Тест многоэлектродных свечей. Тест свечей многоэлектродных зажигания


Тест многоэлектродных свечей зажигания » Lada.CC

Зачем свече зажигания несколько боковых электродов? Ведь сколько бы их ни было — два, три или четыре, — рожденный в недрах катушки высоковольтный импульс вызовет одну-единственную искру, которая «выберет» только один из боковых электродов. Так, может быть, это просто элементарная уловка маркетологов — мол, чем больше электродов, тем дороже?

А основным испытательным стендом стал вазовский восьмиклапанный двигатель ВАЗ-2111 со впрыском топлива и контроллером Январь 5.1.

Все комплекты свечей мы поочередно заворачивали в двигатель ВАЗ-2111, установленный на динамометрическом стенде. Режимы работы двигателя задавали с дистанционного пульта управления: крутящий момент с точностью до 0,5 Нм, а частоту вращения — с точностью до 10 об/мин
Все комплекты свечей мы поочередно заворачивали в двигатель ВАЗ-2111, установленный на динамометрическом стенде. Режимы работы двигателя задавали с дистанционного пульта управления: крутящий момент с точностью до 0,5 Нм, а частоту вращения — с точностью до 10 об/мин На самом деле, преимущество многоэлектродных свечей давно известно — это ресурс. Ведь искра возникает между центральным и боковым электродом в том искровом зазоре, электрическое сопротивление которого в данный момент меньше, чем других. А поскольку сопротивление каждый раз изменяется, то искра «грызет» электроды поочередно. Взгляните, к примеру, на фотографию разряда свечи Bosch, сделанную при большой выдержке. За время съемки произошло около 50 разрядов, искры от которых равномерно распределились между всеми тремя боковыми электродами. Это, кстати, говорит о том, что все три зазора здесь примерно одинаковы. Но даже если это не так и искра бьет только в один электрод, то со временем она его «сгрызет» — и перекинется на соседний, тем самым продлевая срок службы свечи.

Правда, многоэлектродные свечи дороже обычных. И поэтому автопроизводители применяют их только в тех двигателях, где за ценой можно не постоять. Например, в моторе редакционного седана BMW 320i, который эксплуатировался у нас в 1998—2002 годах, стояли четырехэлектродные свечи NGK, которые без проблем отслужили положенные 100000 км.

Но в ходе короткого теста ресурс свечей мы, к сожалению, проверить не в состоянии. Зато мы можем узнать, насколько изменяется мощность, экономичность и токсичность выхлопа у вазовского мотора при работе с разными свечами. А то, что замена свечей влияет на работу двигателя, это факт — в ходе предыдущего теста одноэлектродных свечей разница в мощности достигала почти 6%!

На этот раз комплектов свечей — всего семь. Это чешские свечи Brisk Extra и Brisk Premium, немецкие Bosch и Finwhale, французские Beru, японские NGK и свечи Champion, сделанные в Евросоюзе. Отечественных многоэлектродных свечей мы не нашли.

Первым делом все свечи отправились в барокамеру — для проверки на бесперебойность искрообразования под давлением. Из-за того, что барокамера заполнена не топливовоздушной смесью (взрывоопасно!), а воздухом, и напряжение, подводимое к свече, понижено со штатных 22 до 17 киловольт (имитация экстремальных условий), эти испытания — лишь дополнительный тест. Однако проведя его, мы сможем не только сравнить разные свечи в одинаковых условиях, но и отметить влияние «дополнительных» электродов. А оно есть!

Температуру, давление и относительную влажность воздуха в лаборатории при расчетах мы приводили к стандартным значениям: B=750 мм рт. ст., Т=25°С, ф=36%Температуру, давление и относительную влажность воздуха в лаборатории при расчетах мы приводили к стандартным значениям: B=750 мм рт. ст., Т=25°С, ф=36% Например, если одноэлектродная свеча Bosch WR7DC дает пропуски искры при давлении воздуха в барокамере в 8,1 атм, то ее трехэлектродный «собрат» Bosch W7DTC продержался вплоть до 10,0 атм. Аналогичная картина и с другими комплектами — свеча NGK BUR6ET с тремя «массовыми» электродами стабильно искрит при давлении воздуха до 10,4 атм, а одноэлектродная свеча NGK BPR6E сдается уже при 8,9 атм. О чем это говорит? О том, что дополнительные «массовые» электроды увеличивают надежность искрообразования. Это подтвердилось и при замерах давления полного прекращения искрообразования. Лучший результат трехэлектродных свечей (Brisk Extra, 12,5 атм) чуть превосходит результат лидера среди одноэлектродных комплектов (Brisk LR15YC, 12,0 атм). У других свечей разница заметней — например, трехэлектродные свечи Bosch теряют работоспособность при давлении воздуха в барокамере в 11 атм, а одноэлектродные — уже при 8,4 атм.Температуру, давление и относительную влажность воздуха в лаборатории при расчетах мы приводили к стандартным значениям: B=750 мм рт. ст., Т=25°С, ф=36%
Температуру, давление и относительную влажность воздуха в лаборатории при расчетах мы приводили к стандартным значениям: B=750 мм рт. ст., Т=25°С, ф=36% Надежность искрообразования зависит не только от количества, но и от расположения боковых электродов. Взгляните на фотографию свечи Brisk Premium LOR15LGS. Ее «массовые» электроды расположены настолько далеко от центрального, что давления воздуха даже в 5,5 атм достаточно для полного исчезновения искры. По испытаниям в барокамере эти свечи проигрывают даже штатным одноэлектродным свечам ЭЗ А17ДВРМ! Слишком велико сопротивление зазора — и пониженным напряжением в 17 кВ его не «пробить». Но, конечно, условия, которые мы имитируем в барокамере — это крайность. Такое бывает, например, у автомобиля со слабой батареей в дождливую погоду, когда включены фары, стеклоочистители, обогрев стекла, а влага, попавшая на высоковольтные провода, увеличивает токи утечки...Автоматизированный расходомер топлива позволяет определить экономичность двигателя с точностью до 0,5%. При этом расход бензина на каждом режиме работы мы замеряли трижды — и высчитывали среднее значение
Автоматизированный расходомер топлива позволяет определить экономичность двигателя с точностью до 0,5%. При этом расход бензина на каждом режиме работы мы замеряли трижды — и высчитывали среднее значение Так что главное испытание — это моторный стенд. Каждый комплект свечей мы поочередно заворачиваем в восьмиклапанный двигатель ВАЗ-2111 с распределенным впрыском (контроллер Январь 5.1 2111-1411020-61, лямбд-зонд, без нейтрализатора), соединенный с нагрузочным устройством. Нет нагрузки — двигатель работает на холостом ходу. Повышаем нагрузку — измеряем «частичные» характеристики. Полная нагрузка — номинальный режим. Фиксируем крутящий момент двигателя, частоту вращения, расход топлива и воздуха, токсичность отработавших газов. А чтобы исключить даже минимальные изменения давления, влажности и температуры в лаборатории, где установлен нагрузочный стенд, все полученные результаты приводим к стандартным условиям по методике ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний». База для сравнения — характеристики мотора при работе со штатными одноэлектродными свечами А17ДВРМ из Энгельса.

