Плазменная свеча зажигания для двигателя внутреннего сгорания. Свеча плазменная зажигания


 

Свеча зажигания плазменная относится к элементам электрического оборудования, а именно - к элементам систем зажигания, в частности применяемых для розжига горючих смесей в камерах сгорания газотурбинных двигателей, газотурбинных приводов газоперекачивающих агрегатов и энергетических установок и решает задачу создания простой и надежной конструкции свечи зажигания для розжига горючих смесей в камерах сгорания газотурбинных двигателей, газотурбинных приводов газоперекачивающих агрегатов и энергетических установок.

Поставленная задача решается свечей зажигания плазменной, содержащей основной трубчатый корпус с установленным в нем изолятором, во внутреннем канале которого в стеклогерметике закреплен центральный электрод, между изолятором и корпусом установлена медная клиновидная втулка, стержень центрального электрода, охваченный керамической втулкой и герметиком, отличающейся тем, что медная клиновидная втулка обращена острием в сторону рабочего торца, стержень центрального электрода сваркой соединен с центральным электродом, центральный электрод закреплен в изоляторе гайкой, в экранной части свечи изолятор выполнен с полостью для установки контактного устройства, корпус в рабочей части свечи выполнен с утолщением, образуя боковой электрод и вихревую камеру, центральный электрод выполнен с цилиндрической посадочной площадкой, в которую упирается искрообразующий изолятор, который, одновременно, упирается в буртик корпуса, межэлектродный зазор находится между коническими поверхностями центрального и бокового электродов, в рабочей части корпуса свечи выполнены четыре тангенциальных отверстия для подвода плазмообразующего воздуха, боковой электрод образует канал для выброса плазмы.

Полезная модель относится к элементам электрического оборудования, а именно - к элементам систем зажигания, в частности применяемых для розжига горючих смесей в камерах сгорания газотурбинных двигателей, газотурбинных приводов газоперекачивающих агрегатов и энергетических установок.

Известна свеча зажигания (патент РФ 2029196, МПК F23Q 3/00, 1991.05.05), содержащая корпус с плазменной камерой и центральный электрод, разделенные изолятором, отличающаяся тем, что, с целью повышения воспламеняющей способности свечи, поверхность изолятора, образующая искровой промежуток, расположена перпендикулярно к оси плазменной камеры.

К недостаткам данной конструкции необходимо отнести недостаточно высокие эксплуатационные характеристики свечи.

Известна свеча зажигания для газотурбинного двигателя (патент РФ на полезную модель №52529, Н01Т 13/00 (2006.01), 2005.10.24), содержащая основной трубчатый корпус с установленным в нем искрообразующим изолятором, во внутреннем канале которого в стеклогерметике закреплен центральный электрод, дополнительный корпус, частично размещенный внутри основного корпуса и соединенный с ним, герметично сваркой, с закрепленной в нем медной клиновидной втулкой, обращенной большим сечением в сторону рабочего торца свечи и стеклогерметизирующей втулкой, герметизирующий изолятор, во внутреннем канале которого в стеклогерметике закреплен токоведущий стержень, экранную керамическую промежуточную втулку, цангу, керамический трубчатый изолятор, отличающаяся тем, что между цангой и центральным электродом размещена оплетка-жгут из коррозионно-стойких проволок, пайкой соединенная с ними, в которую вставлен токоведущий стержень, в свече дополнительно имеется контакт бокового электрода, два керамических изолятора, между которыми установлена спиральная пружина, противоположные обращенным к пружине торцы этих изоляторов упираются, соответственно, в торец дополнительного корпуса, трубчатый керамический изолятор противоположным торцем упирается в буртик на боковой поверхности искрообразующего изолятора, обратная сторона этого буртика соприкасается с внутренним торцем основного корпуса свечи, рабочий торец

искрообразующего (центрального) электрода выступает за внешний торец основного корпуса свечи, на рабочем торце искрообразующего изолятора имеются тангенциальные канавки, соединяющие его боковую поверхность с кольцевой полостью, образованной конической поверхностью контакта центрального электрода и кольцевой канавкой на рабочем торце искрообразующего изолятора, при этом внутренний торец контакта бокового электрода лежит на рабочем торце искрообразующего изолятора, а в контакте бокового электрода имеется соосное с контактом центрального электрода отверстие, имеющее со стороны внешнего торца контакта бокового электрода цилиндрическое сечение, диаметр которого меньше диаметра контакта центрального электрода в месте его контакта с торцевой поверхностью искрообразующего изолятора, и коническое отверстие, меньшим диаметром сопряженное с цилиндрическим отверстием в контакте бокового электрода, а большим диаметром, выходящим на внутренний его торец, установленный на рабочей торец искрообразующего изолятора, коническое отверстие контакта бокового электрода образует с боковой конической поверхностью контакта центрального электрода кольцевую коническую полость, переходящую в цилиндрическое отверстие в контакте бокового электрода, цилиндрическая поверхность бокового электрода, охватывающая выступающую из основного корпуса цилиндрическую поверхность искрообразующего изолятора, имеет шлицы, глубина которых достигает глубины его внутреннего торца, в шлицы контакта бокового электрода входят выступы, выполненные на торце основного корпуса свечи с образованием осевых зазоров между торцевыми поверхностями корпуса и контактом бокового электрода, в осевом зазоре между шлицами на контакте бокового электрода и основного корпуса на боковой поверхности искрообразующего изолятора полностью или частично расположены начала тангенциальных канавок, выходящих в кольцевую канавку на рабочем торце искрообразующего изолятора.

Преимуществом данной свечи перед существующими является образование удлиненной плазменной струи, что позволяет устанавливать свечу в камере сгорания на меньшую глубину, тем самым выводя ее из зоны воздействия высоких температур и повышая ресурс.

К недостаткам данной конструкции необходимо отнести сложность устройства, сварную конструкцию, наличие значительного количества деталей сложной формы.

Кроме того, искрообразующий изолятор данной свечи выполнен с тангенциальными канавками, что затрудняет процесс его изготовления и приводит значительному увеличению материальных и временных затрат, а боковой электрод

выполнен съемным, что может привести к выходу свечи из строя в ходе ее монтажа-демонтажа на двигателе, затрудняет процесс технического обслуживания и приводит к ухудшению эксплуатационных характеристик.

Также при изготовлении свечи используются драгоценные и редкоземельные металлы, что приводит к значительному увеличению ее себестоимости.

Задачей, решаемой заявляемой полезной моделью, является создание простой и надежной конструкции свечи зажигания для розжига горючих смесей в камерах сгорания газотурбинных двигателей, газотурбинных приводов газоперекачивающих агрегатов и энергетических установок.

Поставленная задача решается свечой зажигания плазменной, содержащей основной трубчатый корпус с установленным в нем изолятором, во внутреннем канале которого в стеклогерметике закреплен центральный электрод, между изолятором и корпусом установлена медная клиновидная втулка, стержень центрального электрода, охваченный керамической втулкой и герметиком, отличающаяся тем, что медная клиновидная втулка обращена острием в сторону рабочего торца, стержень центрального электрода сваркой соединен с центральным электродом, центральный электрод закреплен в изоляторе гайкой, в экранной части изолятор образует полость для установки контактного устройства, корпус в рабочей части свечи выполнен с утолщением, образуя боковой электрод и вихревую камеру, центральный электрод выполнен с переходом стержня к большему диаметру на уровне стеклогерметика, на уровне окончания изолятора центральный электрод выполнен со ступенчатым переходом к большему диаметру, с коническим переходом к большему диаметру, участок с достигнутым диаметром, конусообразный переход к меньшему диаметру, межэлектродный зазор находится между коническими поверхностями центрального и бокового электродов, в рабочей части корпуса свечи выполнены четыре тангенциальных отверстия для подвода плазмообразующего воздуха, канал для выброса плазмы.

Экранная часть корпуса свечи имеет резьбу для крепления гайки угольника в целях передачи электрического контакта от агрегата зажигания.

Корпус выполнен с фланцем для монтажа свечи на двигателе.

На фиг.1 представлена заявляемая свеча зажигания плазменная, содержащая трубчатый корпус 1 с установленным в нем изолятором 2, во внутреннем канале которого в стеклогерметике 3 закреплен центральный электрод 4, между изолятором 2 и корпусом 1 установлена медная клиновидная втулка 5, стержень 6 центрального

электрода, охваченный герметиком 7, стержень центрального электрода 6 сваркой соединен с центральным электродом 4, центральный электрод 4 закреплен в изоляторе 2 гайкой 8, в экранной части свечи изолятор 9 образует полость 10 для установки контактного устройства (на фиг.1 не показано), корпус 1 в рабочей части свечи выполнен с утолщением 11, образуя боковой электрод и вихревую камеру, центральный электрод 4 выполнен с цилиндрической посадочной площадкой, в которую упирается изолятор 2, который, одновременно, упирается в буртик корпуса 1, межэлектродный зазор 12 величиной от 0,7 до 2 мм находится между коническими поверхностями центрального 4 и бокового 11 электродов, в рабочей части корпуса свечи 1 выполнены четыре тангенциальных отверстия 13 диаметром от 2 до 4 мм для подвода плазмообразующего воздуха, боковой электрод 11 образует канал 14 диаметром от 2 до 7,5 мм и длиной от 2 до 30 мм для выброса плазмы.

Экранная часть корпуса свечи имеет резьбу 15 для крепления гайки угольника (на фиг.1 не показана) в целях передачи электрического контакта от агрегата зажигания.

Корпус выполнен с фланцем 16 для монтажа свечи на двигателе.

Уменьшение диаметра отверстий до величины менее 2 мм приводит к уменьшению расхода воздуха, увеличению температуры плазменной струи и снижению ресурсных показателей свечи.

Увеличение диаметра отверстий до величины более 4 мм приводит к увеличению расхода воздуха, снижению температуры плазменной струи и ухудшению воспламеняющей способности свечи.

