Свечи зажигания : разное - спорное. Размеры свечей зажигания


Какая резьба на свечах зажигания лучше

Многие автолюбители не уделяют особого внимания размеру резьбы на свечах зажигания, покупают продукцию по рекомендациям продавцов в автомагазинах либо друзей. Такая халатность чревата, нарушением работы автомобиля и силового агрегата, возникновением калильного зажигания, полным ремонтом мотора. В этой статье описаны габаритно – присоединительные размеры свечей, которые нужно учитывать для обеспечения оптимальной работы автодвигателя и увеличения его ресурса.

Основные понятия

rezba na svechah zajiganiyaРезьбовая часть СЗ

В зависимости от типа мотора и марки автомобиля определяется, какой должен быть размер и резьба свечи зажигания для обеспечения нормальных эксплуатационных условий для автодвигателя. Габаритно – присоединительными параметрами указанных изделий принято считать:

  • относительно резьбы — это диаметр и шаг;
  • габариты резьбового соединения и вкручиваемой части;
  • параметры шестигранника «под ключ».

Монтаж свечей, не отвечающих характеристикам мотора, может привести к таким неприятным последствиям:

  1. Если неправильно подобран диаметр и шаг резьбового соединения, то СЗ просто не вкрутится.
  2. При слишком короткой длине вкручиваемой части, СЗ не даст возможность разместиться свечным контактам правильно внутри камеры сгорания. Это спровоцирует нестабильную работу силового агрегата. Продолжительное использование слишком коротких изделий приведет к засорению свободного пространства отверстия для установки свечи, впоследствии монтаж свечи с нормальными размерами будет затруднен.
  3. Чрезмерно длинная СЗ становится преградой во время перемещения поршня либо клапанов — это чревато серьезной поломкой автодвигателя. Плюс часть СЗ, выпирающая в камеру сгорания покроется нагаром. При ее выкручивании есть большая вероятность повредить гнездо для установки СЗ.

Заводы – изготовители СЗ для подведения охладительной рубашки поближе к свече увеличивают длину резьбового соединения, при этом они вынуждены:

  • использовать очень качественное сырье для изготовления своей продукции;
  • делать меньше свечной диаметр и параметры шестигранника «под ключ»;
  • использовать для опоры площадку конической формы.

Увеличение размера резьбы свечи зажигания с использованием опорной поверхности конической формы дает возможность максимально близко приблизить рубашку охлаждения к СЗ. Изменить калильное число СЗ позволяет длина теплового конуса изолятора. Увеличение указанного параметра способствует снижению калильного числа. При этом возрастает способность СЗ к самоочистке от нагарообразования, так как обдув теплового конуса изолятора становится лучше. Плюс снижается утечка электрического тока из-за лучшей изоляции центрального контакта от массы.

Подбор СЗ осуществляется с учетом рекомендаций изложенных в мануале к автомобилю. При отсутствии такой документации нужно выбирать свечи по каталогам производителей СЗ при этом учитывается:

  • марка, год выпуска машины;
  • марка и тип автодвигателя.

Выбрать подходящую для конкретного мотора продукцию по другим параметрам не удастся: нет единой системы маркировки СЗ.

Рекомендуем посмотреть видео о подборе СЗ:

Маркировка изделий

rezba na svechah zajiganiyaИзделия с различной длиной резьбы.

Диаметр резьбы свечей зажигания положен в основу классификации СЗ по размерам:

  • для мототранспорта, газонокосилок, бензопил используют изделия — М10х1;
  • в случае с мотоциклами предпочтительно применять — М12х1,25;
  • для машин устанавливают СЗ класса «А» — М14х1,25;
  • изделия типа «М» применяют на старых автодвигателях, газопоршневых ДВС и так далее — М18х1,5.

По длине резьбового соединения различают:

  • 12 мм — короткие изделия, используются для ЗИЛ, ГАЗ, ПАЗ, УАЗ, Волга, Запорожец, мотоциклы;
  • 19 мм— длинные СЗ предназначенные для ВАЗ, АЗЛК, ИЖ, Москвич, Газель, практически все иномарки;
  • 25 мм — удлиненные используются в современных форсированных моторах;
  • менее 12 мм — устанавливаются на автодвигатели с малыми габаритами.

Большая длина резьбы применяется для более мощных моторов.

В зависимости от головки «под ключ» различают:

  • 21 мм — нормальные, применяются в двухклапанных движках;
  • 18 мм — средние, применимы не на всех типах мототранспорта;
  • 16 мм — уменьшенные, используются в современных четырехклапанных моторах.

Рекомендации

Геометрические параметры СЗ должны соответствовать размерам свечного гнезда — это позволяет изделиям свободно вкручиваться без повреждения нарезки на гнезде либо свече. Прежде, чем отвинчивать свечи нужно очистить пространство вокруг нее от различных загрязнений, такие манипуляции позволят не повредить резьбовое соединение и не дать абразивным частицам проникнуть в цилиндр.

