цилиндрового двигателя, а слева - схема обратного искрообразования для 6-цилиндрового двигателя посредством ротора с пятилучевой токораздаточной пластиной. Фиг.6 служит для указания опорных углов в увеличенном масштабе.

Рассмотрим систему формирования управляющих импульсов низкого напряжения. Цилиндрический магнитный экран датчика 1, снабженный прорезями 2 и закрепленный параллельно токораздаточной пластине распределителя на одной оси ротора, вращается с той же угловой скоростью (фиг.5). При прохождении тела экрана 1 в зазоре между датчиком Холла 3 и магнитом 4 магнитные силовые линии замыкаются через экран 1 и поэтому на датчик Холла 3 не действуют. В эти отрезки времени разность потенциалов в датчике не возникает. При прохождении через зазор прорезей экрана 2 на датчик Холла 3 действует магнитное поле и с него снимается разность потенциалов. Таким образом, при прохождении экрана в зазоре между магнитом и датчиком происходит периодическое шунтирование магнитного потока, и формируется сигнал об угловом положении коленчатого вала в виде прямоугольных импульсов низкого напряжения, поступающий далее в электронный коммутатор. Коммутатор по этому управляющему сигналу датчика прерывает ток низкого напряжения в первичной цепи катушки зажигания - импульсном трансформаторе, и со вторичной цепи катушки зажигания через центральный контакт крышки распределителя на токораздаточную пластину подается импульс высокого напряжения, предназначенный для поджигания рабочей смеси в очередном цилиндре ДВС.

Следовательно, начало управляющего импульса датчика должно быть синхронизировано с моментом приближения очередного токопроводящего луча распределителя к боковому контакту крышки распределителя, что и определяет число прорезей магнитного экрана предлагаемого датчика-распределителя. При прямом искрообразовании угловой шаг прорезей должен составлять датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 , а при обратном - датчик-распределитель зажигания двигателя внутреннего сгорания, патент № 2452066 (фиг.6).

Таким образом, число прорезей магнитного экрана должно быть (n+1)n для прямого искрообразования и (n-1)n - для обратного, где n - число цилиндров ДВС.

Использование оптического датчика

Обратимся еще раз к схеме датчика распределителя (фиг.2), состоящего из вращающейся вместе с ротором магнитоэкранирующей цилиндрической оболочки 1 с равномерно распределенными по окружности прорезями 2, разделяющей установленные на статоре радиально с малым зазором датчик Холла 3 и постоянный магнит 4. Магнитный экран-цилиндр 1 содержит (n+1)n или (n-1)n прорезей 2.

Вместо сенсорной холловской пары - датчика Холла 3 и постоянного магнита 4, - без какого-либо изменения компоновочной схемы (фиг.2) возможно использование сенсорной оптопары - фоточувствительного элемента и светодиода соответственно. Излучающие светодиоды могут функционировать как в видимом, так и в инфракрасном спектре. Существенно повысить разрешение оптопары позволяют лазерные диоды. Современные оптические устройства работают и при высоких температурах, вплоть до 125°С /С.Сысоева. Актуальные классические принципы оптоэлектроники в автоэлектронике. «Компоненты и технологии», № 5, 2006/.

Луч света от светодиода попадает на фоточувствствительный элемент (фототранзистор или фотодиод), если в зазоре между ними находится прорезь экрана. Оптический канал между светодиодом и фоточувствительным элементом прерывается, когда в зазоре появляется непрозрачный элемент - экран ротора. Поэтому цилиндрическая оболочка-экран выполняется из любого непрозрачного материала, т.е. должна быть не магнитоэкранирующая, а всего лишь светоэкранирующая.

Отсюда следует функционально эквивалентный вариант исполнения датчика управляющих импульсов, входящего в цепь низкого напряжения датчика-распределителя зажигания ДВС. Формулировка его следующая.

Датчик распределителя (фиг.2) состоит из вращающейся вместе с ротором светоэкранирующей цилиндрической оболочки 1 с равномерно распределенными по окружности прорезями 2, разделяющей установленные на статоре радиально с малым зазором фоточувствительный элемент 3 и светодиод 4. Световой экран-цилиндр 1 содержит (n+1)n или (n-1)n прорезей 2.

Пример расчета частоты вращения ротора датчика-распределителя с многолучевой токораздаточной пластиной для прямого и обратного искрообразования

В качестве примера рассмотрим схему прямого искрообразования для 4-цилиндрового двигателя, n=4, и обратного искрообразования для 6-цилиндрового двигателя, n=6. Тогда в обоих рассматриваемых случаях должна быть использована одна и та же пятилучевая токораздаточная пластина. В первом случае число прорезей вращающегося магнитного или светового цилиндрического экрана равно (n+1)n=20, тогда как во втором - (n-1)n=30. Требуемая частота вращения такого ротора будет ровно в 5 раз ниже частоты вращения ротора датчика-распределителя с однолучевой токораздаточной пластиной. На фиг.7 приведены частоты вращения роторов с пятилучевой f5 и однолучевой f1 токораздаточными пластинами как функции частоты вращения f коленвала ДВС. Наглядно виден эффект мультипликации частоты искрообразования, проявляющийся в пятикратном снижении частот вращения ротора датчика-распределителя.

