Люминесцентные лампы с электронным балластом. Напряжение зажигания лампы люминесцентной


Схема подключения люминесцентной лампы к сети: краткий анализ возможных вариантов

лампа люминесцентная

Люминесцентные лампы дают более приятный свет и потребляют меньше энергии, чем традиционные «лампочки Ильича».

Но в отличие от ламп накаливания, их нельзя подключать к электросети напрямую — требуется пускорегулирующий аппарат.

Разговор в данной статье пойдет о том, какой может быть схема включения люминесцентной лампы и какими достоинствами обладает каждый из вариантов.

Особенности работы

лампы люминесцентного типаВ люминесцентных светильниках, также именуемых разрядными или газоразрядными, источником света является не раскаленная металлическая нить, как в обычной лампочке, а электрическая дуга (дуговой разряд) в газовой среде.

Производимый дугой свет в чистом виде является непригодным «к употреблению», так как в значительной мере состоит из невидимого ультрафиолетового излучения, а видимая составляющая имеет зеленовато-голубой цвет.

Ситуацию исправляет нанесенный на внутреннюю поверхность колбы люминофор — особое вещество, которое при облучении ультрафиолетом начинает светиться красноватым светом. Этот свет смешивается с зелено-голубым, так что в итоге свечение лампы становится почти белым.

Для люминесцентных светильников характерны следующие особенности:

  1. Для поддержания дуги требуется гораздо меньшее напряжение (его называют напряжением горения), чем для ее создания (напряжение зажигания или пробоя газового промежутка).
  2. Чтобы обеспечить длительный срок службы лампы, электроды ее перед включением, то есть созданием дуги, следует прогреть.
  3. При попытке уменьшить проходящий через лампу ток ее электроды остывают и лампа гаснет, что делает невозможным ее регулирование (диммирование) традиционными способами.
  4. Сопротивление газовой среды в устоявшемся режиме, то есть когда дуга уже возникла, чрезвычайно мало, поэтому для ограничения силы тока последовательно с лампой обязательно нужно включать сопротивление. Поскольку лампа работает на переменном токе, это сопротивление может быть индуктивным (дроссель).
Дроссель называют балластом, потому что он является дополнительной нагрузкой, но при этом не производит какой-либо полезной работы.

Подключение через электромагнитный балласт со стартером

Самым простым, дешевым, а потому и наиболее распространенным является электромагнитный балласт. В нем применен самый обычный дроссель, рассчитанный на переменный ток с частотой 50 Гц. Одним из важных недостатков такого дросселя является смещение фазы тока относительно фазы напряжения, при котором эффективность любого электрического устройства снижается.

подключение эпра

Схема подключения ЭПРА

В характеристиках обычно указывают не угол, на который происходит смещение, а его косинус — cosφ. Чтобы уменьшить угол расхождения и тем самым увеличить cosφ, приблизив его к единице, в пусковое устройство вводится компенсирующий конденсатор. Подключаться он может по-разному, чаще всего — по схеме параллельной компенсации.

Неотъемлемой частью данной схемы является стартер — газоразрядная лампа в миниатюре, заполненная неоном. У стартера имеются две особенности:

  1. Объем неона в нем подобран таким образом, чтобы напряжение зажигания было выше напряжения горения основной лампы, но ниже сетевого напряжения.
  2. Один из контактов представляет собой биметаллическую пластину, которая по достижении определенной температуры изгибается (из-за разности коэффициентов линейного расширения входящих в ее состав металлов) и при этом прикасается ко второму контакту стартера.

Стартер подключен между электродами лампы последовательно с ними, как бы в обход разрядного промежутка, то есть параллельно ему.

схема включения лампы

Подключение люминесцентных ламп через ЭПРА

Вот как работает эта схема:

  1. При подаче напряжения на лампу газовый промежуток в стартере пробивается и возникает дуга, замыкающая цепь «дроссель — 1-й электрод — стартер — 2-й электрод». По этой цепи течет ток, величина которого ограничивается дросселем. Он заставляет греться электроды лампы, также от дугового разряда в стартере греются его электроды.
  2. Когда биметаллический контакт стартера достаточно разогревается, он сгибается и прикасается ко второму контакту, вследствие чего ток направляется мимо стартера и тот начинает остывать.
  3. Остыв, биметаллический контакт отсоединяется от второго контакта и из-за размыкания цепи на дросселе возникает значительный импульс напряжения. Если этот импульс возникнет в момент однонаправленной фазы сетевого напряжения, то суммарное напряжение на дросселе окажется достаточным для пробоя промежутка между электродами лампы и та включится. Вероятность такого совпадения относительно невелика, поэтому описанный цикл успевает обычно повториться несколько раз. При этом происходит характерное мигание лампы, что считается одним из недостатков светильников этого типа.

Во время повторяющихся попыток включения стартер становится источником радиочастотных помех, для подавления которых параллельно ему подключается конденсатор.

Подключение через электронный балласт

Рассчитанный на частоту в 50 Гц дроссель имеет два недостатка:
  • большие размеры;
  • хорошо слышимый жужжащий звук.

В электронном балласте перед дросселем устанавливается инвертор, похожий на те, что имеются в современных сварочных аппаратах.

Инвертор состоит из двух модулей:

  1. Выпрямитель (обычный диодный мост), преобразующий сетевой переменный ток в постоянный.
  2. Собственно, инвертор: электронный узел с двумя быстропереключаемыми транзисторами, которые, работая под управлением микросхемы, превращают постоянный ток в переменный, но с очень большой частотой — порядка 20 – 40 кГц.

С повышением частоты переменного тока габариты всех индуктивных устройств — дросселей, трансформаторов — уменьшаются. Устраняется и жужжание, а кроме того, лампа работает более ровно (уменьшается коэффициент мерцания).

балласт э/м

Электромагнитные балласты

Еще одно отличие данной схемы: стартер заменен конденсатором. Как известно, цепочка «дроссель — конденсатор» представляет собой резонансный контур, в котором токи при подаче переменного напряжения с резонансной частотой возрастают до бесконечности. При запуске микросхема инвертора формирует ток с частотой, близкой к резонансной. Вследствие этого в цепи появляется необходимый для прогрева электродов ток и при этом на конденсаторе формируется напряжение зажигания лампы.

После ее включения микросхема инвертора сразу меняет частоту формируемого переменного тока с тем, чтобы через лампу протекал ток нужной силы.

В схеме с электронным балластом часто присутствует блок управления, который играет роль стабилизатора (исправляет отклонения напряжения в сети) и корректирует некоторые параметры преобразованного тока.

С его же помощью пользователь может менять в определенных пределах частоту напряжения на выходе инвертора, регулируя тем самым светимость люминесцентной лампы.

Одноламповые схемы включения

Все вышеописанные схемы являются одноламповыми. Подключение стартера осуществляют так: один его контакт подключают к штыревому выводу с одной стороны лампы, второй — к штыревому выводу с другой стороны. Таким образом, с каждой стороны лампы останется по одному свободному выводу — их через дроссель нужно подключить к сети. Компенсирующий конденсатор подключается параллельно питающим контактам лампы.

Для подключения двух ламп применяется несколько иная схема.

Двухламповые схемы включения

Для подключения двух ламп требуются два стартера, но всего один дроссель. Стартеры подключаются так же, как в одноламповой схеме: контакты каждого из них нужно подключить к штыревым выводам с каждой стороны соответствующей лампы. Не задействованные контакты ламп через дроссель подключаются по последовательной схеме к сети.

две лампы через дроссель

Схема подключения двух люминесцентных ламп на один дроссель

Компенсирующие же конденсаторы, по одному на каждую лампу, нужно подключить параллельно питающим контактам.

Если по приведенной схеме подключаются лампы мощностью 18 Вт, мощность дросселя должна составлять 36 Вт, стартеров — от 4 до 22 Вт.