Вкручивать СЗ необходимо применяя динамометрический ключ, позволяющий не перетянуть изделие. Учтите: свечи имеют достаточно твердую стальную резьбу, а на головке блока цилиндров алюминиевая нарезка, она очень мягкая, ее легко повредить песком или другими абразивными элементами.

В случаях, когда на ГБЦ портится 3-4 витка резьбовой части, наблюдается неплотное ввинчивание СЗ. В результате этого происходит возгорание горючей смеси от раскаленного свечного центрального изолятора, автодвигатель начинает неровно работать, возникают непонятные рывки даже при выключенном зажигании. То — есть наблюдается калильное зажигание, возрастает возможность прогорания колец либо поршня, в итоге придется капиталить движок.

Такое зажигание возникает в основном по двум причинам:

  • повреждение нарезки на ГБЦ;
  • недотянуты свечи.

При этом на центральном электроде температура возрастает на 4000С. Из вышесказанного вывод: важно не только правильно подобрать свечи исходя из инструкции по эксплуатации машины, но и грамотно установить их на посадочные места, не перетянув.

pro-zamenu.ru

Выбираем свечи зажигания — Автоводы

Как известно, свечи зажигания в бензиновых двигателях служат для воспламенения топливной смеси в камерах сгорания двигателя. Происходит это путем подачи на электроды свечи, в определенный, наиболее оптимальный момент, высокого напряжения и образования между электродами искрового разряда, который и воспламеняет топливно-воздушную смесь.

Свечи зажигания работают в очень сложных условиях, при высокой температуре и высоком давлении испытывают ударные нагрузки. При всем при этом, от нормальной работы свечей зависит работа самого двигателя, поэтому нужно ответственно подходить к вопросу выбора свечей для конкретной модели двигателя.

Как выбрать свечи зажигания

Основных параметров, которые нужно учитывать при выборе свечей, не так уж много, но все они очень важны. Это такие параметры, как тепловая характеристика свечи (её калильное число), размеры, и особенности конструкции.

Размеры

Существует несколько стандартных размеров свечей зажигания. В первую очередь, нужно учитывать диаметр резьбы свечи (у автомобильных свечей это обычно M14*1,25, реже M18*1,5, встречающийся у старых двигателей). Также обратите внимание, чтобы свеча соответствовала рекомендациям производителя двигателя по длине резьбы, размеру головки под ключ, и способу, которым производится уплотнение свечи по резьбе, это может быть кольцевая шайба-прокладка или свеча без прокладки с конусным уплотнением. Ошибка в выборе свечи по этим параметрам может сделать невозможным установку свечи на двигатель, или даже привести к поломке двигателя, например, если длина резьбовой части свечи окажется большей, чем нужно.

Тепловая характеристика

Еще один важнейший параметр любой свечи зажигания, — это её тепловая характеристика, которая выражается так называемым калильным числом. Как известно, в процессе работы двигателя на свече образуется нагар, который может стать причиной отказа работы свечи. Чтобы нагар не образовывался, вернее чтобы свеча могла самоочищаться от нагара, она должна быть нагрета до определенной температуры, не менее 700 — 800 °C. Но если свеча нагреется до более высокой температуры, то топливная смесь в цилиндрах начнет воспламеняться не от искрового разряда в нужный момент, а от раскаленного корпуса свечи в произвольный момент, и двигатель начнет работать с перебоями. Такой процесс называется калильным зажиганием, и он может стать причиной серьезных поломок мотора. С другой стороны, если свеча будет нагрета недостаточно, то она перестанет самоочищаться, и покрывшись нагаром, перестанет работать.

Как видим, очень важно так подобрать тепловую характеристику свечи, то есть её калильное число, чтобы в процессе работы её температура находилась в оптимальных пределах.

Все свечи зажигания принято делить на:

— горячие, с калильным числом от 11 до 14;

— средние свечи, у которых калильное число составляет 17—19;

— холодные свечи, у которых калильное число составляет 20 и более.

Калильное число свечей, установленных на двигатель, обязательно должно соответствовать рекомендуемому производителем автомобиля. Особенно нежелательно использовать свечи с меньшим калильным числом, чем предписывает инструкция или руководство по эксплуатации авто.

Конструкция

Кроме всех указанных выше параметров, свечи зажигания отличаются и по своей конструкции. Например, свечи могут иметь не один, а несколько боковых электродов, конструкция электродов и их форма может быть разной. Для увеличения срока службы свечи, при изготовлении её электродов могут применяться такие дорогие металлы, как платина, иридий и другие. Конечно, такие свечи стоят дороже обычных, но служат они в несколько раз дольше.

Маркировка

При выборе свечей нужно учитывать, что маркировка отечественных свечей отличается от маркировки свечей зарубежного производства. Для правильного выбора свечей можно пользоваться таблицами соответствия или взаимозаменяемости свечей. В хороших магазинах автозапчастей такие таблицы имеются, но в крайнем случае можно проконсультироваться и у продавца.