Сперва — газ в пол! На режиме полного дросселя мы замерили крутящий момент (и мощность) двигателя с каждым из комплектов свечей. Здесь, как и среди одноэлектродных свечей, отличился комплект Finwhale. С этими свечами двигатель развил на 6,3% большую мощность, чем со штатными одноэлектродными свечами ЭЗ А17ДВРМ — и на 0,4% больше, чем с одноэлектродными свечами Finwhale F510 (5,9%). Также в тройке лидеров — свечи Champion (+5,6% мощности) и Brisk Premium (+5,1%). А вот трехэлектродный Bosch выступил скромно — прирост мощности составил всего 2,6%.

Затем, сбавив обороты, мы измерили экономичность двигателя в режиме городского цикла. Интересно, что превзойти результат одноэлектродных свечей NGK (снижение расхода топлива относительно штатных свечей ЭЗ на 5,1%) не удалось ни одному из комплектов. Но в целом многоэлектродные свечи выступили стабильнее — снижение расхода топлива более чем на 3% обеспечивают четыре из семи комплектов: Beru (4,2%), Champion (4,1%), NGK (3,9%) и Bosch (3,2%). А вот чешские свечи Brisk Extra расход топлива в сравнении со штатными ЭЗ не снижают, а увеличивают — на 1,6%.

Неудача постигла свечи Brisk Extra и при замерах токсичности отработавших газов, которые мы проводили на холостом ходу, в режимах городского цикла и внешней скоростной характеристики. Эти свечи, как и одноэлектродный Bosch WR7DCX, заставили контроллер Январь 5.1 работать в режиме постоянной коррекции времени впрыска топлива, переобогащая смесь. Как результат — «неуд» по экологии. В чем причина — неужели тоже пропуск вспышек?

А лидируют по снижению токсичности четырехэлектродные свечи Beru. За ними — Brisk Premium и NGK.

Как водится, результаты всех испытаний мы перевели в баллы и просуммировали их с учетом весовых коэффициентов. В группе лидеров итоговые баллы легли очень «плотно» — как и при тестах именитых шин. В принципе, мы смело рекомендуем все свечи, кроме аутсайдеров Brisk Extra LR15TC. Кстати, если сравнивать с результатами теста одноэлектродных свечей, то лучшие из них (это NGK) смогли бы занять в общем зачете только четвертое место. А это означает, что «дополнительные» электроды влияют не только на ресурс, но и на такие характеристики двигателя, как мощность, экономичность и токсичность.

Кстати, самых выдающихся результатов многоэлектродные свечи достигли в снижении токсичности: если Eyquem, лидер среди одноэлектродных комплектов, показал 40-процентное снижение содержания СО и СН в выхлопе, то Beru Ultra-X — уже почти 60%! Это говорит о том, что «многоэлектродность» и связанная с этим надежность искрообразования особенно ярко проявляют себя на режимах частичных нагрузок (на которых, в основном, мы и проверяли показатели токсичности). Но ждать от многоэлектродных свечей каких-либо чудес не стоит.

Однако процессы воспламенения горючей смеси от искры до сих пор хранят немало тайн даже для серьезных исследователей — и, само собой, привлекают внимание изобретателей и инженеров-самородков. А что, если распилить боковой электрод пополам? Или приварить к свече конус — и назвать получившееся чудо «плазменным генератором»?

Результаты испытаний:Результаты испытанийРезультаты испытаний

Результирующая таблица:Результирующая таблицаРезультирующая таблица

Beru Ultra-X 79
Beru Ultra-X 79 Beru Ultra-X 79 Франция* Цена: 600 рублей** Оценка: 9,0Beru Ultra-X 79Beru Ultra-X 79 Beru Ultra-X 79Beru Ultra-X 79 Главная особенность четырехэлектродных свечей Beru — попарно разные искровые зазоры. Два боковых электрода расположены в 0,8 мм от центрального, а другие два — в 1,2 мм, но приближены к изолятору. Видимо, это сделано для получения полуповерхностного разряда в том случае, если изолятор загрязнен отложениями.