Схема включения люминесцентных ламп

Полезно рассмотреть способы подключения светильников, к которым можно прибегнуть при отсутствии того или иного элемента:

Без дросселя

Дроссель, представляющий собой индуктивное сопротивление, можно заменить сопротивлением активным. В этом качестве может использоваться обычная лампочка накаливания, имеющая ту же мощность, что и люминесцентный светильник. Последний нужно подключить к сети через выпрямитель из двух диодов и двух конденсаторов, на выходе которого получается двойное напряжение.

подключение без стартера и дросселя

Схема подключение люминесцентных ламп без дросселя и стартера

После включения питания и до того, как в лампе возникнет дуговой разряд, на ее электроды будет подано двукратное напряжение сети, что приведет к зажиганию. После пробоя межэлектродного промежутка в лампе установятся рабочие ток и напряжение, при этом в работу включится лампа накаливания.

Отметим, что при таком подключении лампа зажигается без предварительного разогрева электродов, что очень негативно скажется на сроке ее службы.

Без стартера

Самый простой вариант — подключить вместо стартера кнопку от дверного звонка. Для включения лампы кнопку нужно нажать, а как только она загорится — отпустить.

Другое решение — запитать лампу через удваивающий выпрямитель и ввести в схему стабилитроны. До зажигания лампы двукратное напряжение на выходе выпрямителя будет удерживать стабилитроны в открытом положении, вследствие чего под этим же напряжением окажутся электроды лампы.

После ее розжига напряжение упадет и работа удвоителя станет невозможной. Соответственно, закроются стабилитроны и напряжение в лампе станет рабочим (ограничивается дросселем).

Видео на тему

proprovoda.ru

Люминесцентные лампы с электронным балластом



Люминесцентные лампы с электронным балластом

Люминесцентные лампы намного экономичнее ламп накаливания, имеют эффективность до 80 лм/Вт против 12 лм/Вт. Люминесцентные лампы могут выпускаться в вариантах с различными цветовыми температурами излучения, от 2700 К (тёплый свет, сопоставимый со светом от ламп накаливания) до 6500 К (холодный дневной). Современные люминесцентные лампы обладают хорошим спектром, обеспечивающим правильное восприятие цветовых оттенков предметов.

Преимущества люминесцентных ламп не остались незамеченными, они широко используются для освещения производственных помещений, офисов, а в последнее время всё чаще применяются в домашнем освещении. Ещё лучшие результаты эти лампы показывают при использовании электронного балласта, работающего на повышенных частотах, пришедшего на смену традиционным пускорегулирующим устройствам.

Люминесцентная лампаКлассическое пускорегулирующее устройствоПреимущества электронного балластаТиповая схема электронного балласта


Люминесцентная лампа

Люминесцентная лампа представляет собой газоразрядную трубку, наполненную инертным газом - аргоном или криптоном под низким давлением, с добавлением небольшого количества ртути. С каждого конца в трубке находятся нити накаливания, в нагретом состоянии они поддерживают разряд за счёт эмиссии электронов. Лампы питаются переменным током, так что каждая из нитей поочерёдно играет роль катода прямого накала. Разряд в парах ртути является интенсивным источником ультрафиолетового излучения, которое преобразуется в видимый свет за счёт нанесённого на внутреннюю поверхность трубки слоя люминофора.

Устройство люминесцентной лампы (трубка)Рис. 1

Использовавшиеся ранее люминофоры белого свечения были далеки от идеала и ставили перед выбором: получить максимальную эффективность и плохую цветопередачу или потерять в эффективности ради лучшей цветопередачи. Новая трёхлюминофорная технология решила эту проблему. Подбор соотношения используемых люминофоров позволяет добиться очень высокой эффективности, прекрасной цветопередачи, а кроме того, даёт возможность выбора цветовой температуры лампы.

Выпускается множество вариантов ламп, различных по мощности и размерам. В последние годы наряду с линейными трубчатыми лампами всё большую популярность приобретают лампы более сложных форм. Придавая трубке U-образную форму, или свернув её в спираль, или используя какую-то иную пространственную конфигурацию, можно сделать трубку очень компактной. Объединяя такую трубку с электронным балластом, получаем лампу, сопоставимую по размерам с лампой накаливания. Её можно снабдить таким же цоколем, как у обычных ламп накаливания и использовать как более эффективную замену ламп накаливания. За компактными люминесцентными лампами закрепилось название "энергосберегающие" лампы, хотя оно не вполне точное, так как термин должен охватывать более широкий круг устройств. Например, светодиодные лампы являются не в меньшей степени эффективными и энергосберегающими.

Классическое пускорегулирующее устройство

Рассмотрим, как осуществляется зажигание разряда в лампе и поддержание рабочего режима. Перед зажиганием лампы требуется предварительный прогрев катодов. "Холодный старт" недопустим, так как значительно сокращает срок службы лампы из-за сильного катодного распыления в момент включения. В результате предварительного прогрева, за счёт термоэлектронной эмиссии, вокруг каждого из катодов образуется электронное облако, пространственный заряд которого уменьшает напряжённость поля вблизи катода и предотвращает его разрушение.

После прогрева катодов можно зажигать разряд в лампе, для этого требуется импульс высокого напряжения, порядка 1000 В. После зажигания разряда сопротивление лампы резко уменьшается. Происходит переход на падающий участок вольтамперной характеристики, когда с ростом тока через лампу напряжение на ней падает. В связи с этим возникает необходимость в устройстве ограничения тока для предотвращения разрушения лампы.

Питающий ток должен быть по возможности близок к идеально синусоидальному. В этом случае минимизируется уровень излучаемых помех от самой лампы и от питающих проводов. Кроме того, недопустимы большие пиковые значения питающего тока, которые сильно сокращают срок службы ламп. Недопустимо наличие постоянной составляющей питающего тока, иначе будет снижаться эмиссионная способность одного из катодов.

В связи с перечисленными особенностями требуется наличие специального пускорегулирующего устройства для включения люминесцентной лампы в сеть. На протяжении многих лет использовалась и до сих пор весьма распространена простейшая схема с дросселем, включённым последовательно с лампой.

Классическое пуско-регулирующее устройство для люминесцентной лампыРис. 2

Работает это пускорегулирующее устройство следующим образом. После включения в сеть зажигается неоновая лампа-стартер (starter). Она очень быстро разогревается проходящим током и один из её электродов, выполненный в виде биметаллической пластины изгибается и касается другого электрода, замыкая цепь. Обе нити накаливания люминесцентной лампы оказываются включены последовательно и через дроссель L подключены к сети. Начинается разогрев катодов. Одновременно с этим происходит охлаждение неоновой лампы, так как в замкнутом состоянии её сопротивление мало и рассеваемая на ней мощность незначительна. За время порядка 1..2 секунд неоновая лампа остывает, биметаллический контакт размыкает цепь. За счёт эдс самоиндукции дросселя L формируется импульс высокого напряжения между катодами люминесцентной лампы и она зажигается, после чего напряжение на ней падает. В рабочем режиме ток через лампу ограничивается дросселем L, напряжение на лампе падает до величины недостаточной для зажигания неоновой лампы-стартера.

Если с первого раза не произошло зажигания разряда, аналогичным образом происходят повторные циклы старта.

Конденсатор C1 компенсирует индуктивную составляющую потребляемого цепочкой лампа-дроссель тока, уменьшая сдвиг фаз между током, потребляемым от сети и напряжением в сети. Конденсатор C2 подавляет коммутационные помехи при замыкании и размыкании контактов неоновой лампы.

Несмотря на предельную простоту, схема отвечает основным требованиям к пускорегулирующему устройству для люминесцентных ламп: обеспечивает "мягкий старт" (предварительный прогрев катодов перед зажиганием) и стабилизацию тока в рабочем режиме; реактивное сопротивление дросселя растёт с частотой, что ограничивает ток высших гармоник и обеспечивает более или менее синусоидальный ток через лампу.