Уменьшение диаметра канала до величины менее 2 мм приводит к увеличению перепада давления плазмообразующего воздуха на свече, снижению скорости истечения плазмы и устойчивости горения дуги в связи с увеличением влияния сносящего потока в камере сгорания.

Увеличение диаметра канала до величины более 7,5 мм приводит к уменьшению перепада давления плазмообразующего воздуха на свече и возникновению электрической дуги в межэлектродном зазоре без образования плазменной струи, выбрасываемой в камеру сгорания.

Уменьшение длины канала до величины менее 2 мм приводит к интенсивному нагреву электродов и, как следствие, снижению ресурса свечи.

Увеличение длины канала до значения более 30 мм приводит к увеличению теплоотвода в электроды и снижению энергии, выделяемой на рабочем торце.

Межэлектродный зазор 12 образован коническими поверхностями центрального 4 и бокового 11 электродов, обращенными большими сечениями друг к другу.

Уменьшение его до величины менее 0,7 мм приводит к снижению мощности, выделяемой на свече и, как следствие, к ухудшению воспламеняющей способности системы плазменного зажигания.

Увеличение его до величины более 2 мм приводит к возрастанию мощности, потребляемой системой зажигания из бортсети, и увеличению пробивного напряжения свечи, что, в свою очередь, может привести к нарушению работоспособности выходных цепей агрегата зажигания вследствие воздействия высоких напряжений.

Свеча работает следующим образом.

Высокое напряжение, поступающее от агрегата зажигания через высоковольтный кабель прикладывается к центральному электроду 4 - через центральную жилу высоковольтного кабеля, контактное устройство (на фиг.1 не показаны) и стержень центрального электрода 6, к боковому электроду 11 - через экранную оплетку кабеля, гайку угольника (на фиг.1 не показаны) и корпус 1. Происходит интенсивная ионизация межэлектродного зазора с последующим его пробоем; между центральным и боковым электродами свечи зажигается электрическая дуга, разогревающая воздух, поступающий через тангенциальные отверстия 13 в корпусе, до температуры, при которой происходит образование низкотемпературной плазмы. Далее плазма выбрасывается в камеру сгорания через канал 14 и поджигает горючую смесь.

Заявляемая свеча зажигания технологична, имеет простую конструкцию, обеспечивающую требуемые характеристики для розжига горючих смесей в камерах сгорания газотурбинных двигателей, газотурбинных приводов газоперекачивающих агрегатов и энергетических установок, как следствие - невысокую стоимость.

Свеча зажигания плазменная, содержащая основной трубчатый корпус с установленным в нем изолятором, во внутреннем канале которого в стеклогерметике закреплен центральный электрод, между изолятором и корпусом установлена медная клиновидная втулка, стержень центрального электрода, охваченный керамической втулкой и герметиком, отличающаяся тем, что медная клиновидная втулка обращена острием в сторону рабочего торца, стержень центрального электрода сваркой соединен с центральным электродом, центральный электрод закреплен в изоляторе гайкой, в экранной части свечи изолятор выполнен с полостью для установки контактного устройства, корпус в рабочей части свечи выполнен с утолщением, образуя боковой электрод и вихревую камеру, центральный электрод выполнен с цилиндрической посадочной площадкой, в которую упирается искрообразующий изолятор, который одновременно упирается в буртик корпуса, межэлектродный зазор находится между коническими поверхностями центрального и бокового электродов, в рабочей части корпуса свечи выполнены четыре тангенциальных отверстия для подвода плазмообразующего воздуха, боковой электрод образует канал для выброса плазмы.

poleznayamodel.ru

Плазменная свеча зажигания для двигателя внутреннего сгорания

Настоящее изобретение относится к свече, генерирующей плазму, используемой, в частности, для воспламенения рабочей смеси в двигателях внутреннего сгорания с помощью электрических искр, образующихся между электродами свечи. Свеча зажигания (1) для двигателя внутреннего сгорания автотранспортного средства содержит емкостную (С) и индуктивную части (I). Емкостная часть (С) содержит коаксиальные электроды (2, 3). Индуктивная часть (I) содержит: центральную сердцевину (8), обмотку (5), изолятор (7), внешнюю цилиндрическую оболочку (61) и внутреннюю оболочку (62). Обмотка (5) выполнена вокруг сердцевины (8). Изолятор (7) размещен радиально между внутренней оболочкой (62) и обмоткой (5). Внешняя (61) и внутренняя (62) оболочки выполняют функцию электромагнитного экрана. Внутренняя оболочка (62) размещена радиально между изолятором (7) и внешней оболочкой (61). Внутренняя поверхность (622) внутренней оболочки (62) может иметь постоянную толщину и прилегать к внешней поверхности изолятора (7). Внешняя оболочка (61) может иметь толщину, на которой проявляется действие скин-эффекта. Внутренняя поверхность (612) внешней оболочки (61) может иметь цилиндрическую форму с круговым поперечным сечением. Внешняя поверхность (621) внутренней оболочки (62) может иметь цилиндрическую форму с сечением в виде многоугольника. Продольные ребра (613) внутренней оболочки (62) могут находиться в электрическом контакте с внешней оболочкой (61). Сердцевина (8) может иметь цилиндрическую форму. Материал и размеры внешней (61) и внутренней (62) оболочек могут быть выбраны с учетом образования ими экрана для электромагнитного поля, которое генерируется обмоткой (5). Технический результат заключается в согласовании электромагнитного экрана с изоляцией, размещенной между сердечником (8) и оболочкой (62). 9 з.п. ф-лы, 5 ил.

 

Настоящее изобретение относится к свече, генерирующей плазму, используемой, в частности, для воспламенения рабочей смеси в двигателях внутреннего сгорания с помощью электрических искр, образующихся между электродами свечи.

Более конкретно изобретение относится к свече зажигания для двигателя внутреннего сгорания, содержащей два электрода, генерирующих плазму, отделенных друг от друга изолятором, которые образуют внешнюю оболочку, окружающую изолятор, и центральный электрод, размещенный внутри центрального канала изолятора, соответственно.

Из опубликованных патентных документов FR 2859830, FR 2859569, FR 2859831 известна многоискровая свеча, которая имеет электромагнитный экран, сформированный в виде металлической оболочки, которая может быть выполнена, например, в виде тонкой фасонной трубы или тонкого осажденного слоя или из металлизированной и покрытой слоем другого металла пластмассовой пленки.

Электромагнитный экран содержит два участка: электрический экран и магнитный экран. Электрический экран позволяет защищать внешнее окружение свечи от влияния электрического поля, созданного электрической обмоткой. Магнитный экран обеспечивает, чтобы магнитное поле оставалось внутри указанной металлической оболочки. Протекание электрического тока, соответствующего действию электрического экрана, ограничено внешней поверхностью оболочки, в то время как протекание тока, связанного с магнитным экраном, ограничено внутренней поверхностью оболочки. Кроме того, для обеспечения электрической изоляции между сердечником и оболочкой изолятор обычно выполняют из материалов, имеющих определенные физико-химические характеристики, включая сочетающиеся с другими характеристиками коэффициенты расширения, которое соответствует температуре материала и может быть значительным.

Следовательно, трудно согласовать электромагнитный экран с изоляцией, размещенной между сердечником и оболочкой.

Задача изобретения, направленного на смягчение этих недостатков, заключается в том, чтобы создать электромагнитный экран и в то же время обеспечить изоляцию между сердечником и оболочкой.

Соответственно, изобретение обеспечивает свечу зажигания вышеупомянутого типа, в которой верхняя по существу индуктивная часть свечи содержит вторую, внутреннюю оболочку, экранирующую электромагнитное поле, которая размещена радиально между изолятором и внешней оболочкой.

В соответствии с предпочтительным вариантом выполнения изобретения внутренняя поверхность внутренней оболочки прилегает к внешней поверхности изолятора.

Внутренняя оболочка может иметь постоянную толщину, а внешняя оболочка имеет толщину, по меньшей мере, равную толщине проявления скин-эффекта, которая соответствует глубине проникновения линий тока во внешнюю оболочку.

Согласно другому предпочтительному варианту выполнения изобретения внутренняя поверхность внешней оболочки выполнена цилиндрической формы с круговым сечением, внешняя поверхность внутренней оболочки имеет цилиндрическую форму с сечением в виде многогранника, при этом внутренняя оболочка выполнена такой, что продольные ребра внутренней оболочки, проходящие в осевом направлении, находятся в электрическом контакте с внутренней поверхностью внешней оболочки.

Предпочтительным является то, что сердечник имеет цилиндрическую форму.

Материал внешней оболочки может быть выбран из числа электропроводных материалов, таких как медь, а материал внутренней оболочки - из числа электропроводных материалов, таких как медь.

Целесообразным является то, что материал внешней оболочки и геометрические размеры внешней оболочки выбраны такими, чтобы внешняя оболочка образовала экран, по меньшей мере, для электрического поля, генерируемого обмоткой.

Материал внутренней оболочки и геометрические размеры внутренней оболочки могут быть выбраны такими, чтобы внутренняя оболочка образовала электромагнитный экран.

Другие особенности и преимущества настоящего изобретения будут очевидны из нижеследующего описания со ссылками на чертежи, на которых представлено:

фиг.1 - разрез радиочастотной плазменной свечи вдоль оси z, выполненной в соответствии с известным аналогом;

фиг.2 - схематичное покомпонентное, с трехмерным представлением деталей, изображение индуктивной части свечи, содержащей две оболочки в соответствии с изобретением;

фиг.3 - разрез индуктивной части свечи зажигания, содержащей две оболочки в соответствии с изобретением;

фиг.4 - разрез по линии 4-4' на фиг.3 в соответствии с изобретением;

фиг.5 - иллюстрация протекания токов, связанных с электромагнитным полем, в разрезе вдоль линии 5-5', показанной на фиг.3, в соответствии с изобретением.