В результате ротор датчика-распределителя вращается ровно в десять раз медленнее коленвала, а не в два раза, как в прототипе. В пять раз увеличивается время замкнутого состояния токораздаточной пластины ротора с боковыми контактами крышки распределителя, что повышает продолжительность существования искрового разряда на контактах свечей и, следовательно, надежность процесса воспламенения рабочей смеси. В пять раз по сравнению с прототипом уменьшается джоулево тепловыделение, температурный уход электрических характеристик и износ контактов многолучевой пластины. Устраняются проблемы механических вибраций, износа подшипниковых узлов ротора и его балансировки.

Выводы. Технический результат

1. Использование (n+1) или (n-1) -лучевой токораздаточной пластины, где n - число боковых контактов на крышке датчика-распределителя, снижает частоту вращения ротора соответственно в (n+1) или в (n-1) раз. В первом случае последовательность искрообразования идет в прямом, а во втором - в обратном направлении относительно направления вращения ротора.

2. Многократное снижение частоты вращения ротора датчика-распределителя зажигания весьма существенно для устранения механических вибраций, тепловыделения и динамических нагрузок на его подшипники.

3. Токораздаточная пластина в виде правильной многолучевой звезды самоуравновешена, в отличие от однолучевой, что конструктивно обеспечивает балансировку ротора.

4. Малая частота вращения ротора датчика-распределителя в (n+1) или в (n-1) раз увеличивает время замкнутого состояния токораздаточной пластины ротора с боковыми контактами крышки датчика-распределителя и, следовательно, увеличивает продолжительность существования искрового разряда на контактах свечей, что обеспечивает высокую надежность процесса воспламенения рабочей смеси.

5. При одном полном цикле искрообразования (однократном последовательном распределении напряжения по всем цилиндрам) (n+1) или (n-1) - лучевого ротора токовая нагрузка воспринимается не одним, а целым набором входящих в звезду лучей. Следовательно, джоулево тепловыделение, температурный уход электрических характеристик и износ контактов многолучевой пластины будет в (n+1) или в (n-1) раз меньше, чем однолучевого.

Литература

1. Автомобили ВАЗ-2107. Руководство по техническому обслуживанию и ремонту. К.Б.Пятков, А.П.Игнатов, С.Н.Косарев и др. М.: Издательство "За рулем", 2001 г. (прототип).

2. В.Е.Ютт. Электрооборудование автомобилей. М., 2009.

3. Агошков О.Г., Белов А.В., Вандышев В.Н. и др. Распределитель зажигания двигателя внутреннего сгорания. Патент на изобретение № 2166818, 1999.

4. Свияженинов Е.Д. Распределитель зажигания двигателя внутреннего сгорания. Патент на изобретение № 2362242. Приоритет 21.05.2008.

5. Р.Демидович. Система зажигания легковых автомобилей. Минск, 1998.

6. С.Сысоева. Актуальные классические принципы оптоэлектроники в автоэлектронике. «Компоненты и технологии», № 5, 2006.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Датчик-распределитель зажигания двигателя внутреннего сгорания, включающий неподвижный статор, снабженный крышкой с внутренней круглой поверхностью, на которой по окружности равномерно расположены n контактов с выводами на свечи зажигания, и вращающийся ротор, расположенный внутри статора по его оси симметрии, на котором соосно и параллельно закреплены токораздаточная пластина и экранирующая цилиндрическая оболочка с равномерно распределенными по окружности прорезями, разделяющая установленную на статоре радиально с малым зазором сенсорную пару, отличающийся тем, что токораздаточная пластина ротора выполнена в виде правильной (n+1) или (n-1) - лучевой звезды, а экран-цилиндр содержит (n+1)n или (n-1)n прорезей соответственно для прямого или обратного искрообразования, где n - число цилиндров двигателя внутреннего сгорания.

2. Датчик-распределитель зажигания двигателя внутреннего сгорания по п.1, отличающийся тем, что цилиндрическая оболочка - магнитоэкранирующая, а сенсорная пара - холловская, т.е. состоит из датчика Холла и постоянного магнита.

3. Датчик-распределитель зажигания двигателя внутреннего сгорания по п.1, отличающийся тем, что цилиндрическая оболочка - светоэкранирующая, а сенсорная пара - оптопара, т.е. состоит из фоточувствительного элемента и светодиода.

www.freepatent.ru