Свеча зажигания. Свечи зажигания реферат
Свеча зажигания — курсовая работа
Содержание
Введение 3
Глава 1. Свеча зажигания 4
1.1. Немного истории 4
1.2. Свеча зажигания. Назначение. Устройство 5
1.2.1. Свеча зажигания. Назначение 5
1.2.2. Свеча зажигания. Устройство 6
1.3. Принцип работы 10
Глава 2. Свечи зажигания. Типы. Преимущества 12
2.1. Типы свечей зажигания 12
2.2. Маркировка 14
Глава 3. Неисправности. Причины 23
3.1. Снятие и установка 23
3.2. Неисправности. Причины 25
3.3. Рынок 33
Заключение 34
Список литературы 35
Введение
Из "Искры возгорелась «Правда», из искры Божьей возгорается яркий талант, а из искры, проскакивающей между электродами свечи зажигания двигателя внутреннего сгорания с принудительным воспламенением горючей смеси, возгорается вспышка сжатых в цилиндре паров топлива, смешанных с атмосферным воздухом. Бензиновый двигатель давно отпраздновал столетие со дня рождения, а принцип искрового зажигания, запатентованный французским инженером Жаном Лену аром еще в 1860 году, по сей день остается неизменным. И, несмотря на угрозы со стороны турбодизелей и электромоторов, бензиновый двигатель жив, а значит, жива и свеча зажигания. Судя по всему, начало третьего тысячелетия не принесет нам ничего кардинально нового. Но это вовсе не значит, что свеча зажигания пребывает неизменной.
Мало кто из автолюбителей придает особое значение выбору свечей зажигания. Однако свечи являются важнейшим элементом системы зажигания, ведь от устойчивости и своевременности искрообразования зависит стабильность работы всего двигателя. Работа свечи являются заключительным этапом работы всей системы зажигания.
Свечи зажигания являются средством познания вашего двигателя, очевидцами процессов, происходящих в камере сгорания, и могут использоваться как полноценный диагностический инструмент. Как термометр для больного, свечи зажигания выявляют симптомы и условия эксплуатации двигателя. Опытный механик, анализируя эти симптомы, может обнаружить причину, вызывающую множество проблем, или определить соотношение топливовоздушной смеси.
Свечи зажигания – это такая деталь автомобиля, без которой машина просто не заведется и не поедет. Подобные изделия работают в самых экстремальных условиях. Они, то принимают на себя рабочую смесь, образовавшуюся из воздуха и паров бензина, то находятся прямо в раскаленных газах. И так десятки раз за секунду.
Какие требования предъявляются к изготовителям, какие виды свечей бывают, как образуется та самая искра, приводящая в работу двигатели автомобилей и многие другие вопросы будут рассмотрены в данной работе.
Глава 1. Свеча зажигания
1.1. Немного истории
Первые изобретатели свечей зажигания столкнулись с большой проблемой: герметичность. В то время не было настолько качественной керамики и в ход шли разные материалы: стекло, слюда и даже некоторые породы дерева, но быстрое разрушение при нагрузках было неизбежно.
Первый прообраз современной свечи зажигания появился на свет 152 года назад. Француз Ленуар, установил систему зажигания на своём первом двигателе, после чего за её доработку взялся немец Отто. Прародители современной свечи зажигания радикально отличались от современных аналогов. Так, например, наиболее распространенная в 1900 году система зажигания с «запальной трубкой» состояла из керамической изоляторной трубки с пропущенным в ней проводом высокого напряжения. Искра от динамо – машины через высоковольтный провод передавалась непосредственно на поршень либо стенки цилиндра, воспламеняя рабочую смесь.
История "нормальных" свечей зажигания, берет начало с приходом двадцатого столетия. Первый патент на свечу зажигания выдан Роберту Бош в 1902 годом. Инженер компании Боша предлагает использование высококачественной керамики для изолятора и находит способ передачи высокого напряжения в четко установленный момент. Конструкция свечей того времени оказалась на столько удачной, что на протяжении нескольких десятилетий эксплуатации, в их конструкцию не пришлось вносить каких-либо глобальных изменений, лишь небольшие, связанные с увеличением срока службы!