Преимущества электронного балласта

В электронном балласте, точно так же как в классическом пускорегулирующем устройстве, старт и стабилизация рабочей точки лампы осуществляются с помощью дросселя, только для питания используется высокочастотный ток. Естественно, схема усложняется, но появляется ряд преимуществ по отношению к низкочастотному варианту.

Блок-схема электронного балластаРис. 3

На рисунке изображена блок-схема электронного балласта. Как видим, в электронном балласте сетевое напряжение выпрямляется, полученное постоянное напряжение преобразуется с помощью инвертора в переменное с повышенной частотой, которое подаётся на люминесцентную трубку через дроссель.

Для защиты сети от высокочастотных помех, возникающих при работе электронного балласта, на входе схемы ставят фильтр. Электронный балласт может опционально содержать схему PFC (power factor correction), которая улучшает линейность электронного балласта как нагрузки для сети - за счёт этой схемы от сети потребляется ток в течении большей части каждого полупериода колебаний сетевого напряжения, в отличие от обычного выпрямителя, который потребляет ток в виде коротких импульсов большой амплитуды в моменты подзаряда сглаживающего конденсатора, в результате чего искажается форма сетевого напряжения. Рост количества потребителей с импульсным преобразованием напряжения делает необходимостью использовать схемы PFC, по крайней мере, в мощных устройствах.

Показанная на схеме пунктиром необязательная цепь обратной связи может использоваться для стабилизации режима лампы при изменениях входного напряжения и для осуществления защитного отключения устройства в случае аварийных режимов работы.

Переход на повышенные частоты питающего лампу тока даёт следующие преимущества.

Увеличение эффективности. Как показывают исследования, увеличение частоты питающего тока с 50 Гц до 20 кГц увеличивает световую отдачу лампы примерно на 10%. Что позволяет увеличить выход лампы при той же потребляемой мощности, либо снизить потребление при том же световом выходе.

Устранение мерцания. При использовании классического пускорегулирующего устройства, лампа мерцает с удвоенной частотой сети - вспыхивает дважды за период на каждой полуволне питающего напряжения. Это мерцание воспринимается многими людьми, раздражает, вызывает быстрое утомление. При работе с вращающимися механизмами, мерцание может вызывать опасный стробоскопический эффект, когда быстро вращающаяся деталь кажется неподвижной или медленно поворачивающейся. Если лампа питается током высокой частоты, она светит непрерывным светом, так как период колебаний тока оказывается меньше, чем время отклика люминофора (проявляется послесвечение люминофора). Возможна лишь незначительная модуляция светового потока с удвоенной сетевой частотой из-за наличий пульсаций после выпрямления сетевого напряжения в схеме электронного балласта. Эти пульсации совершенно незаметны даже при использовании простейших сглаживающих фильтров; использование упоминавшейся ранее цепи обратной связи практически полностью устраняет пульсацию светового потока.

Уменьшение размеров и веса. На высоких частотах требуется дроссель с малой индуктивностью и он может иметь очень малые размеры. Также уменьшается требующаяся ёмкость конденсаторов и, соответственно, их размер. В целом электронный балласт получается весьма компактным и недорогим.

Отсутствие шума. Даже качественные дроссели низкочастотных пускорегулирующих устройств гудят из-за вибрации пластин сердечника и витков катушки с частотой сети. Вибрация от дросселя передаётся на элементы светильника, за счёт чего уровень шума становится ещё выше. Во время включения стартер создаёт шум в виде громких щелчков. Электронный балласт обеспечивает бесшумный старт; с ростом частоты вибрация дросселя уменьшается; рабочая частота электронного балласта может быть выбрана выше верхней границы воспринимаемого слухом аудио-диапазона и тогда лампа не будет являться источником слышимого шума.

Высокая надёжность, длительный срок службы. В классическом пускорегулирующем устройстве весьма слабым местом является стартер. Стартеры в момент включения испытывают значительные электрические и тепловые нагрузки, содержат контакты, механически осуществляющие коммутацию цепи. Это серьёзно сказывается на надёжности и долговечности. Часто вышедший и строя стартер заодно выводит из строя и люминесцентную лампу (если он теряет способность зажечь лампу, переходя в бесконечный цикл попыток запуска или если происходит залипание контактов с переходом в режим непрерывного разогрева катодов). В электронном балласте отсутствуют подвижные механические контакты, проще точно выдержать режимы мягкого старта, есть возможность создать для всех элементов схемы благоприятные режимы работы, можно предусмотреть стабилизацию рабочего режима и защитное отключение в случае аварийной ситуации. Так что, несмотря на увеличение сложности, надёжность и срок службы оказываются больше.

Типовая схема электронного балласта

Схемы недорогих ламп небольшой мощности практически одинаковы, отличия если есть, то в незначительных деталях. Существуют большие сборники схем для лам разных моделей, но для того, чтобы разобраться с принципом работы, достаточно рассмотреть устройство одной лампы. На рис. 4 приведена схема NAKAi 25W/833 (220-240V, 50-60Hz; Warm white).

Типовая схема электронного балластаРис. 4

Выпрямитель, собранный по двухполупериодной схеме на диодах D1-D4, подключён к сети через предохранитель FUSE. К выходу выпрямителя подключён объединённый фильтр помех и сглаживающий фильтр на элементах C1, L1, C4. Инвертор собран на транзисторах Q1, Q2 по двухтактной автогенераторной схеме (вариант полумостового инвертора с питаемым напряжением последовательным резонансным контуром). Положительная обратная связь в автогенераторе осуществляется трансформатором L3 на ферритовом кольце (первичная обмотка содержит 8 витков, вторичные - по 2 витка). Диоды D7, D8 защищают транзисторы от пробоя в результате возникновения эдс самоиндукции в дросселе L2 при закрытии обоих транзисторов, ограничивая диапазон напряжений на выходе инвертора от 0 до выпрямленного напряжения сети. Одновременно с защитой, они осуществляют рекуперацию энергии, возвращая её в конденсаторы фильтра.

Здесь используется схема автогенератора с жёстким самовозбуждением. Сразу после включения в сеть, автогенерация отсутствует - оба транзистора закрыты. Для запуска автогенератора требуется внешнее воздействие, которое производится схемой запуска из элементов R1, R2, C2, D5, DIAC. Функционирует схема запуска автогенератора следующим образом. При закрытых транзисторах конденсатор C2 заряжается через резисторы R1, R2 напряжением, получаемым с выхода выпрямителя. Когда напряжение на C2 достигает напряжения пробоя динистора, динистор открывается и разряжает конденсатор через базу транзистора Q1. Этот импульс открывает транзистор, после чего начинается работа автогенератора. При работающем автогенераторе импульсы запуска не формируются, потому что каждый раз когда открывается Q1, происходит разряд конденсатора C2 через диод D5. Так что в рабочем режиме C2 не имеет шансов успеть зарядиться до напряжения пробоя DIAC, для этого сопротивление резистора R2 и, соответственно, постоянная времени RC-цепи слишком велики.

Нагрузкой инвертора и одновременно последовательным резонансным контуром, определяющим частоту колебаний автогенератора является цепь из элементов L2, C8, C7, X1 (люминесцентная трубка). Влиянием первичной обмотки трансформатора связи L3 на эту цепь можно пренебречь из-за крайне низкой индуктивности обмотки по сравнению с индуктивностью дросселя L2.

Рассмотрим теперь, как происходит зажигание лампы и обеспечение её рабочего режима. Для предварительного прогрева катодов лампы служит терморезистор с положительным ТКС R8. При комнатной температуре он имеет низкое сопротивление и поэтому сразу после включения инвертора шунтирует конденсатор C8. Переменное напряжение инвертора оказывается приложено к последовательному резонансному контуру, образованному элементами L2, C7, R8 и последовательно соединёнными нитями накала (катодами). Это этап предварительного разогрева катодов. В это же время терморезистор разогревается проходящим через него током. Сопротивление его возрастает, он "самоотключается" от цепи, зато включается в работу конденсатор C8, который до этого был зашунтирован терморезистором.