Свечи демонстрируют отличные результаты и в барокамере, и на моторном стенде. Мощность двигателя на внешней скоростной характеристике увеличивается не намного (на 3,7% относительно штатных одноэлектродных свечей ЭЗ), зато по снижению расхода топлива и токсичности свечи Beru — в лидерах.

NGK BUR6ETNGK BUR6ET NGK BUR6ETЯпония* Цена: 540 рублей** Оценка: 8,9NGK BUR6ET
NGK BUR6ET NGK BUR6ETNGK BUR6ET Трехэлектродные свечи NGK аккуратно сделаны и отлично работают. Они немного уступают свечам Beru по расходу топлива (3,9% против 4,2%) и токсичности, но превосходят их по остальным параметрам. Двигатель с японскими свечами работает очень устойчиво, а при полностью открытой дроссельной заслонке развивает на 4,4% большую мощность, чем со штатными свечами ЭЗ.Champion N9BYC4Champion N9BYC4 Champion N9BYC4 Европейский Союз* Цена: 440 рублей** Оценка: 8,7NGK BUR6ETNGK BUR6ET Champion N9BYC4Champion N9BYC4 Трехэлектродные свечи Champion выступили успешней своих одноэлектродных «собратьев». Прежде всего — из-за лучшего снижения расхода топлива, высокой устойчивости работы и увеличения мощности на внешней скоростной характеристике (на 5,6% относительно свечей ЭЗ). Но в барокамере улучшения минимальны — трехэлектродные «чемпионы» превосходят только Brisk Premium и штатные одноэлектродные свечи ЭЗ.Brisk Premium LOR15LGSBrisk Premium LOR15LGS Brisk Premium LOR15LGS Чехия* Цена: 700 рублей** Оценка: 8,5Brisk Premium LOR15LGSBrisk Premium LOR15LGS Brisk Premium LOR15LGSBrisk Premium LOR15LGS Свеча Brisk Premium отличается самым «хитрым» принципом искрообразования. Четыре боковых электрода существенно удалены от центрального и располагаются ниже — «длинная» искра скользит по изолятору. Но из-за этого страдает надежность искрообразования при пониженном напряжении — в барокамере Brisk Premium уступает даже штатным одноэлектродным свечам ЭЗ. Но двигатель работает устойчиво на всех режимах, а при полном дросселе мощность увеличивается на 5,1%.Finwhale FX510Finwhale FX510 Finwhale FX510Германия* Цена: 260 рублей** Оценка: 8,4Finwhale FX510Finwhale FX510 Finwhale FX510Finwhale FX510 Свечи Finwhale вновь, как и при испытании одноэлектродных комплектов, отличились лучшим приростом мощности относительно штатных свечей ЭЗ — 6,3% при полном дросселе! А вот на расход топлива при частичных нагрузках «дополнительные» электроды Финвала почти не влияют. Невысоки результаты свечей и в барокамере — видимо, сказывается увеличенный до 1,1 мм искровой зазор. Зато устойчивость работы двигателя — на высоте.Bosch W7DTCBosch W7DTC Bosch W7DTCГермания* Цена: 400 рублей** Оценка: 7,9Bosch W7DTCBosch W7DTC Bosch W7DTCBosch W7DTC Свечи Bosch показали отличные результаты в барокамере, но прирост мощности двигателя при полном дросселе минимален — всего 2,6% относительно одноэлектродных свечей ЭЗ. Токсичность выхлопа почти не изменилась, зато расход топлива с трехэлектродными свечами Bosch снижается на 3,2%, а двигатель работает очень устойчиво.Brisk Extra LR15TCBrisk Extra LR15TC Brisk Extra LR15TCЧехия* Цена: 180 рублей** Оценка: 6,5Brisk Extra LR15TCBrisk Extra LR15TC Brisk Extra LR15TCBrisk Extra LR15TC Свечи Brisk — самый дешевый из испытанных нами многоэлектродных комплектов. И при этом Brisk — лучший по испытаниям в барокамере и обеспечивает двигателю дополнительные 4,8% мощности. Но расход топлива увеличился, а токсичность выхлопа резко возросла. Причина — постоянная коррекция времени впрыска топлива, которую контроллер Январь 5.1 был вынужден применять, анализируя сигналы от датчика кислорода (лямбда-зонда).

Из искры возгорится пламя?

Каким образом конструкция свечи влияет на мощность, токсичность и экономичность работы двигателя?