Как показано на фиг.1, радиочастотная плазменная свеча 1, имеющая по существу цилиндрическую форму, содержит, главным образом, нижнюю по существу емкостную часть С и верхнюю по существу индуктивную часть I, при этом указанные части С и I выполнены в целом с удлиненным вытянутым профилем, соединены последовательно и имеют общую продольную ось Z.

Емкостная часть С содержит, в частности, корпус 2, выполненный с возможностью заземления и окружающий снаружи центральный электрод 3, который по существу имеет форму цилиндра с осью Z и выполняет функцию высоковольтного электрода. Между корпусом 2 и центральным электродом 3 размещен электроизолирующий блок, называемый "изолятором" 4, причем изолятор 4 сконфигурирован таким образом, чтобы направлять искры между электродами 2 и 3.

В соответствии с известным из уровня техники конструктивным выполнением свечи внешняя поверхность нижней части корпуса 2, расположенной ближе всего к головке цилиндра двигателя внутреннего сгорания, имеет профиль, предназначенный для установки свечи 1, ее удержанию и уплотнению на головке цилиндра (например, как показано на фиг.1, в виде резьбы, не ограничивающей конструктивное исполнение профиля).

Как показано на фиг.2 и фиг.3, индуктивная часть I свечи 1, в целом, включает центральный сердечник 8, последовательно охваченный снаружи обмоткой 5, изолятор 7, а также внутреннюю оболочку 62 и внешнюю оболочку 61.

Сердечник 8 имеет цилиндрическую форму с круговым сечением, и его ось по существу совпадает с осью Z свечи зажигания 1. Сердечник выполнен из изолирующего и немагнитного материала.

Обмотка 5 состоит из витков, охватывающих центральный сердечник 8 от первого верхнего витка 512 до последнего нижнего витка 513. Как показано на фиг.1, первый верхний виток 512 подсоединен к соединительному проводнику 12, а последний нижний виток 513 с помощью подходящих средств 14 подсоединен к расположенному внутри торцу центрального электрода 3.

Изолятор 7, который окружает обмотку 5, имеет цилиндрическую форму с сечением в виде многоугольника, и материал изолятора выбран из числа материалов с низкими магнитными потерями. Среди материалов, удовлетворяющих этому свойству, существует семейство кремнийорганических соединений, основной недостаток которых заключается в том, что они имеют большую величину коэффициента термического расширения, порядка 0,0001 К-1.

Как показано на фиг.4, внутренняя оболочка 62 содержит внутреннюю поверхность 622 и внешнюю поверхность 621. Оболочка имеет цилиндрическую форму с сечением в виде многоугольника. Однако следует отметить, что только для внешней поверхности 621 необходимо, чтобы она имела цилиндрическую форму с многоугольным сечением. Внутренняя оболочка 62 выполнена так, что внутренняя поверхность 622 внутренней оболочки 62 прилегает к внешней поверхности изолятора 7. Предпочтительно, чтобы внутренняя оболочка 62 была выполнена из токопроводящего материала в частотном диапазоне от 1 до 10 Мгц, необходимом для работы этой свечи 1. Оболочка 62 может быть изготовлена из разных металлических материалов, например, из меди или из различных материалов, внешняя поверхность которых покрыта солями металлов, например, слоем электролитически осажденного никеля. Предпочтительно, чтобы толщина этой оболочки 62 была постоянной и достаточно тонкой, чтобы обеспечить низкочастотную проводимость. Например, может быть предпочтительным, чтобы внутренняя оболочка 62 была выполнена из меди толщиной от 5 до 10 мкм.

Как показано на фиг.4, внешняя оболочка 61 включает внешнюю поверхность 611 и внутреннюю поверхность 612. Она имеет форму цилиндра с круговым сечением. Однако следует отметить, что только для внешней поверхности 612 необходимо, чтобы она имела цилиндрическую форму с круговым поперечным сечением. Предпочтительно, чтобы материал, из которого изготовлена эта оболочка, и ее конструктивное выполнение были такими, чтобы обеспечить прохождение токов, связанных с экраном электромагнитного поля. Предпочтительно, чтобы внешняя оболочка 61 была выполнена из токопроводящего материала в частотном диапазоне от 1 до 10 Мгц, требуемом для работы этой свечи 1. При этом она может быть выполнена из материала с высокой удельной электропроводностью (такого, как медь: 6×107 Сименс(См)/м) или из материала с низкой удельной электропроводностью (такого, как сталь: 1×107 См/м), а ее внешние поверхности могут быть покрыты токопроводящим слоем, например, из меди или серебра. Толщина этой оболочки 61, по меньшей мере, больше толщины скин-слоя, соответствующей глубине проникновения линий тока в проводник в диапазоне частот от 1 до 10 Мгц, установленном для работы этой свечи 1. Например, если внешняя оболочка изготовлена из меди, ее толщина составляет, по меньшей мере, 100 мкм. Внутренняя оболочка 62 расположена таким образом, что ее продольные, ориентированные в осевом направлении ребра 613 находятся в электрическом контакте с внутренней поверхностью 612 внешней оболочки 61. Дефекты внутренней поверхности 611 (шероховатость поверхности) внешней оболочки 61 не являются препятствием для осуществления электрического контакта двух этих оболочек 61, 62. В частности, вдоль ребер 613 электрический контакт, как правило, может быть обеспечен местами, в нескольких точках 9 ребер 613.

Следует отметить, что зоны с пустотами, образованные между внутренней оболочкой 62 и внешней оболочкой 61, позволяют изолятору 7, имеющему высокий коэффициент термического расширения, расширяться с приближением его внешнего профиля к по существу цилиндрическому профилю и частичным или полным заполнением зон с пустотами.

Такое конструктивное выполнение обеспечивает экран для электромагнитного поля.

Как более подробно показано на фиг.5, ток 10, связанный с магнитным экраном, протекает в основном по внешней поверхности 612 внешней оболочки 61. Ток, связанный с электрическим экраном, протекает, в основном, по внешней поверхности 611 внешней оболочки 61. При этом ток, в общем, включает две составляющие: первую составляющую 111, которая соответствует электрической зарядке конденсатора, расположенного на конце обмотки 5, и вторую составляющую 112, которая соответствует по величине току, необходимому для блокирования электрического поля, созданного обмоткой 5. Прежде всего, эта вторая составляющая 112 тока протекает в радиальном направлении по внешней оболочке 61 и через точки 9 контакта внутренней оболочки 62 и внешней оболочки 61. Во-вторых, этот ток, равномерно распределенный, протекает по внутренней оболочке 62 и экранирует электрическое поле, созданное обмоткой 5.

Кроме того, следует отметить, что через внешнюю оболочку 61 передается крутящий момент, создаваемый при соединении друг с другом в целом емкостной части С и в целом индуктивной части I свечи 1. Поэтому толщина внешней оболочки 61 будет рассчитана такой, чтобы передавать этот крутящий момент при взаимном соединении частей. Основное преимущество такого типа передачи крутящего момента заключается в том, что механические напряжения передаются по наибольшему возможному радиусу в том месте, где действие плеча рычага является оптимальным, за счет чего минимизируются механические напряжения, действующие на сами материалы соединяемых частей.

Таким образом, оболочки 61,62 эффективно обеспечивают создание электромагнитного экрана, и в то же время выполняет свою функцию изолятор 7, который представляет собой материал с высоким коэффициентом расширения.

Настоящее изобретение не ограничено раскрытым выше и иллюстрируемым выполнение, которое было приведено лишь в качестве примера.

1. Свеча зажигания (1) для двигателя внутреннего сгорания автотранспортного средства, имеющая в основном форму вытянутого тела, содержащая: нижнюю, по существу, емкостную часть (С), содержащую два коаксиальных электрода (2, 3), верхнюю по существу индуктивную часть (I), содержащую центральную сердцевину (8), коаксиальную обмотку (5) вокруг сердцевины (8), внешнюю цилиндрическую оболочку (61), выполняющую функцию электромагнитного экрана, изолятор (7), размещенный радиально между оболочкой (61) и обмоткой (5), отличающаяся тем, что верхняя по существу индуктивная часть (I) снабжена второй, внутренней оболочкой (62), выполняющей функцию электромагнитного экрана, размещенной радиально между изолятором (7) и внешней оболочкой (61).

2. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя поверхность (622) внутренней оболочки (62) прилегает к внешней поверхности изолятора (7).

3. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя оболочка (62) имеет постоянную толщину.

4. Свеча зажигания (1) по п.1, отличающаяся тем, что внешняя оболочка (61) имеет толщину, по меньшей мере, равную толщине, на которой проявляется действие скин-эффекта и которая соответствует глубине проникновения линий тока во внешнюю оболочку (61).

5. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя поверхность (612) внешней оболочки (61) имеет цилиндрическую форму с круговым поперечным сечением, а внешняя поверхность (621) внутренней оболочки (62) имеет цилиндрическую форму с сечением в виде многоугольника, при этом внутренняя оболочка (62) установлена таким образом, что продольные, направленные вдоль оси ребра (613) внутренней оболочки (62) находятся в электрическом контакте с внутренней поверхностью (622) внешней оболочки (61).

6. Свеча зажигания (1) по п.1, отличающаяся тем, что сердцевина (8) имеет в основном цилиндрическую форму.

7. Свеча зажигания (1) по п.1, отличающаяся тем, что внешняя оболочка (61) выполнена из электропроводного материала, такого как медь.

8. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя оболочка (62) выполнена из электропроводного материала, такого как медь.

9. Свеча зажигания (1) по п.1, отличающаяся тем, что материал внешней оболочки (61) и размеры внешней оболочки (61) выбраны такими, что внешняя оболочка (61) образует экран, по меньшей мере, для электрического поля, генерируемого обмоткой (5).