Ёмкость C8 во много раз меньше, чем ёмкость конденсатора C7 (в данном случае в 10 раз), поэтому можно считать, что C7 представляет короткое замыкание для переменного тока и определяющее значение будет иметь C8. За счёт уменьшения ёмкости последовательного резонансного контура, возрастает частота генерации и характеристическое сопротивление контура, резонансное напряжение на C7 увеличивается до величины, достаточной для зажигания разряда в трубке. После зажигания разряда, напряжение на трубке падает и конденсатор C8 перестаёт существенным образом влиять на частоту генерации. Частота генерации падает, теперь она определяется элементами L2 и С7. Лампа переходит в рабочий режим.

Нетрудно догадаться, что показанные на блок-схеме (рис. 3) опциональные элементы в дешёвых лампах отсутствуют: нет блока PFC и обратной связи для стабилизации режима.

author: hamper; date: 2016-09-15

 

www.rotr.info

Принцип работы стартеров люминесцентных ламп

Стартер представляет собой небольшую газоразряд­ную лампу тлеющего разряда. Стеклянная кол­ба наполняется инертным газом (неон или смесь гелий-водород) и помещается в металлический или пластмас­совый корпус, на верхней крышке которого имеется смо­тровое окно.

Схемы включения люминесцентных ламп

Схемы включения люминесцентных ламп: а-стартерная с дросселем; б—с лампой накаливания в качестве балласта; EL1 — лампа люминесцентная; КК — стартер; С — конденсатор; LL — дроссель; EL2 — лампа накаливания.

В некоторых конструкциях стартеров смотровое окно отсутствует. Стартер имеет два электро­да. Различают несимметричную и симметричную кон­струкции стартеров. В несимметричных стартерах один электрод неподвижный, а второй подвижный, изготовлениз биметалла.

В настоящее время наибольшее распро­странение получила симметричная конструкция старте­ров, у которых оба электрода изготовляются из биметалла. Эта конструкция имеет ряд преимуществ по сравнению с несимметричной.

Напряжение зажигания в стартере тлеющего разряда выбирается таким образом, чтобы оно было меньше номинального напряжения сети, но больше рабочего на­пряжения, устанавливающегося на люми­несцентной лампе при ее горении.

Схема подключения двух люминесцентных ламп через стартер

Схема подключения двух люминесцентных ламп через стартер.

При включении схемы на на­пряжение сети оно полностью окажется приложенным к стартеру. Электроды стар­тера разомкнуты, и в нем возникает тлеющий разряд. В цепи будет проходить небольшой ток (20-50 мА). Этот ток на­гревает биметаллические электроды, и они, изгибаясь, замкнут цепь, и тлеющий разряд в стартере прекратится.

Через дроссель и последовательно соединенные катоды начнет проходить ток, который будет подогревать катоды лампы. Величина этого тока определяется индуктивным сопротивлением дросселя, выбираемым таким образом, что­бы ток предварительного подогрева като­дов в 1,5 2,1 раза превышал номинальный ток лампы. Длительность предваритель­ного подогрева катодов определяется вре­менем, в течение которого электроды стар­тера остаются замкнутыми.

Когда элек­троды стартера замкнуты, они остывают, и по прошествии определенного промежутка времени, называемого временем контактирования, электроды раз­мыкаются. Так как дроссель обладает большой индуктивностью, то в момент размыкания электродов стар­тера в дросселе возникает большой импульс напряже­ния, зажигающий лампу.

После зажигания лампы в цепи установится ток, рав­ный номинальному рабочему току лампы. Этот ток обу­словит такое падение напряжения на дросселе, что на­пряжение на лампе станет примерно равным половине номинального напряжения сети. Так как стартер вклю­чен параллельно лампе, то напряжение на нем будет равно напряжению на лампе и в связи с тем, что оно недостаточно для зажигания тлеющего разряда в стар­тере, его электроды останутся разомкнутыми при горе­нии лампы.

Стартеры тлеющего заряда

Стартеры тлеющего заряда.

Возможность зажигания лампы зависит от длитель­ности предварительного подогрева катодов и величины тока, проходящего через лампу в момент размыкания электродов стартера. Если разрыв цепи произойдет при малом значении тока, то величина индуктированной в дросселе э. д. с. и, следовательно, приложенного к лампе напряжения может оказаться недостаточной для ее зажигания, и лампа не зажжется. Поэтому, если при первой попытке стартер не зажжет лампу, он сразу же автоматически будет повторять описанный процесс до тех пор, пока не произойдет зажигание лампы. Со­гласно ГОСТ на стартеры зажигание лампы должно быть обеспечено за время до 10 сек.

Параллельно электродам стартера включен конден­сатор емкостью 0,003-0,1 мкф. Этот конденсатор обыч­но размещается в корпусе стартера. Конденсатор выпол­няет две функции: снижает уровень радиопомех, возни­кающих при контактировании электродов стартера и создаваемых лампой; с другой стороны, этот конденса­тор оказывает влияние на процессы зажигания лампы. Конденсатор уменьшает величину импульса напряже­ния, образуемого в момент размыкания электродов стар­тера, и увеличивает его длительность.

При отсутствии конденсатора напряжение на лампе очень быстро воз­растает, достигая нескольких тысяч вольт, но продолжи­тельность его действия очень небольшая. В этих усло­виях резко снижается надежность зажигания ламп. Кро­ме того, включение конденсатора параллельно электро­дам стартера уменьшает вероятность сваривания или, как говорят, залипания электродов, получающегося в ре­зультате образования электрической дуги в момент размыкания электродов. Конденсатор способствует быстрому гашению дуги.

Принципиальная схема включения люминесцентной лампы

Принципиальная схема включения люминесцентной лампы.

Применение конденсаторов в стартёре не обеспечи­вает полного подавления радиопомех, создаваемых лю­минесцентной лампой. Поэтому необходимо дополни­тельно на входе схемы установить два конденсатора емкостью не менее 0,008 мкф каждый, соединен­ных последовательно, и среднюю точку заземлить.Одним из рекомендуемых способов снижения уровня радиопомех является применение дросселей с симметри­рованной обмоткой где обмотка дросселя разделе­на на две совершенно одинаковые части, имеющие рав­ное число витков, намотанных на один общий сердеч­ник.

Каждая часть дросселя соединена последовательно с одним из катодов лампы. При включении такого дрос­селя с лампой оба ее катода работают в одинаковых условиях, что снижает уровень радиопомех. В настоящее время, как правило, выпускаемые промышленностью дроссели изготовляются с симметрированными обмот­ками.

В схеме из-за наличия дросселя ток через лампу и напряжение сети не будут совпадать по фазе, т. е. они не будут одновременно достигать своих нулевых и максимальных значений. Как известно из теории переменного тока, в этом случае ток будет отставать по фазе от напряжения сети на некоторый угол, величина которого определяется соотношением индуктивного со­противления дросселя и активного сопротивления всей сети. Такие схемы называются отстающими.

В ряде случаев использования люминесцетных ламп требуется создавать такие условия, когда ток через лам­пу опережал бы по фазе напряжение сети. Такие схемы называются опережающими. Для выполнения этого условия последовательно с дросселем включается кон­денсатор, емкость которого рассчитывается таким обра­зом, чтобы его емкостное сопротивление было больше индуктивного сопротивления дросселя.

Устройство люминесцентной лампы

Устройство люминесцентной лампы.

В опережающем балласте в период зажигания лампы ток предварительного подогрева катодов имеет недостаточную величину. Для устранения этого явления необходимо на время зажигания лампы увеличить ток предварительного подогрева, что можно сделать, если частично компенсировать емкость индуктивностью. В цепь стартера включается дополнительная индуктивность в виде компенсирующей катушки.