Принципиальные схемы развития фронта пламени для одноэлектродных (а) и многоэлектродных (б) свечей. Во втором случае из-за «открытого» искрового зазора сгорание смеси начинается интенсивней, чем в первом — фронт пламени одноэлектродной свечи теряет время на выход из межэлектродного пространстваПринципиальные схемы развития фронта пламени для одноэлектродных (а) и многоэлектродных (б) свечей. Во втором случае из-за «открытого» искрового зазора сгорание смеси начинается интенсивней, чем в первом — фронт пламени одноэлектродной свечи теряет время на выход из межэлектродного пространства Из всех факторов, определяющих эти характеристики, от свечей зажигания наиболее зависима скорость сгорания смеси. Сгорание тем эффективней, чем больше начальный очаг воспламенения (по сути, зазор) и выше температура искры. На фотографиях видно, что свечи Bosch периодически дают красную «холодную» искру (ее температура — около 3000 градусов по шкале Кельвина), а бело-синий цвет «горячей» искры, например, у свечей Beru или NGK соответствует высокой температуре в 4000 К. Суть в том, что скорость сгорания смеси зависит от квадрата температуры!Принципиальные схемы развития фронта пламени для одноэлектродных (а) и многоэлектродных (б) свечей. Во втором случае из-за «открытого» искрового зазора сгорание смеси начинается интенсивней, чем в первом — фронт пламени одноэлектродной свечи теряет время на выход из межэлектродного пространстваПринципиальные схемы развития фронта пламени для одноэлектродных (а) и многоэлектродных (б) свечей. Во втором случае из-за «открытого» искрового зазора сгорание смеси начинается интенсивней, чем в первом — фронт пламени одноэлектродной свечи теряет время на выход из межэлектродного пространства Еще один параметр — это зазор. «Мощностные» лидеры, свечи Champion и Finwhale, отличаются увеличенным до 1,1 мм искровым зазором. Но у свечи Brisk Premium искровой промежуток еще больше, а по мощности они уступают свечам Finwhale и Champion. Почему? Дело в том, что искра Бриска содержит «холодные» красные оттенки, свидетельствующие о невысокой энергии, что и подтвердилось в барокамере.

Есть еще один влиятельный фактор. Взгляните на схемы распространения фронта пламени с одноэлектродной и с многоэлектродной свечой. В первом случае зарождающийся фронт ограничен поверхностью бокового электрода — его интенсивное развитие начинается лишь на выходе из межэлектродного пространства. А у многоэлектродных свечей, напротив, зазор «открыт» и развитие фронта происходит немедленно — нет гасящего влияния боковых электродов!

lada.cc

Тест многоэлектродных свечей

   

Зачем свече зажигания несколько боковых электродов? Ведь сколько бы их ни было — два, три или четыре, — рожденный в недрах катушки высоковольтный импульс вызовет одну-единственную искру, которая «выберет» только один из боковых электродов. Так, может быть, это просто элементарная уловка маркетологов — мол, чем больше электродов, тем дороже?

Мы решили это проверить. И, завершив испытания одноэлектродных свечей зажигания (см. АР № 22, 2004), повторили тест с более дорогими свечами — многоэлектродными. А основным испытательным стендом, как и в прошлый раз, стал вазовский восьмиклапанный двигатель ВАЗ-2111 со впрыском топлива и контроллером Январь 5.1.

На самом деле, преимущество многоэлектродных свечей давно известно — это ресурс. Ведь искра возникает между центральным и боковым электродом в том искровом зазоре, электрическое сопротивление которого в данный момент меньше, чем других. А поскольку сопротивление каждый раз изменяется, то искра «грызет» электроды поочередно. Взгляните, к примеру, на фотографию разряда свечи Bosch, сделанную при большой выдержке. За время съемки произошло около 50 разрядов, искры от которых равномерно распределились между всеми тремя боковыми электродами. Это, кстати, говорит о том, что все три зазора здесь примерно одинаковы. Но даже если это не так и искра бьет только в один электрод, то со временем она его «сгрызет» — и перекинется на соседний, тем самым продлевая срок службы свечи.

Правда, многоэлектродные свечи дороже обычных. И поэтому автопроизводители применяют их только в тех двигателях, где за ценой можно не постоять. Например, в моторе редакционного седана BMW 320i, который эксплуатировался у нас в 1998—2002 годах, стояли четырехэлектродные свечи NGK, которые без проблем отслужили положенные 100000 км.

Но в ходе короткого теста ресурс свечей мы, к сожалению, проверить не в состоянии. Зато мы можем узнать, насколько изменяется мощность, экономичность и токсичность выхлопа у вазовского мотора при работе с разными свечами. А то, что замена свечей влияет на работу двигателя, это факт — в ходе предыдущего теста одноэлектродных свечей разница в мощности достигала почти 6%!

На этот раз комплектов свечей — всего семь. Это чешские свечи Brisk Extra и Brisk Premium, немецкие Bosch и Finwhale, французские Beru, японские NGK и свечи Champion, сделанные в Евросоюзе. Отечественных многоэлектродных свечей мы не нашли.

Первым делом все свечи отправились в барокамеру — для проверки на бесперебойность искрообразования под давлением. Из-за того, что барокамера заполнена не топливовоздушной смесью (взрывоопасно!), а воздухом, и напряжение, подводимое к свече, понижено со штатных 22 до 17 киловольт (имитация экстремальных условий), эти испытания — лишь дополнительный тест. Однако проведя его, мы сможем не только сравнить разные свечи в одинаковых условиях, но и отметить влияние «дополнительных» электродов. А оно есть!

Например, если одноэлектродная свеча Bosch WR7DC дает пропуски искры при давлении воздуха в барокамере в 8,1 атм, то ее трехэлектродный «собрат» Bosch W7DTC продержался вплоть до 10,0 атм. Аналогичная картина и с другими комплектами — свеча NGK BUR6ET с тремя «массовыми» электродами стабильно искрит при давлении воздуха до 10,4 атм, а одноэлектродная свеча NGK BPR6E сдается уже при 8,9 атм. О чем это говорит? О том, что дополнительные «массовые» электроды увеличивают надежность искрообразования. Это подтвердилось и при замерах давления полного прекращения искрообразования. Лучший результат трехэлектродных свечей (Brisk Extra, 12,5 атм) чуть превосходит результат лидера среди одноэлектродных комплектов (Brisk LR15YC, 12,0 атм). У других свечей разница заметней — например, трехэлектродные свечи Bosch теряют работоспособность при давлении воздуха в барокамере в 11 атм, а одноэлектродные — уже при 8,4 атм.