Зазор

Перед тем, как установить свечу на двигатель, не забудьте правильно отрегулировать зазор между электродами свечи в соответствии с рекомендациями автопроизводителя. Как правило, зазор должен составлять около 0,6 — 0,7 мм.

avtovody.ru

Свечи зажигания - краткий справочник

ОСНОВНЫЕ ПАРАМЕТРЫ СВЕЧЕЙ

На территории России свечи должны изготавливаться в общеклиматическом исполнении в соответствии с требованиями ОСТ 37.003.081-98 “Свечи зажига­ния искровые. Общие технические условия».

Свечи относятся к классу перемонтируемых, обслуживаемых в период экс­плуатации изделий, они должны быть работоспособны при температуре окружа­ющей среды от -45 до +100 ‘С.

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Изолятор должен соответствовать требованиям ОСТ 37.003.036-87 «Изоля­торы керамические для искровых свечей зажигания. Технические условия».

Металлические детали должны иметь оксидное или металлическое покры­тие (цинковое или никелевое), на них не допускаются трещины и поврежденные нитки резьбы. На термоосадочной канавке и в местах наложения контактов на корпус при электротермической сборке допускается частичное нарушение покрытия.

Новообразование между электродами свечей с искровым зазором менее 0.6 мм должно быть бесперебойным при давлении газа, окружающего электро­ды, 1,0±0,05 МПа (10±0,5 кгс/смг). При искровом зазоре 0,6 мм и более давление газа должно быть 0.85*0,05 МПа (8,5±0,5 кгс/смг).

Свечи должны быть герметичны, суммарная утечка газа через соединение корпуса с изолятором и изолятора с центральным электродом при разнице дав­лений 2,0*0,05 МПа (20,0*0,5 кгс/смг) не должна превышать 5 см3/мин.

Свечи с плоской опорной поверхностью должны выдерживать следующие механические нагрузки:

крутящий момент 45 Н м (4,5 кгсм), приложенный к шестиграннику корпуса; усилие 400 Н (40 кгс), приложенное под прямым углом к контактной головке для свечей с размером шестигранника под ключ 20.8 мм; и 300 Н (30 кгс) при шестигранниках 16,0 и 19,0 мм;

растягивающую силу 300 Н, приложенную к контактной головке вдоль ее оси. Свечи с конической опорной поверхностью должны выдерживать следую­щие механические нагрузки:

крутящий момент 25 Н м (2,5 кгс м), приложенный к шестиграннику корпуса; усилие 300 Н (30 кгс), приложенное под прямым углом к контактной головке; растягивающую силу 300 Н (30 кгс), приложенную к контактной головке вдоль ее оси.

Боковой электрод должен быть надежно закреплен на корпусе. Свечи долж­ны выдерживать без повреждений вибрационные и ударные нагрузки, возникаю­щие на двигателе в процессе его работы.

Толщина уплотнительного кольца свечей с плоской опорной поверхностью долж­на быть от 1,4 мм до 2.0 мм после однократной затяжки усилием 30 Н м (3 кгсм).

Сопротивление изоляции между контактной головкой и корпусом при темпе­ратуре 550± 15 *С должно быть не менее 5.0 МОм.

Допустимое отклонение калильного числа, установленное для данного типа свечи, не должно превышать ±10 %.

Изолятор для свечей с размерами шестигранника подключ 16,0 и 19.0 мм в сборе с электродом и контактной головкой должен выдерживать испытательное напряжение 18 кВ. При шестиграннике 20.8 мм изолятор должен выдерживать 22 кВ (действующее значение при частоте 50 Гц).

Конструкция свечей должна допускать очистку теплового конуса изолятора от нагара и регулирование искрового зазора.

КАЛИЛЬНОЕ ЧИСЛО

Прямое определение тепловой характеристики связано с необходимостью измерения температуры теплового конуса изолятора и электродов на работаю­щем двигателе. Это сложная техническая проблема, так как требует установки в свечу миниатюрных термопар и защиту их от высокого напряжения. Такая ра­бота требует огромных затрат и проводится только в исследовательских целях при доводке вновь разрабатываемых двигателей.

В связи с этим определение тепловой характеристики заменяют подбором све­чей по верхнему температурному пределу. Для этого производятся тепловые ряды конструктивно одинаковых свечей с различными тепловыми характеристиками.

Каждую свечу теплового ряда испытывают на моторной испытательной уста­новке, позволяющей за счет наддува моделировать тепловую напряженность двигателя с любой удельной мощностью, вплоть до самого форсированного спортивного. В процессе испытания величину наддува последовательно увели­чивают. соответственно возрастает тепловая напряженность и основной харак­теризующий ее показатель — величина среднего индикаторного давления.

Калильное число — это величина среднего индикаторного давления, при ко­тором в цилиндре двигателя при испытании свечи возникает калильное зажигание.

Основным конструктивным параметром, с помощью которого изменяют вели­чину калильного числа, является длина теплового конуса изолятора. Чем длиннее тепловой конус изолятора, тем рабочая температура свечи больше, и наоборот, чем короче тепловой конус изолятора, тем температура меньше.