При замыкании электродов стартера эта компенсирующая катушка включается последовательно с дросселем и конденсатором, общая индуктивность схемы возраста­ет, а вместе с ней увеличивается ток предварительного подогрева. После размыкания электродов стартера ком­пенсирующая катушка отключается, и в рабочем режиме лампы она не участвует. Индуктивность дополнительной катушки компенсирует емкость конденсатора, установ­ленного в стартере. Поэтому в схему вводится дополни­тельный конденсатор емкостью не менее 0,008 мкф, включаемый параллельно лампе и выполняющий в этом случае роль помехоподавляющего конденсатора.

Один из недостатков рассмотренных схем - низкий коэффициент мощности. Он составляет величину 0,5-0,6. Пускорегулирующие аппараты (ПРА), выполненные на основе этих схем, относятся к группе так называемых некомпенсированных аппаратов. При использовании та­ких аппаратов согласно правилам устройства электро­установок (ПУЭ) для повышения низкого коэффициента мощности необходимо предусматривать групповую ком­пенсацию коэффициента мощности, обеспечивающую до­ведение его для всей осветительной установки до вели­чины 0,9-0,95.

При невозможности или экономической неэффектив­ности применения групповой компенсации коэффициента мощности используют схемы, в которых дополнительно параллельно лампе включается конденсатор достаточной емкости, выбранный таким образом, чтобы коэффициент мощности схемы повысился до величины 0,85 -0,9 . ПРА, изготовленный по этой схеме, называют компенсированным. Расчеты показывают, что для ламп мощ­ностью 20 и 40 вт при напряжении 220 в емкость кон­денсатора составляет 3-5 мкф.

Основной недостаток стартерных схем зажигания - их низкая надежность, которая обусловлена ненадежно­стью работы стартера. Надежная работа стартера также зависит от уровня напряжения в питающей сети. Со сни­жением напряжения в питающей сети увеличивается время, необходимое для разогрева биметаллических элек­тродов, а при уменьшении напряжения более чем на 20% номинального стартер вообще не обеспечивает кон­тактирования электродов, и лампа не будет зажигаться. Значит, с уменьшением напряжения в питающей сети время зажигания лампы увеличивается.

Схема запуска сгоревшей люминисцентной лампы

Схема запуска сгоревшей люминисцентной лампы.

У люминесцентной лампы по мере старения наблю­дается увеличение ее рабочего напряжения, а у старте­ра, наоборот, с ростом срока службы напряжение зажи­гания тлеющего разряда уменьшается. В результате этого возможно, что при горящей лампе стартер начнет срабатывать и лампа гаснет.

При размыкании электродов стартера лампа вновь загорается и наблюдается мига­ние лампы. Такое мигание лампы, помимо вызываемого им неприятного зрительного ощущения, может привести к перегреву дросселя, выходу его из строя и порче лам­пы. Подобные же явления могут иметь место при ис­пользовании старых стартеров в сети с пониженным уровнем напряжения. При появлении миганий лампы необходимо заменить стартер на новый.

Стартеры имеют значительные разбросы времени кон­тактирования электродов, и оно очень часто недостаточ­но для надежного предварительного подогрева катодов ламп. В результате стартер зажигает лампу после не­скольких промежуточных попыток, что увеличивает дли­тельность переходных процессов, снижающих срок служ­бы ламп.

Общий недостаток всех одноламповых схем - невоз­можность уменьшить создаваемую одной люминесцент­ной лампой пульсацию светового потока. Поэтому такие схемы можно применять в помещениях, где устанавли­вается несколько ламп, а в случае их использования для группы ламп рекомендуется с целью уменьшения пульса­ции светового потока лампы включать в различные фазы трехфазной цепи. Необходимо стремиться к тому, чтобы освещенность в каждой точке создавалась не менее чем от двух-трех ламп, включенных в разные фазы сети.

Двухламповые схемы включения. Применение двух­ламповых схем включения дает возможность уменьшить пульсацию суммарного светового потока, так как пуль­сации светового потока каждой лампы происходят не одновременно, а с некоторым сдвигом по времени. По­этому суммарный световой поток двух ламп никогда не будет равен нулю, а колеблется около некоторого сред­него значения с частотой, меньшей, чем при одной лам­пе. Кроме того, эти схемы обеспечивают высокий коэф­фициент мощности комплекта лампа - ПРА.

http://fazaa.ru/youtu.be/7Oq93eAsDy0

Наибольшее распространение получила двухлампо­вая схема, называемая часто схемой с расщепленной фазой. Схема состоит из двух элементов-ветвей: отстающей и опережающей. В первой ветви ток отстает по фазе от напряжения на угол 60°, а во второй - опе­режает на угол 60°. Благодаря этому ток во внешней цепи будет почти совпадать по фазе с напряжением, и коэффициент мощности всей схемы составит величину 0.9-0.95.

Эту схему можно отнести к группе компенси­рованных, и по сравнению с одноламповой некомпенси­рованной схемой она обладает тем преимуществом, что не требуется принимать дополнительных мер для повы­шения коэффициента мощности. При изготовлении ПРА по этой схеме общий расход конструкционных материалов меньше, чем для двух и одноламповых аппаратов. В настоящее время выпускается большое количество различных типов аппаратов, выполненных по этой схеме.

Поделитесь полезной статьей:

Top

fazaa.ru

Зажигание - люминесцентная лампа - Большая Энциклопедия Нефти и Газа, статья, страница 2

Зажигание - люминесцентная лампа

Cтраница 2

ДРЛ включаются в электрическую сеть последовательно с балластным сопротивлением, в качестве которого используется индуктивное сопротивление - дроссель. Для уменьшения напряжения зажигания люминесцентной лампы ее электроды предварительно нагреваются до температуры 800 - 900 С. Нагрев электродов осуществляется с помощью стартера ( в стартерной схеме) и других приспособлений в бес-стартерных схемах включения.  [17]

Работа люминесцентных ламп, как и всех приборов ртутного разряда, содержащих жидкую ргугь, зависит от окружающей температуры. Известно, например, что зажигание люминесцентных ламп может стать невозможным при низкой температуре окружающей среды. Поэтому было бы желательно заменить ртуть каким-либо инертным газом.  [19]

Дроссель, конденсатор для исправления коэффициента мощности, конденсаторы, блокирующие радиопомехи, обычно объединяются в пуско-регулирующие аппараты ( ПРА) люминесцентных ламп. ПРА делятся на три группы по способу зажигания лампы: стартер-ного, быстрого и мгновенного ( бесстартерного) зажигания. Зажигание люминесцентной лампы с помощью стартера осуществляется следующим образом. Под действием напряжения сети, приложенного на электроды стартера, в нем возникает тлеющий разряд. Последний разогревает биметаллическую платинку, и она замыкает цепь, вследствии чего по электродам люминесцентной лампы проходит ток. При замыкании электродов стартера тлеющий разряд прекращается, что вызывает их охлаждение и размыкание цепи. В этот момент на подогретых электродах лампы появляется импульс напряжения, зажигающий ее.  [21]

Основным источником света на электростанциях и подстанциях являются лампы накаливания, однако широкое применение получает люминесцентное освещение. Больший срок службы люминесцентных ламп является решающим обстоятельством при выборе типа светильников, несмотря на сложность пускорегулирующей аппаратуры, чувствительность к температуре окружающей среды и к напряжению сети. При температуре окружающей среды ниже 5 С и понижении напряжения на 10 % ниже номинального зажигание люминесцентных ламп не гарантируется.  [22]

Уже несколько десятков лет на работе и в быту людей сопровождают люминесцентные осветительные лампы. Преимущество их перед классическими лампами накаливания очевидны - гораздо более высокий КПД, приближенный к естественному спектральный состав света и повышенный срок службы. Однако есть у этих ламп и свои недостатки. Во-первых, для зажигания люминесцентных ламп требуется наличие дополнительных элементов - громоздкого дросселя и ненадежного стартера.  [23]