10. Свеча зажигания (1) по п.1, отличающаяся тем, что материал внутренней оболочки (62) и размеры внутренней оболочки (62) выбраны такими, что внутренняя оболочка (62) образует электромагнитный экран.

www.findpatent.ru

плазменная свеча зажигания для двигателя внутреннего сгорания - патент РФ 2392711

Настоящее изобретение относится к свече, генерирующей плазму, используемой, в частности, для воспламенения рабочей смеси в двигателях внутреннего сгорания с помощью электрических искр, образующихся между электродами свечи. Свеча зажигания (1) для двигателя внутреннего сгорания автотранспортного средства содержит емкостную (С) и индуктивную части (I). Емкостная часть (С) содержит коаксиальные электроды (2, 3). Индуктивная часть (I) содержит: центральную сердцевину (8), обмотку (5), изолятор (7), внешнюю цилиндрическую оболочку (61) и внутреннюю оболочку (62). Обмотка (5) выполнена вокруг сердцевины (8). Изолятор (7) размещен радиально между внутренней оболочкой (62) и обмоткой (5). Внешняя (61) и внутренняя (62) оболочки выполняют функцию электромагнитного экрана. Внутренняя оболочка (62) размещена радиально между изолятором (7) и внешней оболочкой (61). Внутренняя поверхность (622) внутренней оболочки (62) может иметь постоянную толщину и прилегать к внешней поверхности изолятора (7). Внешняя оболочка (61) может иметь толщину, на которой проявляется действие скин-эффекта. Внутренняя поверхность (612) внешней оболочки (61) может иметь цилиндрическую форму с круговым поперечным сечением. Внешняя поверхность (621) внутренней оболочки (62) может иметь цилиндрическую форму с сечением в виде многоугольника. Продольные ребра (613) внутренней оболочки (62) могут находиться в электрическом контакте с внешней оболочкой (61). Сердцевина (8) может иметь цилиндрическую форму. Материал и размеры внешней (61) и внутренней (62) оболочек могут быть выбраны с учетом образования ими экрана для электромагнитного поля, которое генерируется обмоткой (5). Технический результат заключается в согласовании электромагнитного экрана с изоляцией, размещенной между сердечником (8) и оболочкой (62). 9 з.п. ф-лы, 5 ил. плазменная свеча зажигания для двигателя внутреннего сгорания, патент № 2392711

Настоящее изобретение относится к свече, генерирующей плазму, используемой, в частности, для воспламенения рабочей смеси в двигателях внутреннего сгорания с помощью электрических искр, образующихся между электродами свечи.

Более конкретно изобретение относится к свече зажигания для двигателя внутреннего сгорания, содержащей два электрода, генерирующих плазму, отделенных друг от друга изолятором, которые образуют внешнюю оболочку, окружающую изолятор, и центральный электрод, размещенный внутри центрального канала изолятора, соответственно.

Из опубликованных патентных документов FR 2859830, FR 2859569, FR 2859831 известна многоискровая свеча, которая имеет электромагнитный экран, сформированный в виде металлической оболочки, которая может быть выполнена, например, в виде тонкой фасонной трубы или тонкого осажденного слоя или из металлизированной и покрытой слоем другого металла пластмассовой пленки.

Электромагнитный экран содержит два участка: электрический экран и магнитный экран. Электрический экран позволяет защищать внешнее окружение свечи от влияния электрического поля, созданного электрической обмоткой. Магнитный экран обеспечивает, чтобы магнитное поле оставалось внутри указанной металлической оболочки. Протекание электрического тока, соответствующего действию электрического экрана, ограничено внешней поверхностью оболочки, в то время как протекание тока, связанного с магнитным экраном, ограничено внутренней поверхностью оболочки. Кроме того, для обеспечения электрической изоляции между сердечником и оболочкой изолятор обычно выполняют из материалов, имеющих определенные физико-химические характеристики, включая сочетающиеся с другими характеристиками коэффициенты расширения, которое соответствует температуре материала и может быть значительным.

Следовательно, трудно согласовать электромагнитный экран с изоляцией, размещенной между сердечником и оболочкой.

Задача изобретения, направленного на смягчение этих недостатков, заключается в том, чтобы создать электромагнитный экран и в то же время обеспечить изоляцию между сердечником и оболочкой.

Соответственно, изобретение обеспечивает свечу зажигания вышеупомянутого типа, в которой верхняя по существу индуктивная часть свечи содержит вторую, внутреннюю оболочку, экранирующую электромагнитное поле, которая размещена радиально между изолятором и внешней оболочкой.

В соответствии с предпочтительным вариантом выполнения изобретения внутренняя поверхность внутренней оболочки прилегает к внешней поверхности изолятора.

Внутренняя оболочка может иметь постоянную толщину, а внешняя оболочка имеет толщину, по меньшей мере, равную толщине проявления скин-эффекта, которая соответствует глубине проникновения линий тока во внешнюю оболочку.

Согласно другому предпочтительному варианту выполнения изобретения внутренняя поверхность внешней оболочки выполнена цилиндрической формы с круговым сечением, внешняя поверхность внутренней оболочки имеет цилиндрическую форму с сечением в виде многогранника, при этом внутренняя оболочка выполнена такой, что продольные ребра внутренней оболочки, проходящие в осевом направлении, находятся в электрическом контакте с внутренней поверхностью внешней оболочки.

Предпочтительным является то, что сердечник имеет цилиндрическую форму.

Материал внешней оболочки может быть выбран из числа электропроводных материалов, таких как медь, а материал внутренней оболочки - из числа электропроводных материалов, таких как медь.

Целесообразным является то, что материал внешней оболочки и геометрические размеры внешней оболочки выбраны такими, чтобы внешняя оболочка образовала экран, по меньшей мере, для электрического поля, генерируемого обмоткой.

Материал внутренней оболочки и геометрические размеры внутренней оболочки могут быть выбраны такими, чтобы внутренняя оболочка образовала электромагнитный экран.

Другие особенности и преимущества настоящего изобретения будут очевидны из нижеследующего описания со ссылками на чертежи, на которых представлено:

фиг.1 - разрез радиочастотной плазменной свечи вдоль оси z, выполненной в соответствии с известным аналогом;

фиг.2 - схематичное покомпонентное, с трехмерным представлением деталей, изображение индуктивной части свечи, содержащей две оболочки в соответствии с изобретением;

фиг.3 - разрез индуктивной части свечи зажигания, содержащей две оболочки в соответствии с изобретением;

фиг.4 - разрез по линии 4-4' на фиг.3 в соответствии с изобретением;

фиг.5 - иллюстрация протекания токов, связанных с электромагнитным полем, в разрезе вдоль линии 5-5', показанной на фиг.3, в соответствии с изобретением.

Как показано на фиг.1, радиочастотная плазменная свеча 1, имеющая по существу цилиндрическую форму, содержит, главным образом, нижнюю по существу емкостную часть С и верхнюю по существу индуктивную часть I, при этом указанные части С и I выполнены в целом с удлиненным вытянутым профилем, соединены последовательно и имеют общую продольную ось Z.

Емкостная часть С содержит, в частности, корпус 2, выполненный с возможностью заземления и окружающий снаружи центральный электрод 3, который по существу имеет форму цилиндра с осью Z и выполняет функцию высоковольтного электрода. Между корпусом 2 и центральным электродом 3 размещен электроизолирующий блок, называемый "изолятором" 4, причем изолятор 4 сконфигурирован таким образом, чтобы направлять искры между электродами 2 и 3.

В соответствии с известным из уровня техники конструктивным выполнением свечи внешняя поверхность нижней части корпуса 2, расположенной ближе всего к головке цилиндра двигателя внутреннего сгорания, имеет профиль, предназначенный для установки свечи 1, ее удержанию и уплотнению на головке цилиндра (например, как показано на фиг.1, в виде резьбы, не ограничивающей конструктивное исполнение профиля).

Как показано на фиг.2 и фиг.3, индуктивная часть I свечи 1, в целом, включает центральный сердечник 8, последовательно охваченный снаружи обмоткой 5, изолятор 7, а также внутреннюю оболочку 62 и внешнюю оболочку 61.

Сердечник 8 имеет цилиндрическую форму с круговым сечением, и его ось по существу совпадает с осью Z свечи зажигания 1. Сердечник выполнен из изолирующего и немагнитного материала.

Обмотка 5 состоит из витков, охватывающих центральный сердечник 8 от первого верхнего витка 512 до последнего нижнего витка 513. Как показано на фиг.1, первый верхний виток 512 подсоединен к соединительному проводнику 12, а последний нижний виток 513 с помощью подходящих средств 14 подсоединен к расположенному внутри торцу центрального электрода 3.

Изолятор 7, который окружает обмотку 5, имеет цилиндрическую форму с сечением в виде многоугольника, и материал изолятора выбран из числа материалов с низкими магнитными потерями. Среди материалов, удовлетворяющих этому свойству, существует семейство кремнийорганических соединений, основной недостаток которых заключается в том, что они имеют большую величину коэффициента термического расширения, порядка 0,0001 К-1.

Как показано на фиг.4, внутренняя оболочка 62 содержит внутреннюю поверхность 622 и внешнюю поверхность 621. Оболочка имеет цилиндрическую форму с сечением в виде многоугольника. Однако следует отметить, что только для внешней поверхности 621 необходимо, чтобы она имела цилиндрическую форму с многоугольным сечением. Внутренняя оболочка 62 выполнена так, что внутренняя поверхность 622 внутренней оболочки 62 прилегает к внешней поверхности изолятора 7. Предпочтительно, чтобы внутренняя оболочка 62 была выполнена из токопроводящего материала в частотном диапазоне от 1 до 10 Мгц, необходимом для работы этой свечи 1. Оболочка 62 может быть изготовлена из разных металлических материалов, например, из меди или из различных материалов, внешняя поверхность которых покрыта солями металлов, например, слоем электролитически осажденного никеля. Предпочтительно, чтобы толщина этой оболочки 62 была постоянной и достаточно тонкой, чтобы обеспечить низкочастотную проводимость. Например, может быть предпочтительным, чтобы внутренняя оболочка 62 была выполнена из меди толщиной от 5 до 10 мкм.