До 1974 г. свечи, производимые в СССР, имели в своей маркировке обозначение длины теплового конуса изолятора, выраженной в миллиметрах. Ветераны-авто­мобилисты помнят свечи с уралитовыми изоляторами для автомобиля «Запоро­жец» первых выпусков, которые имели маркировку А6УС или А7.5УС. свечи для автомобиля «Волга» ГАЗ-21 с маркировкой А14У. свечи А11У для автомобиля «Москвич-401- и многие другие. Интересно отметить, что на первые модели авто­мобилей ВАЗ ставились свечи с изолятором из керамики «боркорунд», также с маркировкой длины теплового конуса изолятора, сначала А6БС. затем А7.5БС. С появлением двигателей автомобилей ВАЗ-2101. ГАЗ-24, АЗЛК-412. ЗАЗ-966. ЗИЛ-130, ГАЗ-53 и других требования к свечам возросли. Выяснилось, что необхо­димо учитывать то, что рабочая температура свечи зависит не только от длины теплового конуса изолятора, но и от многих других конструктивных и технологи­ческих факторов. Ведь калильное число является интегральным показателем, ха­рактеризующим зависимость рабочей температуры свечи не только от длины теп­лового конуса, но и от других конструктивных факторов.

Каждой длине теплового конуса изолятора соответствует своя величина ка­лильного числа. В соответствии с российским стандартом калильные числа сле­дует выбирать из ряда 8, 11, 14, 17, 20. 23 и 26 условных единиц. Допускаются промежуточные значения, выраженные целыми числами.

С помощью калильных чисел различают более «горячие» и более «холодные» свечи. Эти понятия определены тем, что при установке на один и тот же двига­тель «горячие» свечи в равных условиях имеют рабочую температуру выше, чем «холодные». Устанавливая последовательно на двигатель свечи с различными калильными числами, можно осуществить подбор по тепловой характеристике. Первым критерием подбора является отсутствие калильного зажигания при пол­ной нагрузке двигателя. Вторым критерием является то. что ближайшая более «горячая» свеча вызывает калильное зажигание. Правильно подобранная свеча всегда должна иметь максимальную температуру, несколько ниже, чем темпера­тура калильного зажигания. При подборе к двигателю угол опережения зажига­ния устанавливают на 10-15′ раньше относительно установочного. Этим спосо­бом искусственно повышают рабочую температуру свечи, что обеспечивает гарантированный запас до верхнего температурного предела.

Зарубежные фирмы применяют свои шкалы калильных чисел, прямые и об­ратные. В прямых шкалах с увеличением длины теплового конуса калильное чис­ло возрастает, а в обратных уменьшается. Отечественная шкала калильных чисел едина для всех производителей в России и является обратной. Чем больше ка­лильное число, тем короче при прочих равных тепловой конус, тем свеча -холод­нее». В отличие от нашей страны, за рубежом каждая фирма применяет свою шкалу калильных чисел и свою систему маркировки свечей. Для определения со­ответствия по калильному числу свечей различных производителей приходится пользоваться таблицами взаимозаменяемости.

ГАБАРИТНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ

Эти размеры свечей должны соответствовать международным стандартам ISO (Международная организация по стандартизации). Поэтому весьма удобным для потребителей обстоятельством является то, что по своим размерам одно­типные свечи, выпускаемые различными производителями, полностью взаимо­заменяемы.

Свечи могут иметь плоскую или коническую опорную поверхность. Для гер­метизации соединения с головкой блока цилиндров двигателя свечей с плоской опорной поверхностью необходимо специальное уплотнительное кольцо, а при конической посадочной поверхности уплотнительное кольцо не требуется.

Размеры свечей определяются типом посадочного места, резьбой на кор­пусе. длиной резьбовой части корпуса и размером шестигранника под ключ.

svechi_zazhiganija_5

svechi_zazhiganija_6

УСТРОЙСТВО СВЕЧИ

svechi_zazhiganija_7

 

При всем разнообразии конструкций, любая искровая свеча зажигания (рис.9) включает в себя керамический изолятор, металлический корпус, электроды и контактную головку для соединения с высоковольтным проводом.

Центральный электрод установлен в канале изолятора, имеющем переменный диаметр. Головка электрода опирается на коническую поверхность канала изолято­ра в месте перехода от большего диаметра к меньшему. Рабочая часть центрально­го электрода выступает на величину от 1.0 до 5.0 мм из изолятора. Закрепление электрода в канале изолятора и герме­тизацию этого соединения осуществля­ют с использованием стеклогерметика.

Он представляет собой смесь специаль­ного технического стекла и порошка ме­талла. Стекло должно иметь коэффици­ент термического расширения одинако­вый с этим коэффициентом у керамики.