Однако напряжения на фильтрующем конденсаторе С10 оказывается недостаточным для зажигания люминесцентной лампы. При замкнутых контактах кнопки SB1 конденсатор С77 заряжен до напряжения 115 В. При этом на вторичной обмотке трансформатора возникает импульс напряжения, достаточный для зажигания люминесцентной лампы.  [24]

Это реле состоит из небольшой разрядной лампы, наполненной неоном. В колбу помещены электроды, один из которых изготовлен из биметаллической пластинки. В нормальном ( холодном) положении между электродами имеется зазор. При включении цепи между электродами вспыхивает тлеющий разряд, нагревающий электроды, вследствие чего пластина изгибается и замыкает цепь. Потенциал зажигания реле подбирается лежащим между сетевым напряжением и потенциалом зажигания люминесцентной лампы. Поэтому в первый момент разряд вспыхивает между пластинками реле, а не в лампе. При закорочении реле ток почти в два раза превышает ток лампы.  [26]

Изменение качества напряжения существенно влияет на работу осветительных установок: приводит к нестабильной работе источников света, вызывает мигание и вспышки, которые создают повышенную утомляемость глаз работающих. С отклонением напряжения связаны световой поток, освещенность, срок службы, потребляемая мощность и КПД осветительных приемников электроэнергии. Увеличение напряжения на 3 % сокращает срок службы ламп накаливания на 30 %, а повышение напряжения на 5 % приводит к сокращению срока службы ламп в 2 раза. Понижение напряжения ниже номинального увеличивает срок службы ламп, однако в этом случае уменьшается поток, что отрицательно сказывается на освещенности. Понижение напряжения на 20 % и более приводит к тому, что зажигание газоразрядных и люминесцентных ламп становится невозможным.  [27]

Из трубки откачивается воздух и вводятся дозированная капелька ртути и газ аргон. Давление в трубке составляет несколько сотен паска-леи. Цоколи лампы имеют по два штырьковых контакта. На внутренней поверхности трубки нанесен слой люминофора. При разряде в парах ртути происходит преобразование электрической энергии в ультрафиолетовое излучение, находящееся в невидимой части спектра и преобразуемое в свою очередь люминофором в видимое излучение. В зависимости от марки люминофора лампы одной и той же мощности имеют разную цветность светового излучения и разное значение светового потока. Для поддержания и стабилизации процесса разряда последовательно с лампой включается балластное сопротивление в сети переменного тока в виде дросселя или дросселя и конденсатора. Напряжение сети, при котором работает лампа в установившемся режиме, недостаточно для ее зажигания. Рассмотрим в самых кратких чертах процесс зажигания люминесцентной лампы. Стартер Ст представляет собой миниатюрную лампочку тлеющего разряда с неоновым наполнением, имеющую два биметаллических электрода, которые в нормальном положении разомкнуты.  [28]

Страницы:      1    2

www.ngpedia.ru

Люминесцентная лампа

Люминесцентная лампа — газоразрядный источник света, световой поток которого определяется в основном свечением люминофоров под воздействием ультрафиолетового излучения разряда; видимое свечение разряда не превышает нескольких процентов.

Различные виды люминесцентных ламп

Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача в несколько раз больше, чем у ламп накаливания того же назначения. Срок службы люминесцентных ламп может до 20 раз превышать срок службы ламп накаливания при условии обеспечения достаточного качества электропитания, балласта и соблюдения ограничений по числу коммутаций, в противном случае быстро выходят из строя. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора.

Коридор, освещенный люминесцентными лампами

Область применения

Люминесцентные лампы — наиболее распространённый и экономичный источник света для создания рассеянного освещения в помещениях общественных зданий: офисах, школах, учебных и проектных институтах, больницах, магазинах, банках, предприятиях. С появлением современных компактных люминесцентных ламп, предназначенных для установки в обычные патроны E27 или E14 вместо ламп накаливания, они стали завоёвывать популярность и в быту.

Применение электронных пускорегулирующих устройств (балластов) вместо традиционных электромагнитных позволяет ещё более улучшить характеристики люминесцентных ламп — избавиться от мерцания и гула, ещё больше увеличить экономичность, повысить компактность.

Главными достоинствами люминесцентных ламп по сравнению с лампами накаливания являются высокая светоотдача (люминесцентная лампа 23 Вт даёт освещенность как 100 Вт лампа накаливания) и более длительный срок службы (2000 - 20000 часов против 1000 часов). В некоторых случаях это позволяет люминесцентным лампам экономить значительные средства, несмотря на более высокую начальную цену.Применение люминесцентных ламп особенно целесообразно в случаях, когда освещение включено продолжительное время, поскольку включение для них является наиболее тяжёлым режимом и частые включения-выключения сильно снижают срок службы.

История

Первым предком лампы дневного света была лампа Генриха Гайсслера, который в 1856 году получил синее свечение от заполненной газом трубки, которая была возбуждена при помощи соленоида.В 1893 году на всемирной выставке в Чикаго, штат Иллинойс, Томас Эдисон показал люминесцентное свечение.В 1894 году М. Ф. Моор создал лампу, в которой использовал азот и углекислый газ, испускающий розово - белый свет. Эта лампа имела умеренный успех.В 1901, Питер Купер Хьюитт демонстрировал ртутную лампу, которая испускала свет синезелёного цвета, и таким образом была непригодна в практических целях. Это было, однако, очень близко к современному дизайну, и имело намного более высокую эффективность, чем лампы Гайсслера и Эллинойса.В 1926 году Эдмунд Джермер и его сотрудники предложили увеличить операционное давление в пределах колбы и покрывать колбы флуоресцентным порошком, который преобразовывает ультрафиолетовый свет, испускаемый возбуждённой плазмой в более однородно белоцветной свет. Э.Джермер в настоящее время признан как изобретатель лампы дневного света. General Electric позже купила патент Джермера, и под руководством Джорджа Э. Инмана довела лампы дневного света до широкого коммерческого использования к 1938 году.

Принцип работыПри работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы возникает электрический разряд. Лампа заполнена парами ртути, и проходящий ток приводит к появлению УФ излучения. Это излучение невидимо для человеческого глаза, поэтому его преобразуют в видимый свет с помощью явления люминесценции. Внутренние стенки лампы покрыты специальным веществом — люминофором, которое поглощает УФ излучение и излучает видимый свет. Изменяя состав люминофора можно менять оттенок свечения лампы.

 Особенности подключения

С точки зрения электротехники, люминесцентная лампа — устройство с отрицательным сопротивлением (чем больший ток через неё проходит — тем больше падает её сопротивление). Поэтому при непосредственном подключении к электрической сети лампа очень быстро выйдет из строя из-за огромного тока, проходящего через неё. Чтобы предотвратить это, лампы подключают через специальное устройство (балласт).

В простейшем случае это может быть обычный резистор, однако в таком балласте теряется значительное количество энергии. Чтобы избежать этих потерь при питании ламп от сети переменного тока в качестве балласта может применяться реактивное сопротивление (конденсатор или катушка индуктивности). В настоящее время наибольшее распространение получили два типа балластов — электромагнитный и электронный.

Произведённый в СССР электромагнитный балласт «1УБИ20». Недостатком являлся низкий cosф, так как реактивная мощность балласта зачастую больше мощности лампы.

Электромагнитный балластЭлектромагнитный балласт представляет собой индуктивное сопротивление (дроссель) подключаемое последовательно с лампой. Для запуска лампы с таким типом балласта требуется также стартер.

Преимуществами такого типа балласта является его простота и дешевизна. Недостатки — мерцание ламп с удвоенной частотой сетевого напряжения (частота сетевого напряжения в России = 50 Гц), что повышает утомляемость и может негативно сказываться на зрении, относительно долгий запуск (обычно 1-3 сек, время увеличивается по мере износа лампы), большее потребление энергии по сравнению с электронным балластом.