Глава 1. Свеча зажигания
1.2. Свеча зажигания. Назначение. Устройство
1.2.1. Свеча зажигания. Назначение
Задачей свечи зажигания в бензиновом двигателе автомобиля является воспламенение топливно-воздушной смеси в камере сгорания.
Она осуществляет воспламенение смеси воздуха и топлива. На качество этого воспламенения влияют многие факторы, имеющие очень большое значение для эксплуатации автотранспорта и для состояния окружающей среды. Важны такие показатели, как плавность хода, мощность и эффективность двигателя, а также выброс вредных веществ.
Если подумать, что одна свеча зажигания должна зажигать от 500 до 3500 раз в минуту, то становится ясно, насколько значимой является роль современной технологии свечей зажигания, цель которой состоит в соблюдении норм выбросов вредных веществ и в сокращении расхода топлива.
Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, так как от бесперебойности искрообразования зависят мощность, топливная экономичность, пусковые свойства двигателей, а также токсичность отработавших газов.
Глава 1. Свеча зажигания
1.2. Свеча зажигания. Назначение. Устройство
1.2.2. Свеча зажигания. Устройство
Основными элементами любой свечи зажигания являются металлический корпус, керамический изолятор, электроды и контактный стержень.
Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.
Рёбра изолятора
Рёбра изолятора предотвращают электрический пробой по его поверхности, образуя лабиринт.
Изолятор
Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1 000 °C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.
Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.
Уплотнители
Служат для предотвращения проникновения горячих газов из камеры сгорания.
Цоколь (корпус)
Служит для заворачивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.
Боковой электрод
Как правило, изготавливается из легированной никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов.
С 1999 года на рынке появились свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов.
Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов, истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в камере сгорания, полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается. Эффективность «форкамерных» свеч поставлена под сомнение проведённым экпериментом.
Центральный электрод
Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.
Зазор
Зазор — минимальное расстояние между центральным и боковым электродом. Величина зазора — это компромисс между «мощностью» искры, то есть размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.
Факторы, определяемые зазором:
- Чем больше зазор — тем больше размеры искры, тем больше вероятность воспламенения смеси и больше зона воспламенения. Всё это Рис. 1. Зазор.
- положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение будет искать более лёгкие пути — пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т. д.
- Чем больше зазор — тем сложнее пробить его искрой. Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением . Соответствующая
- напряжённость электрического поля , где — расстояние между электродами, называется электрической прочностью промежутка. То есть чем больше зазор — тем бо́льшее напряжение пробоя необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса, но это не важно в данном случае. Понятное дело, что высокое напряжение пр мы не можем поменять — оно определяется системой зажигания. А вот зазор мы поменять можем.
- Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых и платиновых свечей с тонким центральным электродом).
- Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси. Чем она больше — тем сложнее пробить. Пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем определяется произведением относительной плотности газа на расстояние между электродами, . Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20 °C, 760 мм рт. ст.).
student.zoomru.ru
Свечи зажигания со скользящей искрой
Электроискровая свеча как важнейший компонент автомобильной системы зажигания: история появления и совершенствования, принцип работы, конструкция, исполнение и распространение. Особенности автомобильных свечей со скользящей искрой, их преимущества. Краткое сожержание материала:Размещено на
Размещено на
1. История появления и совершенствования свечи зажигания
2. Автомобильные свечи со скользящей искрой
3. Эпилог
4. Преимущества свечи со скользящей искрой
Заключение
Список используемой литературы
Введение
автомобильный свеча зажигание искра
Автомобильные свечи зажигания
Электроискровая свеча является важнейшим компонентом любой современной автомобильной системы зажигания. От совершенства ее конструкции и правильного подбора в значительной степени зависит надежность работы двигателя внутреннего сгорания (ДВС) с принудительным воспламенением топливовоздушной рабочей смеси. По принципу работы различают свечи с искровым воздушным зазором, со скользящей искрой, полупроводниковые, эрозийные и комбинированные. При любом исполнении свеча зажигания является быстродействующим искровым запалом топливовоздушной смеси в цилиндрах ДВС. Наибольшее распространение на автомобильных двигателях получили искровые свечи с воздушным зазором, что объясняется их высокой надежностью, простотой конструкции и технологичностью изготовления.