В этом случае герметизирующая пробка не разрушится при изменениях темпе­ратуры в процессе эксплуатации. Поро­шок металла (медь или свинец) добавля­ют в стекло для придания ему электриче­ской проводимости,

Сборку сердечника (изолятора в сбо­ре с центральным электродом и кон­тактным стержнем) осуществляют в следующем порядке. Электрод уста­навливают в канале изолятора и свер­ху засыпают порошкообразный стек- логерметик или укладывают его в ви­де таблетки Затем в канал изолятора устанавливают контактную головку. До запрессовки стеклогерметик зани­мает больший объем, чем после этой операции, и контактный стержень не может полностью войти в канал изо­лятора. Он примерно на треть длины выступает над изолятором. Заготовку нагревают до температуры 700-900 ‘С и с усилием в несколько десятков кило­граммов контактный стержень вводят в размягченный под воздействием температуры стеклогерметик. При этом он зате­кает в зазоры между каналом изолятора, головкой центрального электрода и кон­тактной головкой. После остывания стеклогерметик затвердевает и надежно закреп­ляет обе детали в канале изолятора. Между торцами электрода и контактной головки образуется герметизирующая пробка высотой от 1,5 до 7,0 мм, полностью перекры­вающая канал изолятора от прорыва газов.

В случае необходимости встроить в цепь центрального электрода электри­ческое сопротивление для подавления электромагнитных помех применяют резистивный стеклогерметик. После остывания герметизирующая пробка приобретает электрическое сопротивление необходимой величины.

Сердечник устанавливают в корпусе свечи так, что он соприкасается своей конической поверхностью с соответствующей поверхностью внутри корпуса. Между этими поверхностями устанавливают герметизирующую -теплоотводя­щую» шайбу {медную или стальную).

Закрепление сердечника осуществляют завальцовкой буртика корпуса на поясок изолятора. Герметизацию по соединению изолятор — корпус осуществляют мето­дом осадки корпуса в нагретом состоянии (термоосадкой).

Боковой электрод -массы» прямоугольного сечения приваривают к торцу корпуса и изгибают в сторону центрального. На цоколь корпуса с упором в пло­скую опорную поверхность устанавливают уплотнительное кольцо, предназна­ченное для герметизации соединения свеча — двигатель.

На резьбовую часть контактного стержня устанавливают контактную гайку, если это требуется конструкцией наконечника высоковольтного провода. В неко­торых свечах контактный стержень не имеет резьбовой головки, она сразу же штампуется в форме контактной гайки.

ИЗОЛЯТОР

Для обеспечения бесперебойности искрообразования изолятор должен об­ладать необходимой электрической прочностью даже при высокой рабочей тем­пературе. Напряжение, прикладываемое к изолятору в процессе работы двига­теля. равно напряжению пробоя искрового зазора. Это напряжение возрастает с увеличением давления и величины зазора и уменьшается по мере возрастания температуры. На двигателях с классической системой зажигания используются свечи с искровым зазором 0.5-0,7 мм. Максимальная величина напряжения про­боя в этих условиях не превышает 12-15 кВ (амплитудное значение). На двигате­лях с электронными системами зажигания установочный искровой зазор состав­ляет 0.8-1,0 мм. В процессе эксплуатации он может увеличиться до 1,3-1,5 мм (у обеих систем). При этом напряжение пробоя может достигать 20-25 кВ.

Конструкция изолятора относительно проста — это цилиндр с осевым отвер­стием для установки центрального электрода.

В средней части изолятора имеется утолщение, так называемый -поясок» для соединения с корпусом. Ниже пояска расположена более тонкая цилиндрическая часть — -дульце», переходящая в тепловой конус. В месте перехода от дульца к тепловому конусу расположена коническая поверхность, предназначенная для установки между изолятором и корпусом герметизирующей теплоотводящей шайбы. Выше пояска расположена -головка», а в месте перехода от пояска к го­ловке расположено плечико под завальцовку буртика корпуса при сборке свечи.

Допустимая, с учетом коэффициента запаса прочности, толщина стенок оп­ределяется электрической прочностью материала изолятора. По отечествен­ным стандартам изолятор должен выдерживать испытательное напряжение от 18 до 22 кВ (действующее значение), что больше амплитудного в 1.4 раза. Дли­на головки изолятора определяется напряжением поверхностного перекрытия и выполняется в пределах от 15 до 35 мм. У большинства автомобильных свечей эта величина около 25 мм. Дальнейшее увеличение малоэффективно и приводит к снижению механической прочности изолятора. Для исключения возможности электрического пробоя по поверхности изолятора его головку снабжают кольце­выми канавками (барьерами тока) и покрывают специальной глазурью для защиты от возможного загрязнения.

Функцию защиты от поверхностного перекрытия со стороны камеры сгорания выполняет тепловой конус. Эта важнейшая часть изолятора при относительно небольших размерах выдерживает без перекрытия по поверхности указанное выше напряжение.

Первоначально в качестве материала изолятора применяли обычный фар­фор, но такой изолятор плохо сопротивлялся тепловому воздействию и имел низкую механическую прочность.

С увеличением мощности двигателей потребовались изоляторы более надеж­ные. чем фарфоровые. Продолжительное время применяли слюдяные изоляторы. Однако при использовании топлив с присадкой свинца слюда разрушалась. Изо­ляторы снова стали изготавливать керамическими, но не из фарфора, а из особо прочной технической керамики.