стартер

Дроссель также может издавать низкочастотный гул.Помимо вышеперечисленных недостатков, можно отметить ещё один.При наблюдении предмета вращающегося или колеблющегося с частотой равной или кратной частоте мерцания люминесцентных ламп с электромагнитным балластом такие предметы будут казаться неподвижными из-за эффекта стробирования.Например этот эффект может затронуть шпиндель токарного или сверлильного станка, циркулярную пилу, мешалку кухонного миксера, блок ножей вибрационной электробритвы.

Во избежание травмирования на производстве запрещено использовать люминесцентные лампы для освещения движущихся частей станков и механизмов без дополнительной подсветки лампами накаливания.

электронный балласт

Электронный балласт

Электронный балласт представляет собой электронную схему, преобразующую сетевое напряжение в высокочастотный (20-60 кГц) переменный ток, который и питает лампу.Преимуществами такого балласта является отсутствие мерцания и гула, более компактные размеры и меньшая масса, по сравнению с электромагнитным балластом.При использовании электронного балласта, можно добиться мгновенного запуска лампы (холодный старт), однако такой режим неблагоприятно сказывается на сроке службы лампы, поэтому применяется и схема с предварительным прогревом электродов в течение 0,5-1 сек (горячий старт). Лампа при этом зажигается с задержкой, однако этот режим позволяет увеличить срок службы лампы.

Механизм запуска лампы с электромагнитным балластом

В классической схеме включения с электромагнитным балластом для автоматического регулирования процесса зажигания лампы применяется пускатель (стартер), представляющий собой миниатюрную газоразрядную лампочку с неоновым наполнением и двумя металлическими электродами.

Один электрод пускателя неподвижный жёсткий, другой — биметаллический, изгибающийся при нагреве. В исходном состоянии электроды пускателя разомкнуты.

подключение 58-ваттных ламп классическим способом в рекламном щите

Пускатель включается параллельно лампе. В момент включения к электродам лампы и пускателя прикладывается полное напряжение сети, так как ток через лампу отсутствует и падение напряжения на дросселе равно нулю.

Электроды лампы холодные и напряжение сети недостаточно для её зажигания. Но в пускателе от приложенного напряжения возникает разряд, в результате которого ток проходит через электроды лампы и пускателя. Ток разряда мал для разогрева электродов лампы, но достаточен для электродов пускателя, отчего биметаллическая пластинка, нагреваясь, изгибается и замыкается с жёстким электродом.

Ток в общей цепи возрастает и разогревает электроды лампы. В следующий момент электроды пускателя остывают и размыкаются. Мгновенный разрыв цепи тока вызывает мгновенный пик напряжения на дросселе, что и вызывает зажигание лампы.

К этому моменту электроды лампы уже достаточно разогреты. Разряд в лампе возникает сначала в среде аргона, а затем, после испарения ртути, приобретает вид ртутного.

 В процессе горения напряжение на лампе и пускателе составляет около половины сетевого за счёт падения напряжения на дросселе, что устраняет повторное срабатывание пускателя.

В процессе зажигания лампы пускатель иногда срабатывает несколько раз подряд вследствие отклонений во взаимосвязанных между собой характеристиках пускателя и лампы.

 В некоторых случаях при изменении характеристик пускателя или лампы возможно возникновение ситуации, когда стартер начинает срабатывать циклически.

Это вызывает характерный эффект когда лампа периодически вспыхивает и гаснет, при погасании лампы видно свечение катодов накаленных током протекающим через сработавший стартер.

Механизм запуска лампы с электронным балластом

В отличие от электромагнитного балласта для работы электронного балласта зачастую не требуется отдельный специальный стартер т.к. такой балласт в общем случае способен сформировать необходимые последовательности напряжений сам.

Существуют разные технологии запуска люминесцентных ламп электронными балластами. В наиболее типичном случае электронный балласт подогревает катоды ламп и прикладывает к катодам напряжение, достаточное для зажигания лампы, чаще всего - переменное и высокочастотное (что заодно устраняет мерцание лампы характерное для электромагнитных балластов).

В зависимости от конструкции балласта и временных параметров последовательности запуска лампы такие балласты могут обеспечивать, например плавный запуск лампы с постепенным нарастанием яркости до полной за несколько секунд или же мгновенное включение лампы.

 Часто встречаются комбинированные методы запуска когда лампа запускается не только за счет факта подогрева катодов лампы но и за счет того что цепь в которую включена лампа является колебательным контуром. Параметры колебательного контура подбираются так, чтобы при отсутствии разряда в лампе, в контуре возникает явление электрического резонанса, ведущее к значительному повышению напряжения между катодами лампы.

Как правило, это ведет и к росту тока подогрева катодов, поскольку при такой схеме запуска спирали накала катодов нередко соединены последовательно через конденсатор, являясь частью колебательного контура. В результате за счет подогрева катодов и относительно высокого напряжения между катодами лампа легко зажигается.

После зажигания лампы параметры колебательного контура изменяются, резонанс прекращается, и напряжение в контуре значительно падает, сокращая ток накала катодов. Существуют вариации данной технологии.

Например, в предельном случае балласт может вообще не подогревать катоды, вместо этого, приложив достаточно высокое напряжение к катодам, что неизбежно приведет к почти мгновенному зажиганию лампы за счет пробоя газа между катодами. По сути, этот метод аналогичен технологиям, применяемым для запуска ламп с холодным катодом (CCFL). Данный метод достаточно популярен у радиолюбителей, поскольку позволяет запускать даже лампы с перегоревшими нитями накала катодов, которые не могут быть запущены обычными методами из-за невозможности подогрева катодов.

В частности этот метод нередко используется радиолюбителями для ремонта компактных энергосберегающих ламп, которые являются обычной люминесцентной лампой с встроенным электронным балластом в компактном корпусе. После небольшой переделки балласта такая лампа может еще долго служить, невзирая на перегорание спиралей подогрева, и ее срок службы будет ограничен только временем до полного распыления электродов.

Причины выхода из строя

Электроды люминесцентной лампы представляют собой вольфрамовые нити, покрытые пастой (активной массой) из щелочноземельных металлов. Эта паста и обеспечивает стабильный тлеющий разряд, если бы ее не было, вольфрамовые нити очень скоро перегрелись бы и сгорели.

Балласт от перегоревшей энергосберегающей лампы подключён к лампе Т5

В процессе работы она постепенно осыпается с электродов, выгорает, испаряется, особенно при частых пусках, когда некоторое время разряд происходит не по всей площади электрода, а на небольшом участке его поверхности, что приводит к перегреву электрода. Отсюда потемнение на концах лампы, часто наблюдаемое ближе к окончанию срока службы.

Когда паста выгорит полностью, ток лампы начинает падать, а напряжение, соответственно, возрастать. Это приводит к тому, что начинает постоянно срабатывать стартер — отсюда всем известное мигание вышедших из строя ламп.

Электроды лампы постоянно разогреваются, и в конце концов, одна из нитей перегорает, это происходит примерно через 2 — 3 дня, в зависимости от производителя лампы.

После этого на минуту-две лампа горит без всяких мерцаний, но это последние минуты в ее жизни. В это время разряд происходит через остатки перегоревшего электрода, на котором уже нет пасты из щелочноземельных металлов, остался только вольфрам.

Эти остатки вольфрамовой нити очень сильно разогреваются, из-за чего частично испаряются, либо осыпаются, после чего разряд начинает происходить за счет траверсы (это проволочка, к которой крепится вольфрамовая нить с активной массой), она частично оплавляется. После этого лампа вновь начинает мерцать. Если ее выключить, повторное зажигание будет невозможным. На этом все и закончится.

Вышесказанное справедливо при использовании электромагнитных ПРА (балластов). Если же применяется электронный балласт, все произойдет несколько иначе.

Постепенно выгорит активная масса электродов, после чего будет происходить все больший их разогрев, рано или поздно одна из нитей перегорит.