Бензин, огонь и выхлопные трубы -- приблизительно так в четырех словах можно описать сферу работы свечи зажигания. Но для того, чтобы понять, какие нагрузки испытывает самая обыкновенная свеча при работе, этих слов будет явно недостаточно.
Вначале 10-25 кВ напряжение искрового пробоя прошивает центральный электрод свечи, почти мгновенно температура бензовоздушной смеси на впуске в камеру сгорания вырастает от нескольких десятков градусов до двух-трех тысяч градусов при воспламенении, в этот же момент давление в цилиндре переваливает за 50 кгс/см кв., а разогретая до 800 градусов по Цельсию, иногда и выше, рабочая часть свечи подвергается атакам химически активных веществ, состав и количество которых зависят как от качества самого бензина, так и количества присадок, содержащихся в нем. Теперь все это суммируем, умножаем на миллион, два, три миллиона рабочих циклов. Вполне естественно возникает вопрос: «За счет чего свеча зажигания может успешно справляться со столь непростой работой?». Для развернутого ответа на этот вопрос и для того, чтобы полнее оценить конструктивное совершенство современной свечи зажигания, необходимо обратиться к ее истории.
1. История появления и совершенствования свечи зажигания
Безлошадный экипаж.
На рубеже ХIХ-ХХ веков на дорогах Европы и Америки стало встречаться все больше и больше безлошадных экипажей, приводимых в движение паровыми, электрическими, газовыми и бензиновыми двигателями. Установив на трехколесную повозку усовершенствованную модель 4-тактного двигателя внутреннего сгорания (ДВС) конструкции Николауса Отто, в 1883 году Карл Бенц и Готлиб Даймлер явили миру первый автомобиль с двигателем внутреннего сгорания, работающим на жидком топливе -- бензине.
Несмотря на его такие очевидные преимущества, как высокая удельная мощность, малый удельный вес, высокая частота вращения и экономичность в сравнении с остальными конструкциями двигателей тех лет (исключая двигатель Рудольфа Дизеля), бензиновому двигателю внутреннего сгорания пришлось в течение почти двадцати лет доказывать свое преимущество. К примеру, в 1899 году в Соединенных Штатах Америки из всех выпущенных самодвижущихся экипажей 40% составляли «паромобили», 38% «электромобили» и только 22% автомобили с бензиновыми двигателями. Немаловажным фактором, препятствовавшим бензиновому двигателю занять доминирующее положение, являлось несовершенство системы зажигания и свечи зажигания.
Наиболее распространенная модель на то время системы зажигания с так называемой «запальной трубкой» в 1900 году выглядела следующим образом: в головке блока цилиндров размещалась керамическая трубка-изолятор с пропущенным по ней высоковольтным проводом, один конец которого выходил непосредственно в цилиндр ДВС. Такая конструкция позволяла сообщаемому по ней высокому напряжению, вырабатываемому динамо-машиной, совершать пробой в виде искры на поршень или стенку цилиндра, поджигая рабочую смесь. Максимальное количество оборотов в минуту такого двигателя обычно не превышало и тысячи. Понятно, что с такими показателями бензиновому ДВС было непросто конкурировать с конструкциями других двигателей. Ситуацию, в которой оказался бензиновый двигатель на пороге ХIХ-ХХ веков, прекрасно иллюстрируют слова самого Карла Бенца, сказанные им после серии неудачных попыток увеличить мощность своего детища: «Без надежной работы свечи зажигания все усилия напрасны».
Долой керамику из двигателя
В 1902 году Роберт Бош, применив концепцию свечи зажигания и высоковольтного магнето, принципиально решает проблему того, как сообщить высокое напряжение на свечу в четко определенный момент. Но это изобретение лишь наполовину решило проблему низкой эффективности и надежности работы системы зажигания, так как свеча зажигания еще долго продолжала оставаться ее «ахиллесовой пятой». Для получения надежного образца свечи еще только предстояло найти материалы, пригодные для ее изготовления.