Наиболее распространенной и экономически целесообразной для производства изо­ляторов является технология изостатического прессования, когда из заранее подгото­вленных компонентов изготавливают гранулы необходимого состава и физических свойств. Из гранул при высоком давлении прессуют заготовки изоляторов, шлифуют до необходимых размеров с учетом усадки при обжиге, а затем однократно обжигают.

Современные изоляторы изготавливают из высокоглиноземистой конструк­ционной керамики на основе оксида алюминия. Такая керамика, содержащая около 95% оксида алюминия, способна выдержать температуру до 1600 ‘С и имеет высокую электрическую и механическую прочность.

Важнейшим преимуществом керамики из оксида алюминия является то, что она обладает высокой теплопроводностью. Это существенно улучшает тепловую характеристику свечи, так как через изолятор проходит основной поток тепла, поступающий в свечу через тепловой конус и центральный электрод.

КОРПУС

svechi_zazhiganija_8

Металлический корпус предназначен для установки свечи в двигатель и обес­печивает герметичность соединения с изолятором. К его торцу приваривается боковой электрод, а в конструкциях с кольцевым искровым зазором корпус непосредственно выполняет функцию электрода «массы».

Корпус изготавливают штамповкой или точением из конструкционных ма­лоуглеродистых сталей.

Внутри корпуса имеется кольце­вой выступ с конической поверхно­стью. на которую опирается изоля­тор. На цилиндрической части корпу­са выполнена кольцевая проточка, так называемая термоосадочная канав­ка. В процессе сборки свечи верхний буртик корпуса завальцовывают на поясок изолятора. Затем его нагрева­ют и осаживают на прессе, при этом термоосадочная канавка подвергается пластической деформации, и корпус плотно охватывает изолятор. В ре­зультате термоосадки корпус оказы­вается в напряженном состоянии, что обеспечивает герметичность свечи на весь срок службы.

ЭЛЕКТРОДЫ

Как сказано выше, для улучшения эффективности воспламенения электроды свечи должны быть как можно более тонкими и длинными, а искровой зазор должен иметь максимально допусти­мую величину. С другой стороны, для обеспечения долговечности электроды должны быть достаточно массивными.

svechi_zazhiganija_9

Поэтому, в зависимости от требований к мощности, топливной экономичности и токсичности двигателей, с одной стороны, и требований к долговечности свечи с другой стороны, к каждому типу двигателя разрабатывалась своя конструкция электродов.

Появление биметаллических электродов позволило в определенной степени решить эту проблему, так как такой электрод имеет достаточную теплопроводность. В отличие от обычного «монометаллического» он при ра­боте на двигателе имеет меньшую температуру и соответственно больший ресурс. В тех случаях, когда требуется увеличить ресурс, применяют два элек­трода «массы» (рис. 11). На свечах зарубежного производства с этой целью применяют три и даже четыре электрода. Отечественная промышленность выпускает свечи с таким количеством электродов только для авиационных и промышленных газовых двигателей. Следует отметить, что с увеличением числа электродов снижается стойкость к образованию нагара и затрудняется очистка от нагара.

К материалу электродов предъявля­ются следующие требования: высокая коррозионная и эрозионная стойкость; жаростойкость и окалиностойкость; высокая теплопроводность; доста­точная для штамповки пластичность.

Стоимость материала нс должна быть высокой. Наибольшее распростране­ние в отечественной промышленности для изготовления центральных элект­родов свечей зажигания получили жаростойкие сплавы: железо-хром- титан, никель-хром-железо и никель- хром с различными легирующими добавками

Боковой электрод «массы» должен обладать высокой жаростойкостью и стой­костью к коррозии. Он должен обладать хорошей свариваемостью с обычной кон­струкционной сталью, из которой изготавливают корпус, поэтому применяют сплав никель — марганец (например. НМц-5). Боковой электрод должен обладать хоро­шей пластичностью для обеспечения возможности регулирования искрового зазора.

С целью снижения гасящего влияния электродов при доработке свечей на электродах выполняют канавки, в электроде -массы» выполняют сквозные от­верстия. Иногда боковой электрод разделяют на две части, превращая одно­электродную свечу в двухэлектродную.

ВСТРОЕННЫЙ РЕЗИСТОР

Искровой разряд является источником электромагнитных помех, в том числе радиоприему. Для их подавления между центральным электродом и контактной головкой устанавливают резистор, имеющий при температуре 25±10 ‘С электри­ческое сопротивление от 4 до 13 кОм. В процессе эксплуатации допускается изме­нение величины этого сопротивления в диапазоне 2-50 кОм после воздействия температуры от -40 до +300 ’С и импульсов высокого напряжения.