Надежность искрообразования зависит не только от количества, но и от расположения боковых электродов. Взгляните на фотографию свечи Brisk Premium LOR15LGS. Ее «массовые» электроды расположены настолько далеко от центрального, что давления воздуха даже в 5,5 атм достаточно для полного исчезновения искры. По испытаниям в барокамере эти свечи проигрывают даже штатным одноэлектродным свечам ЭЗ А17ДВРМ! Слишком велико сопротивление зазора — и пониженным напряжением в 17 кВ его не «пробить». Но, конечно, условия, которые мы имитируем в барокамере — это крайность. Такое бывает, например, у автомобиля со слабой батареей в дождливую погоду, когда включены фары, стеклоочистители, обогрев стекла, а влага, попавшая на высоковольтные провода, увеличивает токи утечки...

Так что главное испытание — это моторный стенд. Каждый комплект свечей мы поочередно заворачиваем в восьмиклапанный двигатель ВАЗ-2111 с распределенным впрыском (контроллер Январь 5.1 2111-1411020-61, лямбд-зонд, без нейтрализатора), соединенный с нагрузочным устройством. Нет нагрузки — двигатель работает на холостом ходу. Повышаем нагрузку — измеряем «частичные» характеристики. Полная нагрузка — номинальный режим. Фиксируем крутящий момент двигателя, частоту вращения, расход топлива и воздуха, токсичность отработавших газов. А чтобы исключить даже минимальные изменения давления, влажности и температуры в лаборатории, где установлен нагрузочный стенд, все полученные результаты приводим к стандартным условиям по методике ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний». База для сравнения — характеристики мотора при работе со штатными одноэлектродными свечами А17ДВРМ из Энгельса.

Сперва — газ в пол! На режиме полного дросселя мы замерили крутящий момент (и мощность) двигателя с каждым из комплектов свечей. Здесь, как и среди одноэлектродных свечей, отличился комплект Finwhale. С этими свечами двигатель развил на 6,3% большую мощность, чем со штатными одноэлектродными свечами ЭЗ А17ДВРМ — и на 0,4% больше, чем с одноэлектродными свечами Finwhale F510 (5,9%). Также в тройке лидеров — свечи Champion (+5,6% мощности) и Brisk Premium (+5,1%). А вот трехэлектродный Bosch выступил скромно — прирост мощности составил всего 2,6%.

Затем, сбавив обороты, мы измерили экономичность двигателя в режиме городского цикла. Интересно, что превзойти результат одноэлектродных свечей NGK (снижение расхода топлива относительно штатных свечей ЭЗ на 5,1%) не удалось ни одному из комплектов. Но в целом многоэлектродные свечи выступили стабильнее — снижение расхода топлива более чем на 3% обеспечивают четыре из семи комплектов: Beru (4,2%), Champion (4,1%), NGK (3,9%) и Bosch (3,2%). А вот чешские свечи Brisk Extra расход топлива в сравнении со штатными ЭЗ не снижают, а увеличивают — на 1,6%.

Неудача постигла свечи Brisk Extra и при замерах токсичности отработавших газов, которые мы проводили на холостом ходу, в режимах городского цикла и внешней скоростной характеристики. Эти свечи, как и одноэлектродный Bosch WR7DCX, заставили контроллер Январь 5.1 работать в режиме постоянной коррекции времени впрыска топлива, переобогащая смесь. Как результат — «неуд» по экологии. В чем причина — неужели тоже пропуск вспышек?

А лидируют по снижению токсичности четырехэлектродные свечи Beru. За ними — Brisk Premium и NGK.

Как водится, результаты всех испытаний мы перевели в баллы и просуммировали их с учетом весовых коэффициентов. В группе лидеров итоговые баллы легли очень «плотно» — как и при тестах именитых шин. В принципе, мы смело рекомендуем все свечи, кроме аутсайдеров Brisk Extra LR15TC. Кстати, если сравнивать с результатами теста одноэлектродных свечей, то лучшие из них (это NGK) смогли бы занять в общем зачете только четвертое место. А это означает, что «дополнительные» электроды влияют не только на ресурс, но и на такие характеристики двигателя, как мощность, экономичность и токсичность.

Кстати, самых выдающихся результатов многоэлектродные свечи достигли в снижении токсичности: если Eyquem, лидер среди одноэлектродных комплектов, показал 40-процентное снижение содержания СО и СН в выхлопе, то Beru Ultra-X — уже почти 60%! Это говорит о том, что «многоэлектродность» и связанная с этим надежность искрообразования особенно ярко проявляют себя на режимах частичных нагрузок (на которых, в основном, мы и проверяли показатели токсичности). Но ждать от многоэлектродных свечей каких-либо чудес не стоит.

Однако процессы воспламенения горючей смеси от искры до сих пор хранят немало тайн даже для серьезных исследователей — и, само собой, привлекают внимание изобретателей и инженеров-самородков. А что, если распилить боковой электрод пополам? Или приварить к свече конус — и назвать получившееся чудо «плазменным генератором»?