В первую очередь это касалось изолятора. Изолирующим материалом для первых свечей служило мало подходившее для таких целей керамическое сырье, и в первое время оно ничем не отличалось от того, что шло на изготовление обыкновенной керамической посуды. Ничего удивительного не было в том, что такая свеча начинала разрушаться уже при небольших тепловых перегрузках, плохо переносила вибрацию, детонацию и другие механические воздействия неотъемлемых спутников работающего двигателя. Оттого нередки были случаи, когда изолятор свечи под воздействием всех вышеперечисленных негативных факторов рассыпался прямо во время работы двигателя, обрушаясь всеми своими частями прямо внутрь цилиндра. Излишне объяснять, что после таких встрясок весь кривошипно-шатунный механизм надолго выходил из строя.
Тогда на борьбу за улучшение качества изолятора свечи были мобилизованы все мало-мальски известные и исследованные диэлектрики того времени: стекло, кварц, слюда, тальк, резина и даже некоторые сорта древесины. Много времени было потрачено на попытки использовать огнеупорное стекло в качестве изолятора, но из приведенного выше списка материалов лучше всего с поставленными задачами справлялась слюда. Свеча со слюдяным изолятором была устойчива к механическим нагрузкам, хорошо отводила тепло и обладала прекрасными изолирующими свойствами. Но дожить до наших дней слюдяной свече помешало то, что даже при очень незначительных тепловых перегрузках слюдяной изолятор быстро дегидрирует и распадается. Как это ни странно, но к началу Второй мировой войны абсолютное большинство двигателей американских ВВС снабжались именно такими свечами, тогда как в самолетах германских «люфтваффе» уже широко применялись свечи с изолятором из высококачественной керамики.
Бензин есть двигатель прогресса
В тот же предвоенный период нефтеперерабатывающая промышленность наладила массовое производство этилированного бензина. Добавление тетраэтилсвинца в традиционный состав бензина позволило значительно улучшить октановое (антидетонационное) свойство бензина. И вскоре этилированный бензин с успехом вытеснил отовсюду своего предшественника. Но свинец, присутствовавший в этом соединении, прекрасно справлялся не только с детонацией в цилиндрах, но и с традиционными на то время изоляторами и электродами свечей зажигания, вызывая у последних следы глубокой эрозии за самые короткие сроки. И только с появлением новой конструкционной керамики с высоким содержанием оксида алюминия удалось прекратить разрушительное воздействие этилированного бензина на изолятор свечи.
Характеризуя свечу зажигания на рубеже тридцатых -- сороковых годов, про нее можно сказать следующее: это была свеча со стальным корпусом и присоединительной резьбой, нарезанной по его внешнему контуру, центральный электрод в форме округлого стержня, изготовленного из хромоникелевого сплава с традиционным Г-образным боковым электродом. Изолятор свечи изготавливался из керамики с высоким содержанием оксида алюминия. Средняя продолжительность службы такой свечи не превышала 8-10 тысяч километров, а ее функциональные возможности волне соответствовали нуждам автомобилестроения тех лет. Но грянувшая война моторов диктовала свои условия, и в первую очередь о своих правах заявила авиация, чьи форсированные поршневые двигатели требовали стократного запаса надежности для каждой из устанавливаемой на него детали. Так, авиадвигатели, начиная с периода сороковых годов, стали комплектоваться свечами с поистине революционными на то время техническими решениями. Это были свечи с продублированными боковыми электродами, со способностью к очищению изолятора энергией искрового разряда т.н. «воздушно-поверхностным разрядом» и биметаллическим центральным электродом, внутрь электрода был помещен теплопроводящий мостик в виде медного сердечника, что позволило значительно расширить границы рабочего теплового режима свечи. Эта конструкция оказалась настолько удачной, что даже в ходе последующих десятилетий ее эксплуатации в нее не потребовалось вносить каких-либо серьезных изменений.