Сразу же после этого лампа погаснет без мигания и мерцания за счет предусматривающей автоматическое отключение неисправной лампы конструкции электронного балласта.

Люминофоры и спектр излучаемого света

Многие люди считают свет, излучаемый люминесцентными лампами грубым и неприятным. Цвет предметов освещенных такими лампами может быть несколько искажён. Отчасти это происходит из-за синих и зеленых линий в спектре излучения газового разряда в парах ртути, отчасти из-за типа применяемого люминофора.

  

Типичный спектр люминесцентной лампы.

Во многих дешевых лампах применяется галофосфатный люминофор, который излучает в основном жёлтый и синий свет,в то время как красного и зелёного излучается меньше.

Такая смесь цветов глазу кажется белым, однако при отражении от предметов свет может содержать неполный спектр, что воспринимается как искажение цвета.Однако такие лампы, как правило, имеют очень высокую световую отдачу.

В более дорогих лампах используется «трехполосный» и «пятиполосный» люминофор. Это позволяет добиться более равномерного распределения излучения по видимому спектру, что приводит к более натуральному воспроизведению света. Однако такие лампы, как правило, имеют более низкую световую отдачу.

Также существуют люминесцентные лампы, предназначенные для освещения помещений, в которых содержатся птицы. Спектр этих ламп содержит ближний ультрафиолет, что позволяет создать более комфортное для них освещение, приблизив его к естественному, так как птицы, в отличие от людей, имеют четырехкомпонентное зрение.

Варианты исполнения

По стандартам лампы дневного света разделяются на колбные и компактные.

Советская люминесцентная лампа мощностью 20 Вт( «ЛБ-20» ). Современный европейский аналог этой

лампы — T8 1

Колбные лампы представляют собой лампы в виде стеклянной трубки. Различаются по диаметру и по типу цоколя, имеют следующие обозначения:T5 ((диаметр 5/8 дюйма=1.59 см),T8 (диаметр 8/8 дюйма=2.54 см),T10 (диаметр 10/8 дюйма=3.17 см) и T12 (диаметр 12/8 дюйма=3.80 см)).

Лампы такого типа часто можно увидеть в промышленных помещениях, офисах, магазинах и т. д.

 Компактные лампы представляют собой лампы с согнутой трубкой. Различаются по типу цоколя на (G23,G24Q1,G24Q2, G24Q3). Выпускаются также лампы под стандартные патроны E27 и E14, что позволяет использовать их в обычных светильниках вместо ламп накаливания.

Преимуществом компактных ламп являются устойчивость к механическим повреждениям и небольшие размеры. Цокольные гнёзда для таких ламп очень просты для монтажа в обычные светильники, срок службы таких ламп составляет от 6000 до 15000 часов.

 G23

Универсальная лампа Osram для всех типов цоколей G24

У лампы G23 внутри цоколя расположен стартер, для запуска лампы дополнительно необходим только дроссель. Их мощность обычно не превышает 14 Ватт.

Основное применение — настольные лампы, зачастую встречаются в светильниках для душевых и ванных комнат. Цокольные гнезда таких ламп имеют специальные отверстия для монтажа в обычные настенные светильники.

 G24

Лампы G24Q1, G24Q2 и G24Q3 также имеют встроенный стартер, их мощность, как правило, от 13 до 36 Ватт.

Применяются как в промышленных, так и в бытовых светильниках.

Стандартный цоколь G24 можно крепить как шурупами, так и на купол (современные модели светильников).

Утилизация

Все люминесцентные лампы содержат ртуть (в дозах от 40 до 70 мг), ядовитое вещество. Эта доза может причинить вред здоровью, если лампа разбилась, и если постоянно подвергаться пагубному воздействию паров ртути, то они будут накапливаться в организме человека, нанося вред здоровью.

По истечении срока службы в России лампу, как правило, выбрасывают куда попало.

На проблемы утилизации этой продукции в России не обращают внимания ни потребители, ни производители, хотя существует несколько занимающихся ею фирм.

Александр ГореславецКомпания "Додэка Электрик".

Материал из Википедии — свободной энциклопедии

eleczon.ru

ВОПРОС 7. Условия зажигания люминесцентной лампы. Резонансная схема зажигания.

Производство ВОПРОС 7. Условия зажигания люминесцентной лампы. Резонансная схема зажигания.

Количество просмотров публикации ВОПРОС 7. Условия зажигания люминесцентной лампы. Резонансная схема зажигания. - 160

 Наименование параметра  Значение
Тема статьи: ВОПРОС 7. Условия зажигания люминесцентной лампы. Резонансная схема зажигания.
Рубрика (тематическая категория) Производство

ОТВЕТ:

Напряжение зажигания UЗ – то минимальное напряжение, при котором в лампе возникает электрический разряд, является важнейшей характеристикой РЛ. У ЛЛ напряжение зажигания значительно превосходит напряжение сети.

На напряжение зажигания влияют:

1. Род и давление газа в разрядной трубке.

2. Материал электродов, который должен быть таким, чтобы работа выхода электрона была минимальной. С этой целью спиральные вольфрамовые электроды покрывают оксидной пленкой (плёнкой карбонатов или перекисей щелочноземельных металлов – бария, стронция). В процессе эксплуатации ЛЛ эта плёнка разрушается, и, в конечном счёте, ЛЛ теряет эмиссию.

3. Температура электродов в момент зажигания – чем она выше, тем сильнее термоэлектронная эмиссия, и тем проще зажечь разряд в ЛЛ.;

4. Расстояние между электродами – чем длиннее трубка, тем выше напряжение зажигания. В ЛЛ это расстояние может превышать 1 м. По этой причине разряд между столь удалёнными электродами сразу возникнуть не может. В ЛЛ используют специальные приёмы ʼʼприближающиеʼʼ электроды.

В первую очередь, электроды снабжаются усами, между которыми и возникает первичный разряд. Потом данный разряд переходит в разряд между электродом и трубкой и, наконец, после распространения ионизации вдоль всœей трубки – в разряд (сначала тлеющий, а потом дуговой) между противоположными электродами.

Во-вторых, используют лампы быстрого зажигания (ЛБЭ). На внешнюю поверхность колбы таких ЛЛ наносится токопроводящая плёнка, соединённая с противоположным электродом через токоограничивающее сопротивление.

5. Диаметр разрядной трубки – в узких трубках напряжение зажигания выше

ВОПРОС 7. Условия зажигания люминесцентной лампы. Резонансная схема зажигания. - понятие и виды. Классификация и особенности категории "ВОПРОС 7. Условия зажигания люминесцентной лампы. Резонансная схема зажигания." 2014, 2015.

referatwork.ru

Бесстартерная схема включения люминесцентных ламп

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания.

Схемы включения люминесцентной лампы и лампы типа ДЛР

Схемы включения люминесцентной лампы и лампы типа ДЛР.

К их числу относятся большой срок службы, экономичность, хорошая освещаемость. Но им присущи также и недостатки: это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах) и перегорание ламп, а именно нити накала. Но умельцы находят способы решения этих проблем, и есть несколько схем, с помощью которых можно обходиться для запуска ламп не только без стартеров, но и с обрывами в нити накала.

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - 0.5 mkF 400 BC3,C4 - 0.1 mkF 1000 BVD1-VD6 - Любые на ток 0,1 А для ЛДС-20 и 0,2 А для ЛДС-40 и обратное напряжение не менее 600 В (по крайней мере для VD5, VD6).L1 - дроссель, соответствующий типу лампы. Если вы переделываете светильник промышленного производства, оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания 75-150 Вт (в зависимости от мощности ЛДС).

http://fazaa.ru/youtu.be/PeerFUxDrz4

Внимание:

При зажигании лампы напряжение на выходе схемы достигает 1200 В. Будьте осторожны при наладке схемы.

Выбор сечения провода - по нагреву и потерям напряжения.

Поделитесь полезной статьей:

Top

fazaa.ru