Подобные свечи имеются на прилавках в изобилии. Мы встретили немало оригинальных конструкций — свечи «с форкамерой», с распиленным или просверленным боковым электродом. Попалась даже свеча зажигания с центральным электродом-осьминогом — искрит, как горелка газовой плиты!

Все эти свечи мы тоже испытали. И получили весьма любопытные результаты. Но об этом — в следующий раз...

Результаты испытаний. Многоэлектродные свечи зажигания*
  Влияние на общую оценку Beru Ultra-X 79 NGK BUR6ET Champion N9BYC4 Brisk Premium LOR15LGS Finwhale FX510 Bosch W7DTC Brisk LR15TC ЭЗ А17ДВРМ
Испытания в барокамере 10%
Давление нарушения искрообразования 4% 8,1 9,9 5,8 5,1 6,3 9,5 9,7 5,0
Давление прекращения искрообразования 6% 8,6 8,9 5,7 5,0 6,1 8,9 10,0 5,7
Стендовые моторные испытания 90%
Мощность 30% 8,0 8,5 9,4 9,1 10,0 7,1 8,8 5,0
Экономичность 24% 9,3 9,1 9,3 8,4 6,7 8,5 5,0 6,2
Токсичность 18% 10,0 8,1 7,8 8,1 7,8 5,6 5,2
Устойчивость работы 18% 9,4 9,8 9,4 10,0 9,8 10,0 9,0 7,9
Общая оценка 100% 9,0 8,9 8,7 8,5 8,4 7,9 6,5 5,9
*Для сравнения в таблицу включены результаты штатных одноэлектродных свечей ЭЗ А17ДВРМ
Главная особенность четырехэлектродных свечей Beru — попарно разные искровые зазоры. Два боковых электрода расположены в 0,8 мм от центрального, а другие два — в 1,2 мм, но приближены к изолятору. Видимо, это сделано для получения полуповерхностного разряда в том случае, если изолятор загрязнен отложениями.

Свечи демонстрируют отличные результаты и в барокамере, и на моторном стенде. Мощность двигателя на внешней скоростной характеристике увеличивается не намного (на 3,7% относительно штатных одноэлектродных свечей ЭЗ), зато по снижению расхода топлива и токсичности свечи Beru — в лидерах.

Трехэлектродные свечи NGK аккуратно сделаны и отлично работают. Они немного уступают свечам Beru по расходу топлива (3,9% против 4,2%) и токсичности, но превосходят их по остальным параметрам. Двигатель с японскими свечами работает очень устойчиво, а при полностью открытой дроссельной заслонке развивает на 4,4% большую мощность, чем со штатными свечами ЭЗ.
Трехэлектродные свечи Champion выступили успешней своих одноэлектродных «собратьев». Прежде всего — из-за лучшего снижения расхода топлива, высокой устойчивости работы и увеличения мощности на внешней скоростной характеристике (на 5,6% относительно свечей ЭЗ). Но в барокамере улучшения минимальны — трехэлектродные «чемпионы» превосходят только Brisk Premium и штатные одноэлектродные свечи ЭЗ.
Свеча Brisk Premium отличается самым «хитрым» принципом искрообразования. Четыре боковых электрода существенно удалены от центрального и располагаются ниже — «длинная» искра скользит по изолятору. Но из-за этого страдает надежность искрообразования при пониженном напряжении — в барокамере Brisk Premium уступает даже штатным одноэлектродным свечам ЭЗ. Но двигатель работает устойчиво на всех режимах, а при полном дросселе мощность увеличивается на 5,1%.
Свечи Finwhale вновь, как и при испытании одноэлектродных комплектов, отличились лучшим приростом мощности относительно штатных свечей ЭЗ — 6,3% при полном дросселе! А вот на расход топлива при частичных нагрузках «дополнительные» электроды Финвала почти не влияют. Невысоки результаты свечей и в барокамере — видимо, сказывается увеличенный до 1,1 мм искровой зазор. Зато устойчивость работы двигателя — на высоте.
Свечи Bosch показали отличные результаты в барокамере, но прирост мощности двигателя при полном дросселе минимален — всего 2,6% относительно одноэлектродных свечей ЭЗ. Токсичность выхлопа почти не изменилась, зато расход топлива с трехэлектродными свечами Bosch снижается на 3,2%, а двигатель работает очень устойчиво.
Свечи Brisk — самый дешевый из испытанных нами многоэлектродных комплектов. И при этом Brisk — лучший по испытаниям в барокамере и обеспечивает двигателю дополнительные 4,8% мощности. Но расход топлива увеличился, а токсичность выхлопа резко возросла. Причина — постоянная коррекция времени впрыска топлива, которую контроллер Январь 5.1 был вынужден применять, анализируя сигналы от датчика кислорода (лямбда-зонда).
* Страна изготовления ** Цена за комплект из 4 шт.
Из искры возгорится пламя?
Принципиальные схемы развития фронта пламени для одноэлектродных (а) и многоэлектродных (б) свечей. Во втором случае из-за «открытого» искрового зазора сгорание смеси начинается интенсивней, чем в первом — фронт пламени одноэлектродной свечи теряет время на выход из межэлектродного пространства Каким образом конструкция свечи влияет на мощность, токсичность и экономичность работы двигателя?