В отличие от авиаторов, ни в сороковые годы, ни в период 50-60-х годов, автолюбители не были избалованы свечными новинками. На тот период свеча превратилась едва ли не в самую консервативную деталь двигателя и мало чем отличалась от своего довоенного предшественника, исправно неся свою службу...
www.tnu.in.ua
Реферат свечи зажигания
Реферат на тему:
Свечи зажигания
Свечи зажигания, безусловно, работают в самых экстремальных условиях, которые только можно найти в автомобиле. Они поочередно то находятся "в эпицентре взрыва" раскаленных газов с температурами до нескольких тысяч градусов, то принимают на себя порцию рабочей смеси, которая только что образовалась из атмосферного воздуха (при температуре окружающей среды) и пары бензина. Все это повторяется десятки раз каждую секунду в течение многих часов.
Главной задачей всей конструкции свечи является создание зазора, через который периодически пропускается мощный электрический заряд под напряжением 20-30 тысяч вольт, создающий дугу, которая поджигает рабочую смесь. Самые небольшие отклонения параметров приводят к неустойчивой работе, особенно заметной на холостых оборотах, а иногда и к полной остановке или невозможности завести двигатель. Основной причиной таких отклонений является накопление продуктов сгорания бензина, забивают иськрообразующий зазор.
Выход из этой противоречивой ситуации найден давно - свеча сама должна освобождаться от продуктов сгорания. Они дожигается на ее раскаленных поверхностях и смываются вихрем горящих газов, попадая дальше в моторное масло и в конечном итоге - в масляный фильтр или в виде отложений на дно картера. Вместе с тем свеча зажигания не должна нагреваться очень сильно, в этом случае начинается так называемое калильное зажигание и детонация, когда рабочая смесь загорается не от разряда тока в заданный момент времени, а от раскаленных электродов в момент попадания пара в камеру. Последствия этого самые печальные, начиная от потери мощности и увеличения выброса всех вредных веществ до возможного разрушения двигателя.
Характер эксплуатации автомобиля определяет огромный диапазон возможных нагрузок на двигатель. Тепловой режим его компонентов при работе, скажем, в городе очень сильно отличается от напряженного режима при движении на горном серпантине. Все это время свечи зажигания должны обеспечиватьи точный баланс между накоплением тепла для самоочищения и его отводом для предотвращения калильного зажигания. Экспериментально установлено, что такой баланс выдерживается максимально верно, когда рабочие поверхности свечи находятся в диапазоне от 400 до 900 градусов.
Хорошо известна схема отвода тепла типичной свечой зажигания. Около 20 процентов из 100, получаемых от сжигания газов переходит новой порции рабочей смеси назад поступила в камеру (она поступает практически с температурой окружающего воздуха). Шестьдесят процентов проходит через поверхности соприкосновения изолятора и оболочки свечи далее на корпус головки туда, где их уже "ждет" рубашка охлаждения. По 10 процентов получает атмосфера снаружи от внешних частей оболочки и изолятора.
Именно комбинация конструктивных особенностей изолятора и оболочки свечей зажигания определили их деление на горячие, холодные и промежуточные. Первые имеют большую поверхность изолятора, выдающуюся в камеру и "доступную" для обогрева газами горящих и маленькую зону перехода от изолятора к оболочке. Вторые имеют гораздо большую зону для отвода тепла и, поэтому, их рабочие поверхности нагреваются значительно меньше. Способность накапливать тепло называется калильным числом свечи. Практически каждый фирма-изготовитель применяет здесь свою систему кодировки и, поэтому, единственный способ правильно подобрать свечу - использовать фирменный каталог или таблицы взаимозаменяемости.
Керамический изолятор определяет способность свечи накапливать тепло, а металлический сердечник - отводить. Без эффективного решения второй составляющей этого равенства правильный баланс невозможен и поэтому практически все современные свечи имеют так называемую биметаллическую конструкцию. Центральный электрод делается композитным, состоящим из стойкой к эрозии оболочки (обычно из хромо-никильовой стали) и медного сердечника, многократно повышает способность отводить тепло. Гораздо реже биметаллическими делают и боковые электроды, еще реже вместо меди применяют другие материалы, например серебро.