ДОПОЛНИТЕЛЬНЫЙ ИЗОЛЯТОР

Даже небольшие потери энергии зажигания приводят к ослаблению искры со всеми неприятными последствиями; ухудшение пуска, неустойчивая работа на холостом ходу, потеря мощности двигателя, перерасход топлива, рост токсично­сти отработавших газов и т. д. Если поверхность изолятора покрыта нагаром, грязью или просто влагой, происходит утечка тока «на массу». Она обнаружива­ется в темноте в виде коронного разряда по поверхности изолятора. Утечка по загрязненной поверхности теплового конуса изолятора в каморе сгорания дви­гателя может привести к отказу в искрообразовании. Наиболее радикальнымспособом повышения электрической прочности изоляции является установка между корпусом и контактной головкой свечи дополнительного изолятора в виде керамической втулки. Таким образом, свеча приобретает двойную защиту от уте­чек тока «на массу».

Данное техническое решение защищено патентом и реализовано у нас в стра­не ЗАО «Автоконинвест» (Москва).

ФОРКАМЕРНЫЕ СВЕЧИ

Известны различные варианты устройства свечи, у которых рабочая каме­ра выполнена в виде форкамеры. Их используют с целью улучшения сгорания рабочей смеси. Форкамерные свечи подобны свечам для спортивных форси­рованных двигателей, где электроды для защиты от перегрева установлены глубоко внутри рабочей камеры корпуса. Отличие заключается в том. что от­верстие. соединяющее рабочую камеру (форкамеру) с цилиндром двигателя, делают специальной формы. При сжатии свежая смесь поступает в форкаме­ру, искровой разряд возникает в области вихревого потока, и образование первичного очага воспламенения становится интенсивнее. Благодаря этому обеспечивается быстрое распространение пламени в форкамере. Давление быстро возрастает и выбрасывает факел пламени, проникающий в камеру сгорания двигателя и интенсифицирующий воспламенение даже сильно обед­ненной рабочей смеси.

svechi_zazhiganija_10

При перетекании горящих газов из форкамеры в цилиндр двигателя, в связи с турбулизацией горючей смеси, ускоряется и становится более эффективным процесс сгорания. Это. в свою очередь, может привести к улучшению показателей, характеризующих топливную эконо­мичность и токсичность отработавших газов.

Недостатки форкамерных свечей за­ключаются в том, что велико гасящее влияние электродов, а стойкость к обра­зованию нагара мала. Вентиляция форкамеры затруднена и горючая смесь в ней содержит повышенное количество остаточных газов. При перетекании го­рящих газов из форкамеры в цилиндр возникают дополнительные тепловые потери. Один из вариантов форкамерной свечи представлен на рис.

Страницы: 1 2 3

www.avtodiagnostika.info

Свечи зажигания - это... Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания1 — Контактный вывод2 — рёбра изолятора3 — изолятор4 — металлическая оправа5 — центральный электрод6 — боковой электрод7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания.

Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.
Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения - так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор - минимальное расстояние между центральным и боковым электродом. Величина зазора - это компромисс между "мощностью" искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор - тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали - двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути - скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор - тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор - тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять - оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее - тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае - от плотности воздушно-бензиновой смеси. Чем она больше - тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации - в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих "самоочищению" их поверхности от продуктов сгорания топливной смеси - нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета "кофе с молоком".

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи - конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи - конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи - конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

dic.academic.ru

Свечи зажигания : разное - спорное

Данная статья  написана после разговора со знакомым автомехаником, которого хотелось бы убедить в том,  что при замене свечей зажигания на любом автомобиле к этому "процессу" надо относится со всей серьезностью...

На первый взгляд все свечи зажигания одинаковые! Но когда мне клиент привез вместо свечей зажигания  BKR6E, которые были положены для его двигателя - свечи зажигания с маркировкой BKR6EKUC, то это уже был явный "перебор"...И на его удивленный взгляд : " А что здесь такого? Эти даже лучше, смотрите, у них даже два электрода, а я вот читал когда-то...". И пришлось немного задержаться и "просветить" насчет свечей зажигания.

Говоря образно, вкрутив вместо  рекомендуемой  свечи зажигания для данного двигателя  привезенные им свечи зажигания,  мы самостоятельно изменим условия сгорания топливоздушной смеси в цилиндре двигателя.Даже, несмотря на то, что "сохраним" калильное число.Давайте попытаемся разобраться и подтвердить или опровергнуть "значимость каких-то миллиметров по высоте свечи зажигания для устойчивой работы двигателя".Как мне думается, японские инженеры,  первоначально создавая какой-то новый виртуальный двигатель, на Большом компьютере просчитали все варианты и выбрали самый наилучший : головка блока цилиндров должна быть сделана из таких-то материалов и иметь такие-то размеры...камера сгорания должна иметь вот такую конфигурацию и иметь такие вот размеры...поршень...и так далее, и тому подобное. Правильно?В том числе при помощи того же компьютерного моделирования определяется та, одна-единственная точка в камере сгорания, где при определенном составе топливовоздушной смеси, при определенном давлении, в строго определенный момент (остановимся пока на этом) и надо "подать" искру.Эта точка в камере сгорания является оптимальной для того, что бы  вся топливовоздушная смесь  "взорвалась" "правильно", без побочных эффектов детонации, эффекта "полусгорания" и так далее.В зависимости от этих параметров   подбирается или заказывается  у Производителя свеча зажигания, которая должна обеспечивать наилучшие условия воспламенения топливовоздушной смеси ( определенное калильное число свечи зажигания, вид центрального электрода  - обычный или "V" - образный, "платиновая" или обычная и так далее).И если мы  самостоятельно изменим эту "точку воспламенения", перенесем ее на "какие-то миллиметры" в ту или иную сторону, то могут, как мне кажется,  возникнуть непредсказуемые дополнительные условия  сгорания топливовоздушной смеси. И  какими они будут, эти условия, "хорошими или плохими" - сказать или предсказать трудно. Фирмы-производители не рекомендуют использовать другие (с другими показателями) свечи зажигания.Например, для Toyota - Cavalier выпуска 1996 года с двигателем 2.4 литра рекомендуются свечи TR55VX