Как показано на фиг.4, внешняя оболочка 61 включает внешнюю поверхность 611 и внутреннюю поверхность 612. Она имеет форму цилиндра с круговым сечением. Однако следует отметить, что только для внешней поверхности 612 необходимо, чтобы она имела цилиндрическую форму с круговым поперечным сечением. Предпочтительно, чтобы материал, из которого изготовлена эта оболочка, и ее конструктивное выполнение были такими, чтобы обеспечить прохождение токов, связанных с экраном электромагнитного поля. Предпочтительно, чтобы внешняя оболочка 61 была выполнена из токопроводящего материала в частотном диапазоне от 1 до 10 Мгц, требуемом для работы этой свечи 1. При этом она может быть выполнена из материала с высокой удельной электропроводностью (такого, как медь: 6×107 Сименс(См)/м) или из материала с низкой удельной электропроводностью (такого, как сталь: 1×107 См/м), а ее внешние поверхности могут быть покрыты токопроводящим слоем, например, из меди или серебра. Толщина этой оболочки 61, по меньшей мере, больше толщины скин-слоя, соответствующей глубине проникновения линий тока в проводник в диапазоне частот от 1 до 10 Мгц, установленном для работы этой свечи 1. Например, если внешняя оболочка изготовлена из меди, ее толщина составляет, по меньшей мере, 100 мкм. Внутренняя оболочка 62 расположена таким образом, что ее продольные, ориентированные в осевом направлении ребра 613 находятся в электрическом контакте с внутренней поверхностью 612 внешней оболочки 61. Дефекты внутренней поверхности 611 (шероховатость поверхности) внешней оболочки 61 не являются препятствием для осуществления электрического контакта двух этих оболочек 61, 62. В частности, вдоль ребер 613 электрический контакт, как правило, может быть обеспечен местами, в нескольких точках 9 ребер 613.

Следует отметить, что зоны с пустотами, образованные между внутренней оболочкой 62 и внешней оболочкой 61, позволяют изолятору 7, имеющему высокий коэффициент термического расширения, расширяться с приближением его внешнего профиля к по существу цилиндрическому профилю и частичным или полным заполнением зон с пустотами.

Такое конструктивное выполнение обеспечивает экран для электромагнитного поля.

Как более подробно показано на фиг.5, ток 10, связанный с магнитным экраном, протекает в основном по внешней поверхности 612 внешней оболочки 61. Ток, связанный с электрическим экраном, протекает, в основном, по внешней поверхности 611 внешней оболочки 61. При этом ток, в общем, включает две составляющие: первую составляющую 111, которая соответствует электрической зарядке конденсатора, расположенного на конце обмотки 5, и вторую составляющую 112, которая соответствует по величине току, необходимому для блокирования электрического поля, созданного обмоткой 5. Прежде всего, эта вторая составляющая 112 тока протекает в радиальном направлении по внешней оболочке 61 и через точки 9 контакта внутренней оболочки 62 и внешней оболочки 61. Во-вторых, этот ток, равномерно распределенный, протекает по внутренней оболочке 62 и экранирует электрическое поле, созданное обмоткой 5.

Кроме того, следует отметить, что через внешнюю оболочку 61 передается крутящий момент, создаваемый при соединении друг с другом в целом емкостной части С и в целом индуктивной части I свечи 1. Поэтому толщина внешней оболочки 61 будет рассчитана такой, чтобы передавать этот крутящий момент при взаимном соединении частей. Основное преимущество такого типа передачи крутящего момента заключается в том, что механические напряжения передаются по наибольшему возможному радиусу в том месте, где действие плеча рычага является оптимальным, за счет чего минимизируются механические напряжения, действующие на сами материалы соединяемых частей.

Таким образом, оболочки 61,62 эффективно обеспечивают создание электромагнитного экрана, и в то же время выполняет свою функцию изолятор 7, который представляет собой материал с высоким коэффициентом расширения.

Настоящее изобретение не ограничено раскрытым выше и иллюстрируемым выполнение, которое было приведено лишь в качестве примера.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Свеча зажигания (1) для двигателя внутреннего сгорания автотранспортного средства, имеющая в основном форму вытянутого тела, содержащая: нижнюю, по существу, емкостную часть (С), содержащую два коаксиальных электрода (2, 3), верхнюю по существу индуктивную часть (I), содержащую центральную сердцевину (8), коаксиальную обмотку (5) вокруг сердцевины (8), внешнюю цилиндрическую оболочку (61), выполняющую функцию электромагнитного экрана, изолятор (7), размещенный радиально между оболочкой (61) и обмоткой (5), отличающаяся тем, что верхняя по существу индуктивная часть (I) снабжена второй, внутренней оболочкой (62), выполняющей функцию электромагнитного экрана, размещенной радиально между изолятором (7) и внешней оболочкой (61).

2. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя поверхность (622) внутренней оболочки (62) прилегает к внешней поверхности изолятора (7).

3. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя оболочка (62) имеет постоянную толщину.

4. Свеча зажигания (1) по п.1, отличающаяся тем, что внешняя оболочка (61) имеет толщину, по меньшей мере, равную толщине, на которой проявляется действие скин-эффекта и которая соответствует глубине проникновения линий тока во внешнюю оболочку (61).

5. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя поверхность (612) внешней оболочки (61) имеет цилиндрическую форму с круговым поперечным сечением, а внешняя поверхность (621) внутренней оболочки (62) имеет цилиндрическую форму с сечением в виде многоугольника, при этом внутренняя оболочка (62) установлена таким образом, что продольные, направленные вдоль оси ребра (613) внутренней оболочки (62) находятся в электрическом контакте с внутренней поверхностью (622) внешней оболочки (61).

6. Свеча зажигания (1) по п.1, отличающаяся тем, что сердцевина (8) имеет в основном цилиндрическую форму.

7. Свеча зажигания (1) по п.1, отличающаяся тем, что внешняя оболочка (61) выполнена из электропроводного материала, такого как медь.

8. Свеча зажигания (1) по п.1, отличающаяся тем, что внутренняя оболочка (62) выполнена из электропроводного материала, такого как медь.

9. Свеча зажигания (1) по п.1, отличающаяся тем, что материал внешней оболочки (61) и размеры внешней оболочки (61) выбраны такими, что внешняя оболочка (61) образует экран, по меньшей мере, для электрического поля, генерируемого обмоткой (5).

10. Свеча зажигания (1) по п.1, отличающаяся тем, что материал внутренней оболочки (62) и размеры внутренней оболочки (62) выбраны такими, что внутренняя оболочка (62) образует электромагнитный экран.

www.freepatent.ru

плазменная полупроводниковая свеча зажигания - патент РФ 2541046

Плазменная полупроводниковая свеча зажигания содержит корпус с кольцевым боковым электродом, центральный электрод, концентрично закрепленный в корпусе через изолятор, и полупроводниковый элемент в виде кольца, соединенного с электродами. В свече выполнена полость, образованная рабочими поверхностями электродов и сопряженной с ними боковой поверхностью полупроводникового элемента и сообщенная через центральное отверстие бокового электрода с камерой сгорания. Центральный электрод выступает в указанную полость. Рабочие поверхности электродов и боковая поверхность полупроводникового элемента выполнены коническими с образованием кольцевого зазора, суженного в сторону центрального отверстия бокового электрода. В центральном электроде имеется канал для подвода плазмообразующего воздуха. Канал имеет несколько выходов на конической поверхности центрального электрода. В одном из вариантов исполнения свечи зажигания каналы для подвода плазмообразующего воздуха проходят через изолятор и полупроводниковый элемент, а выходы каналов расположены на поверхности полупроводникового материала между центральным и боковыми электродами. В другом варианте исполнения свечи зажигания каналы для подвода плазмообразующего воздуха проходят через боковой электрод, причем выходы каналов расположены в полости между центральным и боковыми электродами над поверхностью полупроводникового материала. Технический результат - создание плазменной полупроводниковой свечи зажигания с высоким ресурсом работы и с пробивным напряжением, не зависящим от давления. 2 з.п. ф-лы, 3 ил. плазменная полупроводниковая свеча зажигания, патент № 2541046

Рисунки к патенту РФ 2541046

плазменная полупроводниковая свеча зажигания, патент № 2541046 плазменная полупроводниковая свеча зажигания, патент № 2541046 плазменная полупроводниковая свеча зажигания, патент № 2541046

Изобретение относится к электротехнике, в частности к свечам зажигания в составе плазменных систем зажигания, применяемых для розжига горючих смесей в камерах сгорания газотурбинных двигателей, газотурбинных приводов газоперекачивающих агрегатов и энергетических установок.

Известны плазменные свечи зажигания с воздушным искровым промежутком, в которых через полость свечи протекает плазмообразующий газ (воздух). При этом образующаяся электрическая дуга между электродами выдувается за пределы искрового зазора. (Романовский Г.Ф., Матвеев И.Б., Сербия С.И. Плазменные системы газоперекачивающих агрегатов. - СПб.: Недра, 1992. - 142 с; Патент РФ № 74523, H01T 13/00 от 27.06.2008; Патент РФ № 94070, H01T 13/00 от 10.05.2010). Пробой свечи обеспечивает осциллятор, входящий в состав плазменной системы зажигания. При повышении давления в камере сгорания напряжение на выходе осциллятора может оказаться недостаточным для пробоя искрового промежутка плазменной свечи, что приведет к отказу системы зажигания.

К недостаткам плазменных свечей относится зависимость пробивного напряжения воздушного искрового промежутка от давления в соответствии с законом Пашена.