Биметаллический центральный электрод придает свече важнейшее свойство, называемое термоеластичнистю. Ее конструкция обладает одновременно и "горячими" и "холодными" свойствами. В момент пуска двигателя нагревается нижняя часть электрода, сделанная из хромо-никилевого сплава с меньшей теплопроводностью. Это позволяет поддерживать повышенную температуру и, как следствие, обеспечить быстрый и надежный пуск. Затем, по мере прогревания всей массы свечи, в дело вступает медная сердцевина, интенсивно отводящая тепло, свеча становится "холодной". При снижении оборотов, например на холостом ходу, больше работает хромо-никилевого участок и свеча вновь приобретает "горячих" свойств.
Среди производителей свечей зажигания идет непрерывная борьба двух противоположных концепций. Согласно первой чем больший по мощности ток проходит через зазор между электродами, тем полнее и эффективнее сгорает топливо. В результате снижается расход бензина, увеличивается чистота работы двигателя и ресурс таких дорогостоящих элементов системы, как каталитический нейтрализатор. При этом, однако, идет интенсивное электрохимическое разрушение поверхностей электродов, особенно бокового. Противники этого подхода предлагают решения, снижающие мощность тока, увеличивая при этом ресурс свечей зажигания.
Не только повышенный заряд тока, но и идея автомобиля, не "обслуживает", заставляют конструкторов искать пути увеличения времени работы свечи. Многие новые автомобили США предлагают сегодня 100 000 миль (160 000 км) до первой замены расходных материалов (фильтры-свечи). Чаще всего такие модели укомплектованы платиновыми вставками в виде дисков на боковом или на обоих электродах. Платина намного устойчивее к коррозии и электрохимической разрушения, чем традиционные хромо-никилиевие сплавы. Конструкции с электродами, целиком выполненными из платинового сплава делаются реже.
В розничной торговле "свечи-долгожители" чаще укомплектованы тремя - четырьмя боковыми электродами,хотя встречаются и платиновые вставки. Ошибочно автолюбители часто считают, что четыре электрода улучшают "поджигаемость" смеси, образуя четыре плазменных мостики. На самом деле происходит обратное. "Поджигаемость", а также эффективность сгорания даже немного ухудшаются, зато значительно продлевается время жизни свечи. В случае с четырьмя боковыми электродами искра образуется между центральным и тем боковым, который находится ближе. Его поверхность понемногу изнашивается и в дело вступает следующий - тот, расстояние до которого минимально. Так по очереди и работает несколько боковых электродов, продлевая срок службы свечи.
Сгорание рабочей смеси свечей с несколькими боковыми электродами ухудшается потому, что ее доступ в самую критическую часть камеры - к искре затруднен. К тому же, чем больше электродов, тем интенсивнее отводится тепло от свечи. Для таких конструкций больше вероятность образования нагара и хуже показатели двигателя по CO и NO. Поэтому конструкторы активно исследуют и другой путь - свечи с одним боковым электродом минимальных размеров или ... совсем без бокового электрода.
Последнюю конструкцию в реальной жизни можно встретить только на спортивных болидах. В них роль бокового электрода выполняет вся боковая кромка и искра действительно образуется в виде пучков из трех-четырех мостиков. Делать свечи без боковых электродов в гоночных автомобилях приходится вследствие применения сверхмощного заряда. Такой заряд, во-первых, очень быстро съедает электроды из любого материала, а во-вторых имеет возможность "перепрыгнуть" с бокового кольца в центр.