"BK" или "BC" - говорит о диаметре резьбовой части и составляет "японский основной стандарт" ( в основном встречается) -  14 мм ( или шестигранник 16мм. )."R" - наличие резистора в конструкции свечи зажиганияЦифра "6" или другая цифра в названии говорит о калильном числе свечи зажигания:

2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11

Самая "горячая" свеча - с номером "2". Далее идет возрастание до номера "11".Это самая "холодная" свеча зажигания.Если закрутить в двигатель свечу с другим калильным числом, то при этом могут получиться две самые распространенные неисправности: свеча зажигания или будет перекаливаться, что грозит калильным зажиганием, или будет "забрасываться" сажей, то есть не сможет самоочищаться.Кстати, о самоочищении : проверить, правильно ли подобрана свеча для двигателя можно и таким способом - запустить двигатель и дать ему поработать на ХХ (холостом ходу) несколько минут. Заглушить двигатель и выкрутить свечу. Если ее изолятор, до этого бывший белым стал с сероватым или черноватым оттенком - уже хорошо. После этого снова закрутить свечу, запустить двигатель и "погонять" его на оборотах около 3.000 минуты 3-4.Снова заглушить и снова выкрутить. Если  с изолятора свечи зажигания исчез серовато-черный налет - свеча стоит "правильная", калильное ее число "правильное" потому что поддерживается процесс самоочищения. Если этого не происходит - стоит задуматься и искать причины.На японских автомобилях для "массового" потребителя в основном используются "стандартные" свечи зажигания со "стандартным" калильным числом -  5 или 6.

Буква, следующая сразу за цифрой в наименовании  "говорит" о длине резьбовой части свечи зажигания :"E" - стандарт, 19 мм."EF" - 17.5мм"FS" - 10.9мм"H" - 12.7мм"L" - 11.2мм"S" - 9.5мм"Z" - 21ммВторая буква, которая идет за цифрой в наименовании, определяет особенности конструкции свечи зажигания:

S - стандартный размер, диаметр центрального электрода составляет 2.5ммA и B - специальное исполнение для специально изготовленных двигателейK - два заземляющих электрода ( например, свеча зажигания  BKR6EKUC  для двигателя  GDI ,  Mitsubishi,  4G94 имеет специальное исполнение - два заземляющих электрода (буква "К" в названии).U - свеча с полуповерхностным разрядом (специальное исполнение)С - удлиненное исполнение заземляющих электродовM - два заземляющих электрода ( для свечей зажигания изготовленных только  для автомобилей Mazda специального исполнения).Z - диаметр центрального электрода 2.9 ммQ - свеча зажигания специального исполнения с полуповерхностным разрядом и с четырьмя заземляющими электродами.Т - свеча зажигания специального исполнения с тремя заземляющими электродамиGVV - свеча специального исполнения, для двигателей специального исполнения,  центральный электрод выполнен из платино-палладиевого сплава. Достаточно дорогая даже для "буржуев", стоимость одной свечи зажигания около $100.V -  "обыкновенная" свеча зажигания, правда,  центральный электрод у нее так же выполнен из платино-палладиевого сплава , предназначена для "массового" потребителя.W - центральный электрод выполнен из вольфрама. Долговечная. Дорогая.

Самая последняя цифра в наименовании свечи зажигания - зазор между центральным и заземляющим электродами.Цифра " 11 " -  зазор 1.1мм.И так далее.

При замене и приобретении свечей зажигания спешить не стоит. Пользуйтесь правилом : " Доверяй, но проверяй".То есть, попросите сначала  в одном магазине посмотреть в каталоге - какая свеча зажигания "идет" на ваш автомобиль, потом во втором, в третьем и так далее. Обойдите несколько магазинов и везде записывайте наименования. А потом сравните и посмотрите, сколько у вас будет совпадений. Вот уже по этому можно немного ориентироваться - не знаю, как сейчас обстоят с этим дела, но ранее практически во всех автомагазинах каталоги свечей зажигания были разными. Но лучше всего искать "правильные" свечи для вашего автомобиля - в Internet, на сайте производителя. Там уже точно ошибки не будет.

 

АВТОР: Владимир Петрович Кучер, город Южно-Сахалинск

 

demio121.narod.ru