Известны также полупроводниковые свечи, в зазоре которых между центральным и боковым электродами расположен полупроводниковый элемент. (Патент РФ № 2063098, H01T 13/52 от 27.06.1996; Патент РФ № 2029196, F23Q 3/00 от 20.02.1995; Патент РФ № 51793, H01T 13/02 от 27.02.2006). В полупроводниковых свечах в отличие от плазменных пробивное напряжение искрового промежутка практически не зависит от давления в силу специфического механизма развития разряда. (Электрооборудование летательных аппаратов: в 2-х т. Т. 2: Элементы и системы электрооборудования - приемники электрической энергии / С.А. Грузков [и др.]. - 2008. - 552 с.).

К недостаткам полупроводниковых свечей относится сравнительно низкий ресурс работы, так как полупроводник выгорает под действием длительного искрового разряда. Полупроводниковые свечи по своим функциональным возможностям неприменимы в качестве свечей для плазменных систем зажигания, так как в них не предусмотрен канал для прохождения плазмообразующего воздуха.

Наиболее близким изобретением к предлагаемому является свеча зажигания (АС СССР № 1688340, H01T 13/50 от 30.10.1991). В этой свече зажигания для уменьшения износа полупроводникового элемента под действием искрового разряда рабочие поверхности бокового и центрального электродов и боковая поверхность полупроводникового элемента выполнены коническими с образованием суженного в сторону центрального отверстия бокового электрода кольцевого зазора. В результате такого конструктивного решения искровой разряд удален от поверхности полупроводникового элемента, что приводит к уменьшению его износа.

Недостатком этой свечи зажигания является то, что по своим функциональным возможностям она неприменима в качестве свечи для плазменных систем зажигания, так как в ней отсутствует канал для прохождения плазмообразующего воздуха.

Задача изобретения - создание плазменной полупроводниковой свечи зажигания, обладающей возможностями и преимуществами полупроводниковых и плазменных свечей зажигания.

Технический результат: увеличивается ресурс работы свечи зажигания, пробивное напряжение свечи зажигания не зависит от давления.

Поставленная задача достигается тем, что в предлагаемой плазменной полупроводниковой свече зажигания, содержащей корпус с кольцевым боковым электродом, концентрично закрепленный в корпусе через изолятор центральный электрод и полупроводниковый элемент в виде кольца, соединенного с электродами, причем в свече выполнена полость, образованная рабочими поверхностями электродов и сопряженной с ними боковой поверхностью полупроводникового элемента и сообщенная через центральное отверстие бокового электрода с камерой сгорания, а центральный электрод выступает в полость, рабочие поверхности электродов и боковая поверхность полупроводникового элемента выполнены коническими с образованием суженного в сторону центрального отверстия бокового электрода кольцевого зазора, в отличие от прототипа в центральном электроде имеется канал для подвода плазмообразующего воздуха, причем канал имеет несколько выходов на конической поверхности центрального электрода.

Кроме того, в плазменной полупроводниковой свече зажигания в отличие от прототипа каналы для подвода плазмообразующего воздуха проходят через изолятор и полупроводниковый элемент, причем выходы каналов расположены на поверхности полупроводникового материала между центральным и боковыми электродами.

Кроме того, в плазменной полупроводниковой свече зажигания в отличие от прототипа каналы для подвода плазмообразующего воздуха проходят через боковой электрод, причем выходы каналов расположены в полости между центральным и боковыми электродами над поверхностью полупроводникового материала.

Существо изобретения поясняется чертежом 1, где изображена конструкция предлагаемой плазменной полупроводниковой свечи зажигания.

Свеча зажигания содержит корпус 1 с кольцевым боковым электродом 2. В корпусе 1 концентрично электроду 2 через изолятор 3 закреплен центральный электрод 4. Между электродами 2 и 4 размещен полупроводниковый элемент 5, выполненный в виде кольца и соединенный с электродами 2 и 4. В свече выполнена полость 6, образованная рабочими поверхностями 7 и 8 соответственно бокового электрода 2 и центрального электрода 4 и сопряженной с ними боковой поверхностью 9 полупроводникового элемента 5. Полость 6 сообщается с камерой сгорания (на чертеже не показана) через центральное отверстие 10 бокового электрода 2. Центральный электрод 4 выступает в полость 6. Рабочие поверхности 7 и 8 и боковая поверхности 9 выполнены коническими, причем поверхности 7 и 8 образуют суженный в сторону центрального отверстия 10 кольцевой зазор 11. В центральном электроде имеется канал 12 для подвода плазмообразующего воздуха, который имеет несколько выходов 13 на конической поверхности центрального электрода.

Свеча зажигания работает следующим образом. При подаче напряжения на электроды 2 и 4 возникает электрическое поле, силовые линии которого концентрируются на острие центрального электрода 4. Одновременно происходит нагрев и испарение полупроводникового материала, что приводит к ионизации междуэлектродного промежутка вдоль боковой поверхности 9 полупроводникового элемента 5 и его пробою. Так как максимальная концентрация силовых линий приходится на конец центрального электрода, то разряд, возникающий вдоль поверхности полупроводника, смещается на конец центрального электрода. В результате такого перемещения разряда от поверхности полупроводника значительно уменьшается износ полупроводникового материала. Перемещению разряда способствует и сужение кольцевого зазора от поверхности полупроводника к острию центрального электрода.

После пробоя свечи между электродами образуется электрическая дуга, которая выдувается плазмообразующим воздухом из центрального отверстия 10.

Данное техническое решение позволяет объединить в одной свече преимущества плазменных и полупроводниковых свечей. Наличие полупроводникового элемента 5 делает независимым пробивное напряжение свечи от давления, а канал 12 с выходами 13 обеспечивает выдувание длительного дугового разряда за пределы центрального отверстия 10. В данном случае полупроводниковый элемент не контактирует с электрической дугой, что снижает его износ.

Таким образом, заявляемое изобретение объединяет в одной свече преимущества плазменных и полупроводниковых свечей; пробивное напряжение свечи не зависит от давления, в свече может образовываться длительный дуговой разряд без существенного износа полупроводникового элемента, так как дуговой разряд не соприкасается непосредственно с полупроводниковым элементом.

Другие возможные варианты предлагаемого технического решения показаны на чертеже 2 и чертеже 3. Отличие чертежа 2 от чертежа 1 состоит в разном расположении каналов для протекания плазмообразующего воздуха. На чертеже 2 каналы 12 проходят через полупроводниковый материал, причем каналы расположены перпендикулярно поверхности полупроводникового материала между центральным и боковым электродами. Отличие чертежа 3 от чертежа 1 состоит в том, что каналы 12 для протекания плазмообразующего воздуха проходят через боковой электрод и выходят в полость между центральным и боковым электродами над поверхностью полупроводникового материала.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Плазменная полупроводниковая свеча зажигания, содержащая корпус с кольцевым боковым электродом, концентрично закрепленный в корпусе через изолятор центральный электрод и полупроводниковый элемент в виде кольца, соединенного с электродами, причем в свече выполнена полость, образованная рабочими поверхностями электродов и сопряженной с ними боковой поверхностью полупроводникового элемента и сообщенная через центральное отверстие бокового электрода с камерой сгорания, а центральный электрод выступает в полость, рабочие поверхности электродов и боковая поверхность полупроводникового элемента выполнены коническими с образованием суженного в сторону центрального отверстия бокового электрода кольцевого зазора, отличающаяся тем, что в центральном электроде имеется канал для подвода плазмообразующего воздуха, причем канал имеет несколько выходов на конической поверхности центрального электрода.

2. Плазменная полупроводниковая свеча зажигания по п.1, отличающаяся тем, что каналы для подвода плазмообразующего воздуха проходят через изолятор и полупроводниковый элемент, причем выходы каналов расположены на поверхности полупроводникового материала между центральным и боковыми электродами.

3. Плазменная полупроводниковая свеча зажигания по п.1, отличающаяся тем, что каналы для подвода плазмообразующего воздуха проходят через боковой электрод, причем выходы каналов расположены в полости между центральным и боковыми электродами над поверхностью полупроводникового материала.

www.freepatent.ru

устройство для увеличения плазменного объема искры в свече зажигания - патент РФ 2171909