Из всех факторов, определяющих эти характеристики, от свечей зажигания наиболее зависима скорость сгорания смеси. Сгорание тем эффективней, чем больше начальный очаг воспламенения (по сути, зазор) и выше температура искры. На фотографиях видно, что свечи Bosch периодически дают красную «холодную» искру (ее температура — около 3000 градусов по шкале Кельвина), а бело-синий цвет «горячей» искры, например, у свечей Beru или NGK соответствует высокой температуре в 4000 К. Суть в том, что скорость сгорания смеси зависит от квадрата температуры!

Еще один параметр — это зазор. «Мощностные» лидеры, свечи Champion и Finwhale, отличаются увеличенным до 1,1 мм искровым зазором. Но у свечи Brisk Premium искровой промежуток еще больше, а по мощности они уступают свечам Finwhale и Champion. Почему? Дело в том, что искра Бриска содержит «холодные» красные оттенки, свидетельствующие о невысокой энергии, что и подтвердилось в барокамере.

Есть еще один влиятельный фактор. Взгляните на схемы распространения фронта пламени с одноэлектродной и с многоэлектродной свечой. В первом случае зарождающийся фронт ограничен поверхностью бокового электрода — его интенсивное развитие начинается лишь на выходе из межэлектродного пространства. А у многоэлектродных свечей, напротив, зазор «открыт» и развитие фронта происходит немедленно — нет гасящего влияния боковых электродов!

Александр ШАБАНОВ, Павел КАРИН

По материалам сайта www.autoreview.ru

www.toyotaownersclub.ru

Тест многоэлектродных свечей - читать

Зачем свече зажигания несколько боковых электродов? Ведь сколько бы их ни было — два, три или четыре, — рожденный в недрах катушки высоковольтный импульс вызовет одну-единственную искру, которая «выберет» только один из боковых электродов. Так, может быть, это просто элементарная уловка маркетологов — мол, чем больше электродов, тем дороже?

Мы решили это проверить. И, завершив испытания одноэлектродных свечей зажигания (см. АР N 22, 2004), повторили тест с более дорогими свечами — многоэлектродными. А основным испытательным стендом, как и в прошлый раз, стал вазовский восьмиклапанный двигатель ВАЗ-2111 со впрыском топлива и контроллером Январь 5.1.

На самом деле, преимущество многоэлектродных свечей давно известно — это ресурс. Ведь искра возникает между центральным и боковым электродом в том искровом зазоре, электрическое сопротивление которого в данный момент меньше, чем других. А поскольку сопротивление каждый раз изменяется, то искра «грызет» электроды поочередно. Взгляните, к примеру, на фотографию разряда свечи Bosch, сделанную при большой выдержке. За время съемки произошло около 50 разрядов, искры от которых равномерно распределились между всеми тремя боковыми электродами. Это, кстати, говорит о том, что все три зазора здесь примерно одинаковы. Но даже если это не так и искра бьет только в один электрод, то со временем она его «сгрызет» — и перекинется на соседний, тем самым продлевая срок службы свечи.

Правда, многоэлектродные свечи дороже обычных. И поэтому автопроизводители применяют их только в тех двигателях, где за ценой можно не постоять. Например, в моторе редакционного седана BMW 320i, который эксплуатировался у нас в 1998—2002 годах, стояли четырехэлектродные свечи NGK, которые без проблем отслужили положенные 100000 км.

Но в ходе короткого теста ресурс свечей мы, к сожалению, проверить не в состоянии. Зато мы можем узнать, насколько изменяется мощность, экономичность и токсичность выхлопа у вазовского мотора при работе с разными свечами. А то, что замена свечей влияет на работу двигателя, это факт — в ходе предыдущего теста одноэлектродных свечей разница в мощности достигала почти 6%!

На этот раз комплектов свечей — всего семь. Это чешские свечи Brisk Extra и Brisk Premium, немецкие Bosch и Finwhale, французские Beru, японские NGK и свечи Champion, сделанные в Евросоюзе. Отечественных многоэлектродных свечей мы не нашли.

Первым делом все свечи отправились в барокамеру — для проверки на бесперебойность искрообразования под давлением. Из-за того, что барокамера заполнена не топливовоздушной смесью (взрывоопасно!), а воздухом, и напряжение, подводимое к свече, понижено со штатных 22 до 17 киловольт (имитация экстремальных условий), эти испытания — лишь дополнительный тест. Однако проведя его, мы сможем не только сравнить разные свечи в одинаковых условиях, но и отметить влияние «дополнительных» электродов. А оно есть!

Например, если одноэлектродная свеча Bosch WR7DC дает пропуски искры при давлении воздуха в барокамере в 8,1 атм, то ее трехэлектродный «собрат» Bosch W7DTC продержался вплоть до 10,0 атм. Аналогичная картина и с другими комплектами — свеча NGK BUR6ET с тремя «массовыми» электродами стабильно искрит при давлении воздуха до 10,4 атм, а одноэлектродная свеча NGK BPR6E сдается уже при 8,9 атм. О чем это говорит? О том, что дополнительные «массовые» электроды увеличивают надежность искрообразования. Это подтвердилось и при замерах давления полного прекращения искрообразования. Лучший результат трехэлектродных свечей (Brisk Extra, 12,5 атм) чуть превосходит результат лидера среди одноэлектродных комплектов (Brisk LR15YC, 12,0 атм). У других свечей разница заметней — например, трехэлектродные свечи Bosch теряют работоспособность при давлении воздуха в барокамере в 11 атм, а одноэлектродные — уже при 8,4 атм.