Другой способ "уйти" от применения бокового электрода предлагала в свое время фирма СААБ. В той конструкции его роль выполнял ... поршень. Идея была проста и гениальна. Воспламенения смеси любого бензинового двигателя происходит при движении поршня вверх, когда он сжимает уже рабочую смесь, заранее поступила в камеру. На поверхности поршня был сделан иглообразный выступление, с которого и сходила искра, попадая затем нклапанов на цилиндр оставляет совсем мало свободного пространства. Свече приходится "худеть" в диаметре, экономя на бесценной площади внутри камеры сгорания. Так, если в недавнем прошлом можно было встретить свечи с резьбой M18, то теперь распространенными являются М14 и уже встречаются М12 и даже М10. Для такой тонкой свечи гораздо сложнее решить проблемы термической выносливости и теплоотвода и здесь на первый план выходят вопросы качества материала, стабильности производства и соблюдения технологии.
Все фирмы-производители имеют свои уникальные системы маркировки. Так, например, практически одна и та же свеча разных производителей может называться WR7D, RN9YC, CR43CXLS, CW7LPR или 17R-7DU. Единственной буквой, встречается в данном случае в каждой комбинации является R и это не случайно. Ей обозначают резистор, сделанный составной частью центрального электрода. Как и многие другие технические решения, оно пришло из авиации тех времен, когда из двигателей внутреннего сгорания там выжимали последние резервы повышения эффективности. Резистор необходимо применять на тех автомобилях, которые оснащены электронными системами, расположенными в подкапотном пространстве. Другая буква часто встречается, - С, обозначающая медь (Cupper), а точнее - центральный медный электрод, а две буквы CC в Champion обозначают медный сердечник как у центрального, так и в бокового электрода.
Важнейшими численными характеристиками свечей зажигания является калильное число, диаметр резьбы и длина резьбы.
Не стоит говорить о том, что свеча должна точно соответствовать по этим трем параметрам двигателю Вашего автомобиля. Даже простая ошибка с длиной резьбы может привести к дорогостоящим печальным последствиям. Если она будет короче, чем ваша штатная - на "лишних" витках резьбы в головке очень быстро накопятся продукты сгорания и затем для нормальной свечи путь придется пробивать специальным метчиком. Еще страшнее следствие заворачивания очень долгой свечи. В этом случае продукты сгорания осядутуже на ее поверхности и она будет схвачена своебразным замком. Минимальный результат такой невнимательности - разборка двигателя.
Не стоит также стремиться запомнить кодировку калильного числа и резьб у разных производителей. Что любой уважающий себя и клиентов продавец запчастей имеет готово таблицу взаимозаменяемости.
Свечи зажигания, точнее их внешний вид, является прекрасным индикатором состояния двигателя.
Не только свеча сама готова вам "рассказать" о возможных ошибках с ее выбором, но и поведать о скрытых процессах, развивающихся в двигателе задолго до того, как они заявят о себе виде черного дыма, детонации или нестабильной работы.
Нормально работающая свеча исправного двигателя имеет чистые электроды и цвет керамической юбки изолятора варьируется от светло-серого до коричневого.
Появление черного жирного нагара говорит о том, что либо свеча холодна для данного двигателя, или из-за начинающего проявлять себя износа поршневых колец в камеру поступает излишнее количество масла, или карбюратор отрегулирован неправильно и рабочая смесь переобогащена. Свеча, перегревается, имеет белый цвет керамики. Если же, вывернув свечу, Вы обнаружили те, что оплавились или завалены расплавленным алюминием электроды - это сигнал серьезных неприятностей, уже начались (калильного зажигания, детонации).
И последнее, о чем следует упомянуть - возможное продление жизни свечи регулировкой зазора. Действительно, по мере электрического и термического износа электродов он растет и, применив специальные щупы, можно замерить и выставить правильный зазор простым подгибанием бокового электрода. Можно признать такие действия единственно правильными, если Вы оказались один на один с двигателем, не заводился, на даче за городом или финансовый кризис съел все запасы Вашей семьи и расходы на следующий комплект в нем не предусмотрены. В обычной же ситуации подумайте о том, что изящные электроды быстрее раскаляются и создают угрозу детонации. Капитальный ремонт двигателя стоит гораздо дорожедюжину свечей. Последнее - меняйте их всем комплектом (4, 6, 8 штук, в зависимости от двигателя) - не стоит экономить на спичках.
Источник: avtoff.ru
myreferat.net