Устройство для увеличения плазменного объема искры в свече зажигания относится к области двигателестроения, в частности к искровым способам воспламенения топливной смеси. Устройство содержит последовательный LC-контур, образованный конденсатором и индуктивностью и подключенный непосредственно параллельно искровому промежутку свечи зажигания. Собственная частота LC-контура лежит в диапазоне от 1 до 5 МГц и параметры контура выбираются такими, что при его замыкании через пробитый искровой промежуток затухающие колебания в нем поддерживают горение искры в течение времени порядка 2-3 с. Высоковольтный провод от системы зажигания подключается к точке соединения свечи с LC-контуром через демпфирующий дроссель. Устройство служит для увеличения плазменной оболочки вокруг стриммера искры, не увеличивая существенно энергию разряда. 1 з.п. ф-лы, 2 ил. Изобретение относится к области двигателестроения, в частности к искровым способам воспламенения топливной смеси. Ближайшими аналогами предлагаемого устройства могут быть система, предложенная в авторском свидетельстве [1], и отечественная система зажигания "Электроника 3М-К" [2]. Схема, описанная в [1], имеет ряд существенных недостатков. Изготовление магнитного накопителя на прямоугольном магнитопроводе является сложной технической задачей (несколько десятков витков коаксиального кабеля выдерживающего 20 кВ). Размеры такого устройства будут весьма велики. Кроме того, накопление энергии и концентрация ее в течение 10-100 нс в момент искрообразования приводит к резкому увеличению эрозии электродов свечи. В системах зажигания подобных отечественной "Электроника 3М-К" или "Искра-5" используется многоискровый режим воспламенения топливной смеси. Однако в силу высокой индуктивности рассеяния катушки зажигания интервал между импульсами высокого напряжения трудно сделать менее 0,5 мс, т.е. следующие за первой искры будут воздействовать на топливную смесь не в оптимальный момент времени (верхняя мертвая точка). Исходя из вышесказанного понятно, что одновременное улучшение условий воспламенения топлива и снижение степени детонации в момент поджига, а также уменьшение эрозии электродов свечи требует принципиального изменения физических параметров искры. Необходимо увеличить объем плазменной оболочки вокруг стриммера искры, причем желательно сделать это не увеличивая существенно энергию разряда. В качестве прототипа выбрали немецкий патент 1962 г. [3]. В этом патенте параллельно высоковольтной обмотке катушки зажигания подключен трехзвенный Г-образный LC-контур, выполняющий роль накопительного элемента. При образовании искрового канала энергия накопления на конденсаторах отдается в искру. Т. к. спектр частот в данном контуре лежит ниже 100 кГц, а время существования стриммера в искре не превышает 500 нс, то мы имеем режим, близкий к многократному искрообразованию. Хотя параметры такой искры близки к оптимальным, техническая реализация данного устройства встречает ряд трудностей. Во-первых, даже на современной элементной базе, индуктивности и емкости таких номиналов как приводятся в патенте, на напряжение 20-50 кВ, будут весьма крупными. Во-вторых в современных системах зажигания высоковольтные провода, соединяющие катушку зажигания с распределителем и распределитель со свечой зажигания, имеют сопротивление 3-8 кОм. Это делает предполагаемую систему неэффективной, т.к. сопротивление, демпфируя LC-контур, приводит к быстрому затуханию колебаний. Сопротивление искрового канала равно приближенно 20 Ом, т.е. энергия запасенная в конденсаторах рассеивается в основном в проводах. Чтобы обойти все эти трудности в схеме располагают последовательный LC-контур непосредственно около свечи, избавляясь тем самым от влияния высокоомных проводов. Предлагаемое устройство изображено на фиг. 1. Здесь КЗ-катушка зажигания, Пр - высокоомный (1-5 кОм) провод, Р - распределитель, C1 и С2 -- свечи зажигания. Индуктивность L представляет собой катушку из 30 витков. В качестве сердечника катушки используется стержень из радиоферрита марки М400 или М600, диаметром 8-10 мм и длиной порядка 45 мм. Между ферритом и обмоткой необходим зазор не менее 1 мм. Такая конструкция обеспечивает высокую индуктивность и добротность при токах до 100 A, импульсах напряжения в 10-12 кВ, в диапазоне частот до 5 МГц. Поскольку время остывания плазменного канала в искре не превышает 500 нс, для режима непрерывного горения необходимо чтобы собственная частота LC-контура была выше 1 МГц. С предполагаемой конструкцией индуктивности емкость С получается порядка 100-500 пФ. С таким номиналом емкости LC-контур получается весьма компактным, что позволяет разместить его в непосредственной близости у свечи зажигания, и даже крепить его непосредственно на высоковольтный провод. Схема работает следующим образом. При появлении высоковольтного импульса на вторичной обмотке катушки зажигания, фиг. 1, конденсатор C заряжается до напряжения пробоя свечи. Т. к. емкость мала, суммарный фазовый сдвиг, равный устройство для увеличения плазменного объема искры в свече зажигания, патент № 2171909 (где R - сопротивление высоковольтных проводов плюс внутреннее сопротивление катушки зажигания), невелик, порядка 10 устройство для увеличения плазменного объема искры в свече зажигания, патент № 2171909s. При таком фазовом сдвиге коррекция угла опережения системы зажигания не нужна. В момент пробоя образуется плазменный канал сопротивлением 20 Ом, т.е. L и С замыкаются параллельно друг другу и образуют высокодобротный LC-контур. Высоковольтный провод от катушки зажигания при этом оказывается закороченным на землю и не оказывает влияния на колебания в контуре. Свободные колебания в контуре продолжаются в течении 2-3 устройство для увеличения плазменного объема искры в свече зажигания, патент № 2171909s, и все это время плазменный канал искры остается горячим и способен инициировать воспламенение топливной смеси. При этом пиковый ток в искре увеличен по сравнению с обычной схемой не более чем в 3-4 раза, что не приводит к увеличению эрозии электродов свечи, а средний ток остается на прежнем уровне и может быть снижен введением демпфирующего дросселя Др (фиг. 2). Таким образом, увеличив время горения искры в 8-10 раз, мы увеличим плазменный объем в 3-4 раза, а за счет высокочастотного разогрева увеличим плотность плазмы, ее ионизирующее и тепловое действие. При использовании демпфирующего дросселя процесс образования стриммера в искре не приводит к образованию сильной ударной волны, поэтому детонация топлива уменьшается. Этот дроссель представляет собой четыре ферритовых кольца К 18х8х5 марки М2000НМ, надетых на высоковольтный провод непосредственно перед LC-контуром. Рекомендуется использовать этот дроссель в системах зажигания, где высоковольтный провод не содержит высокоомного сопротивления. Литература 1. Авторское свидетельство СССР N 1719708 A1, кл. F 02 P 3/04, 1990 г. 2. A.X.Синельников. Электронные приборы для автомобилистов. М.: Энергоатомиздат, 1986 г. 3. Патент ФРГ N 1414588, кл. F 02 P 3/08, 1972 г.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Устройство для увеличения плазменного объема искры в свече зажигания, состоящее из последовательно LC-контура, образованного конденсатором и индуктивностью, отличающееся тем, что LC-контур подключается непосредственно параллельно искровому промежутку свечи зажигания, после высоковольтного провода от катушки зажигания, а также тем, что собственная частота колебаний LC-контура лежит в диапазоне от 1 до 5 МГц, а также тем, что параметры LC-контура выбираются таким, что при его замыкании через пробитый искровой промежуток затухающие колебания в нем поддерживают горение искры в течение времени порядка 2 - 3 устройство для увеличения плазменного объема искры в свече зажигания, патент № 2171909s. 2. Устройство по п.1, отличающееся тем, что высоковольтный провод от системы зажигания подключается к точке соединения свечи с LC-контуром через демпфирующий дроссель.

www.freepatent.ru

Искра божья: свечи зажигания от «кулибиных» | Vincast.ru

Александр ШАБАНОВ, Павел КАРИН

Резьба, изолятор и два электрода... Столь примитивная конструкция современной свечи зажигания не дает покоя народным умельцам и самородкам-изобретателям. Одни сверлят дырки в боковом электроде, другие прилаживают к свечам «насадки», третьи являют миру «плазменные генераторы»... И каждый обещает чудеса. Мол, стоит ввернуть в двигатель их чудо-свечи вместо обычных — и мощность сразу возрастет необычайно, расход топлива снизится, а токсичность выхлопа и вовсе приблизится к нулю.

Сказки? Или быль? Мы провели испытания нескольких «авторских» изделий.

Увы, чудес так и не произошло.

Диаграмма распределения температур на электродах стандартной свечи ЭЗ (а) и доработанной — Пересвет-Л (б) при номинальном режиме работы двигателя ВАЗ-2111. «Разрез» бокового электрода повышает его температуру в среднем на 50°С и снижает ресурс. Заметьте, мы лишь «надрезали» электрод математической модели, а если его «пропилить» до основания, как это сделано у свечи Пересвет-Л, то температура поднимется еще выше

Диаграмма распределения механических напряжений на электродах стандартной свечи ЭЗ (а) и доработанной — Пересвет-Л (б) при номинальном режиме работы двигателя ВАЗ-2111. У станадартного электрода небольшая концентрация напряжений возникает лишь в месте сварки с корпусом. А «разрез» бокового электрода свечи Пересвет-Л становится дополнительным концентратором напряжений

Ассортимент «экзотических» свечей зажигания в автомагазинах небогат, зато названия громкие. «Плазмотрон», «Шаровая молния»... Ведь покупателям невдомек, что на самом деле «плазменной» можно назвать любую свечу зажигания, поскольку электрический разряд между электродами — суть холодная плазма.

Самое известное название из всех четырех купленных нами «необычных» комплектов свечей — это Плазмофор Супер. Судя по упаковке, это продукт «конверсионных технологий» Украины — «плазменно-форкамерные» свечи зажигания. Главная особенность таких свечей — это корпус-форкамера (камера сгорания постоянного объема), в которой «спрятан» центральный электрод. Искра «бьет» по радиусу — от центрального электрода к внутренней окружности конуса форкамеры (так называемый кольцевой разряд). Форкамера свечи сообщается с основной камерой сгорания через четыре отверстия — осевое (вокруг центрального электрода) и три боковых.

Идея заманчивая — поскольку начальное воспламенение происходит в форкамере, то в цилиндр смесь поступает уже в виде горящего факела. Если это действительно так, то скорость сгорания топливовоздушной смеси резко возрастает, а с ней — и эффективность работы двигателя. На упаковке так и написано: «повышение мощности и полноты сгорания топлива, улучшение токсичности и динамических характеристик автомобиля»...

Правда, на двигателях с настоящим форкамерно-факельным зажиганием (вспомним моторы Honda CVCC или двигатель ЗМЗ-4022.10 для Волги ГАЗ-3102) его организация требовала сложных переделок головки блока — например, подачи обогащенной горючей смеси в форкамеры с помощью дополнительных каналов и клапанов. Это в итоге и погубило «форкамерную» идею.

Можно ли ее возродить одной лишь заменой свечей? Проверим на моторном стенде!

Заворачиваем свечи Плазмофор ПФА17ДРМ в восьмиклапанный «впрысковый» двигатель ВАЗ-2111, который соединен с нагрузочным устройством и динамометром, и повторяем программу испытаний, которые мы провели для «обычных» одноэлектродных и многоэлектродных свечей. На внешней скоростной характеристике фиксируем мощность двигателя, а на «частичных» нагрузках — токсичность и расход топлива. И затем сравниваем полученные характеристики с показателями штатных одноэлектродных свечей ЭЗ А17ДВРМ.