Надежность искрообразования зависит не только от количества, но и от расположения боковых электродов. Взгляните на фотографию свечи Brisk Premium LOR15LGS. Ее «массовые» электроды расположены настолько далеко от центрального, что давления воздуха даже в 5,5 атм достаточно для полного исчезновения искры. По испытаниям в барокамере эти свечи проигрывают даже штатным одноэлектродным свечам ЭЗ А17ДВРМ! Слишком велико сопротивление зазора — и пониженным напряжением в 17 кВ его не «пробить». Но, конечно, условия, которые мы имитируем в барокамере — это крайность. Такое бывает, например, у автомобиля со слабой батареей в дождливую погоду, когда включены фары, стеклоочистители, обогрев стекла, а влага, попавшая на высоковольтные провода, увеличивает токи утечки.

Так что главное испытание — это моторный стенд. Каждый комплект свечей мы поочередно заворачиваем в восьмиклапанный двигатель ВАЗ-2111 с распределенным впрыском (контроллер Январь 5.1 2111-1411020-61, лямбд-зонд, без нейтрализатора), соединенный с нагрузочным устройством. Нет нагрузки — двигатель работает на холостом ходу. Повышаем нагрузку — измеряем «частичные» характеристики. Полная нагрузка — номинальный режим. Фиксируем крутящий момент двигателя, частоту вращения, расход топлива и воздуха, токсичность отработавших газов. А чтобы исключить даже минимальные изменения давления, влажности и температуры в лаборатории, где установлен нагрузочный стенд, все полученные результаты приводим к стандартным условиям по методике ГОСТ 14846-81 «Двигатели автомобильные. Методы стендовых испытаний». База для сравнения — характеристики мотора при работе со штатными одноэлектродными свечами А17ДВРМ из Энгельса.

Сперва — газ в пол! На режиме полного дросселя мы замерили крутящий момент (и мощность) двигателя с каждым из комплектов свечей. Здесь, как и среди одноэлектродных свечей, отличился комплект Finwhale. С этими свечами двигатель развил на 6,3% большую мощность, чем со штатными одноэлектродными свечами ЭЗ А17ДВРМ — и на 0,4% больше, чем с одноэлектродными свечами Finwhale F510 (5,9%). Также в тройке лидеров — свечи Champion (+5,6% мощности) и Brisk Premium (+5,1%). А вот трехэлектродный Bosch выступил скромно — прирост мощности составил всего 2,6%.

Затем, сбавив обороты, мы измерили экономичность двигателя в режиме городского цикла. Интересно, что превзойти результат одноэлектродных свечей NGK (снижение расхода топлива относительно штатных свечей ЭЗ на 5,1%) не удалось ни одному из комплектов. Но в целом многоэлектродные свечи выступили стабильнее — снижение расхода топлива более чем на 3% обеспечивают четыре из семи комплектов: Beru (4,2%), Champion (4,1%), NGK (3,9%) и Bosch (3,2%). А вот чешские свечи Brisk Extra расход топлива в сравнении со штатными ЭЗ не снижают, а увеличивают — на 1,6%.

Неудача постигла свечи Brisk Extra и при замерах токсичности отработавших газов, которые мы проводили на холостом ходу, в режимах городского цикла и внешней скоростной характеристики. Эти свечи, как и одноэлектродный Bosch WR7DCX, заставили контроллер Январь 5.1 работать в режиме постоянной коррекции времени впрыска топлива, переобогащая смесь. Как результат — «неуд» по экологии. В чем причина — неужели тоже пропуск вспышек?

А лидируют по снижению токсичности четырехэлектродные свечи Beru. За ними — Brisk Premium и NGK.

Как водится, результаты всех испытаний мы перевели в баллы и просуммировали их с учетом весовых коэффициентов. В группе лидеров итоговые баллы легли очень «плотно» — как и при тестах именитых шин. В принципе, мы смело рекомендуем все свечи, кроме аутсайдеров Brisk Extra LR15TC. Кстати, если сравнивать с результатами теста одноэлектродных свечей, то лучшие из них (это NGK) смогли бы занять в общем зачете только четвертое место. А это означает, что «дополнительные» электроды влияют не только на ресурс, но и на такие характеристики двигателя, как мощность, экономичность и токсичность.

Кстати, самых выдающихся результатов многоэлектродные свечи достигли в снижении токсичности: если Eyquem, лидер среди одноэлектродных комплектов, показал 40-процентное снижение содержания СО и СН в выхлопе, то Beru Ultra-X — уже почти 60%! Это говорит о том, что «многоэлектродность» и связанная с этим надежность искрообразования особенно ярко проявляют себя на режимах частичных нагрузок (на которых, в основном, мы и проверяли показатели токсичности). Но ждать от многоэлектродных свечей каких-либо чудес не стоит.

Однако процессы воспламенения горючей смеси от искры до сих пор хранят немало тайн даже для серьезных исследователей — и, само собой, привлекают внимание изобретателей и инженеров-самородков. А что, если распилить боковой электрод пополам? Или приварить к свече конус — и назвать получившееся чудо «плазменным генератором»?

Подобные свечи имеются на прилавках в изобилии. Мы встретили немало оригинальных конструкций — свечи «с форкамерой», с распиленным или просверленным боковым электродом. Попалась даже свеча зажигания с центральным электродом-осьминогом — искрит, как горелка газовой плиты!

Все эти свечи мы тоже испытали. И получили весьма любопытные результаты. Но об этом — в следующий раз.

Материалы: http://autogear.ru/toyota_repair/el_equipment/4055/

car-hz.ru