Токсичность отработавших газов (по СО и СН) со свечами Плазмофор снизилась на 72%! Это лучший результат среди всех испытанных нами комплектов — даже по сравнению с четырехэлектродными свечами Beru (57,8% снижения токсичности). Расход топлива тоже снизился, но уже незначительно — всего на 1,5%. Но на этом преимущества Плазмофоров иссякли. На холостом ходу и малых нагрузках двигатель работал крайне неустойчиво — при фиксированной подаче топлива колебания крутящего момента достигали 10—15% от среднего значения. Мощность, вопреки обещаниям создателей Плазмофоров, не увеличилась — разница составила менее 0,2%, да и то «в минус». А самое главное, что при работе с полной нагрузкой (на внешней скоростной характеристике) Плазмофоры нагрелись так, что началось так называемое калильное зажигание, а система выпуска раскалилась добела! Специалисты лаборатории, в которой мы проводили испытания, сразу вспомнили аналогичное поведение Плазмофоров, предназначенных для двигателей вазовской «классики», — тогда свечи перегревались так, что плавились наконечники высоковольтных проводов.

Может быть, мы сделали что-нибудь не так? Внимательно изучаем упаковку. Ага, здесь есть рекомендация по регулировке двигателя — при установке украинских свечей на карбюраторный двигатель рекомендуется с помощью стробоскопа выставить начальный угол опережения зажигания, а затем скорректировать его на... плюс-минус 5 градусов! «Плюс-минус километр»! А в двигателях с впрыском топлива, как на нашем стендовом моторе ВАЗ-2111, вообще регулировать нечего — все настройки «зашиты» в память контроллера Январь-5.1.

Словом, Плазмофоры — это реальный шанс угробить мотор при движении с высокой нагрузкой: например, при длительном движении по шоссе с высокой скоростью. И единственный плюс в виде зафиксированного нами снижения токсичности при малой нагрузке никоим образом не искупает этой опасности.

Другой шедевр изобретательской мысли — свечи марки Bugaets из Литвы. Как можно догадаться по названию, их создатель — господин Бугаец. Он пошел другим путем, нежели авторы Плазмофоров — взял свечу японской фирмы NGK модели BP7ES (более «холодную», нежели рекомендованная для двигателей ВАЗ модель NGK BPR6E) и приварил к концу резьбовой части «тонкостенную конусную насадку». Получилась свеча NGK, но с «юбкой».

Зачем? Цитируем описание. «При высоковольтном пробое искрового промежутка искра не вызывает поджигание топливной смеси в камере сгорания, а начинается накопление тепловой энергии в свече. При приближении поршня к верхней мертвой точке свеча зажигания выстреливает (! — АР) запасенной тепловой энергией вдоль своей оси в виде импульсного расширяющегося факела»... В итоге «максимальная скорость автомобиля увеличивается на 20%, экономичность возрастает на 30%, динамичность возрастает на 30%, а экологичность на 50%». А еще порадовало заявление о том, что со свечами Bugaets «машина легче справляется с гололедом за счет езды на самой высокой передаче с низкой скоростью». За такое сокровище не жалко отдать 960 рублей — это в четыре раза дороже исходных свечей NGK.

Вворачиваем Bugaets во «впрысковый» двигатель ВАЗ-2111. Неужели работают? Мощность действительно возросла! Но вот незадача — всего на 3,4%. На порядок меньше, чем нужно бы для обещанного г-ном Бугайцом 20-процентного роста «максималки». Расход топлива снизился тоже всего на 4,6% — вместо заявленных 30%.

А самое интересное в том, что если переделанные Бугайцом свечи заменить на обычные NGK BPR6E, которые победили в нашем «одноэлектродном» тесте, то те будут работать лучше. Рост мощности составит 4,4%, а экономичность улучшится на 5,1%. При этом с «обычными» свечами NGK двигатель работает устойчиво и без детонации, а Bugaets заставляет мотор издавать характерные металлические стуки — при полном дросселе на всех оборотах! Неужели именно это имел в виду Бугаец, когда писал в рекламной брошюре — «заставь свой двигатель работать по-новому»?

Впрочем, строгая инструкция, приложенная к свечам Bugaets, говорит, что сперва нужно выставить увеличенный на 3—6 градусов угол опережения зажигания, поколдовать с винтами качества и количества смеси в карбюраторе, а затем отрегулировать зажигание на ходу «по слуху». В двигателе с впрыском топлива, повторим, регулировать нечего. Но может быть, на карбюраторном моторе Bugaets «выстрелит тепловой энергией» по-другому?

Специально меняем на стендовой установке системы питания и зажигания — и превращаем двигатель в обычный карбюраторный ВАЗ-21083. Регулируем мотор под стандартные свечи ЭЗ А17ДВРМ, вкручиваем вместо них Bugaets... Жесткая детонация! Сопровождаемая падением мощности. Теперь пробуем отрегулировать двигатель по заветам изобретателя. Увеличиваем угол опережения зажигания на 4 градуса, крутим винты качества и количества смеси... Мощность двигателя упала еще на полпроцента, расход топлива уменьшился на 3,7%, а токсичность (по СО и СН) снизилась на 6%. Теперь, не меняя регулировок, заворачиваем в двигатель обычные свечи NGK. И сразу — о чудо! — детонация стала меньше, а все параметры мотора улучшились в среднем на 2%.

Словом, свечи Bugaets и украинские Плазмофоры — одного поля ягоды. Переплачивать за «уникальную конструкцию» в виде приваренной в четырех точках «тонкостенной конусной насадки», которая провоцирует детонацию и со временем может оторваться и повредить двигатель, может только человек с повышенной степенью внушаемости, которого фразы про «выстрел тепловой энергии» превращают в зомби. Но если вы вдруг разуверились в чудо-свечах и не чувствуете улучшений, то фирма Bugaets вернет вам деньги. Главное, чтобы с момента покупки прошло не более десяти дней.

Кстати, предыдущее изобретение г-на Бугайца называлось «Шаровая молния». Это была свеча с усилителем искры...

Следующий экспонат нашей кунсткамеры — не менее интересные свечи зажигания  Пересвет-Л. Сделать их проще простого — достаточно купить готовые свечи ЭЗ А17ДВ-10, вооружиться ножовкой и сделать распил на боковом электроде, разведя его на две половинки. «Двухискровая» свеча готова! И не важно, что «половинки» имеют разную толщину, отогнуты на неодинаковые углы, а на центральном электроде — след режущего инструмента...

Но на этот раз нас ждал сюрприз. «Распиленные» свечи заработали! Да как — прирост мощности двигателя относительно штатных свечей ЭЗ на внешней скоростной характеристике составил 6,4%! Это даже больше, чем с «мощностным» лидером среди стандартных комплектов — трехэлектродными свечами Finwhale FX510 (6,3%). А расход топлива относительно свечей ЭЗ уменьшился на 4,5% — это лучше, чем у четырехэлектродных свечей Beru.

Фантастика? На самом деле, эффект от «раздвоения» бокового электрода известен специалистам по гоночным моторам еще с советских времен. Никаких чудес здесь нет — разводя половинки распиленного электрода, мы превращаем закрытый искровой зазор в открытый. Развитие фронта пламени при этом происходит интенсивней — как у многоэлектродных свечей. К тому же, искра получается более «длинной» — она бьет по диагонали от центрального электрода к «половинкам», что хорошо видно на фотографии. Наконец, бело-синий цвет искры Пересвета соответствует высокой температуре порядка 4000 К (у «холодной» искры красного цвета обычных свечей ЗЭ — около 3000 градусов Кельвина).

Так почему же этим эффектом не пользуются производители свечей? Дело в том, что тонкие и ослабленные половинки бокового электрода сильнее нагреваются — это хорошо видно на диаграмме распределения температур стандартной и «распиленной» свечи после математического моделирования. Темп тепловой эрозии «разрезанного» электрода возрастает, быстрее накапливается «усталость» металла. А это значит, что в один прекрасный момент (например, при детонации) «половинка» ослабленного электрода может отвалиться! Кстати, аналогичная ситуация и со свечами, у которых в боковом электроде просверлено отверстие...

Словом, на одну гонку Пересвета может хватить. На вторую — уже нет. Стоит ли рисковать, если такой же прирост мощности обеспечивают нормальные импортные свечи с «нераспиленными» электродами?

Наконец, последний испытанный нами образец — корейские свечи зажигания PlasmaPlug. Они удивили конструкцией центрального электрода — он подобен цветку о восьми лепестках! По замыслу создателей, свеча должна отличаться так называемым кольцевым разрядом, который, естественно, положительно сказывается на характеристиках двигателя.

Внешний осмотр «плазменных» свечей восторгов не вызвал — контактные гайки закреплены криво, а уплотнительное кольцо свободно соскальзывает по резьбе. Зато в двигателе ВАЗ-2111 PlasmaPlug работает нормально! Расход топлива относительно штатных свечей ЭЗ снизился на 4,5%, мощность на внешней скоростной характеристике возросла на 3,7%. Неплохо и с экологией — содержание СО и СН в выхлопе снизилось на треть.

Но опять-таки, никаких чудес — мы-то знаем, что такие результаты «по зубам» и обычным одноэлектродным свечам. Например, свечи Eyquem дают те же 3,7% прироста мощности, а по экологии превосходят «корейцев». А свечи Bosch WR7DP проигрывают свечам PlasmaPlug только по расходу топлива, выигрывая и по токсичности, и по развиваемой мощности.

Но в отличие от других чудо-свечей, PlasmaPlug хотя бы не опасен для двигателя. Более того, «газовая горелка» необычного центрального электрода должна увеличить ресурс корейских свечей.

А вообще... Чудес не бывает. Если вы действительно хотите сделать для вашего двигателя что-нибудь приятное, купите ему просто хорошие свечи. И не верьте рекламным брошюрам гениев-изобретателей. Что бы они ни обещали.

www.vincast.ru