Назначение и устройство свечей зажигания. Свечи зажигания назначение
В помощь будущему автомеханику - свечи зажигания
Устройство, назначение принцип работы свечи зажигания
Назначение свечи зажигания
Принцип действия свечи зажигания
Основные характеристики и определения свечи зажигания
Условия работы свечи зажигания
Основные параметры свечей зажигания
Устройство свечи зажигания
Маркировка свечей зажигания
Назначение свечи зажигания
Одним из важнейших элементов систем зажигания двигателей внутреннего сгорания являются свечи. Предназначены они для воспламенения горючей смеси в цилиндрах при помощи искрового разряда.
Искровой разряд, создаваемый системой зажигания, должен обладать энергией, необходимой для воспламенения горючей смеси на любом режиме работы двигателя при всех условиях эксплуатации.
Различаются свечи по конструкции, размерам и тепловым характеристикам (калильным числам). Они могут быть неэкранированными, если их контактная часть выступает из металлического корпуса, и экранированными, у которых контактная часть расположена внутри металлического экрана.
Искровой разряд у большинства свечей образуется непосредственно в искровом зазоре между электродами.
При высоких значениях давления и температуры, возникающих в процессе работы двигателя, свечи должны надежно противостоять воздействию химически агрессивных продуктов сгорания. При этом изолятор должен выдерживать высокое электрическое напряжение.
В процессе работы из-за неполноты сгорания в пристеночной зоне на рабочих деталях свечи образуется нагар. Чтобы избавиться от него свечи должны самоочищаться, автоматически поддерживая необходимую рабочую температуру в температурных пределах, обеспечивающих удаление нагара и исключающих возможность калильного зажигания.
Свечи должны обеспечивать свою работоспособность в условиях с повышенными электрическими. механическими и химическими нагрузками. Непрерывный рост мощностей двигателей при ужесточении норм токсичности отработавших газов предъявляет к свечам все более жесткие требования по надежности и долговечности.
От совершенства конструкции, качества изготовления и правильности подбора свечи к двигателю сильно зависят его пусковые свойства, надежность, мощность, топливная экономичность, а также токсичность отработавших газов.
В свою очередь, работоспособность свечи зависит от ее соответствия двигателю по конструкции, основным размерам, величине искрового зазора и тепловой характеристике. Решающее влияние на надежность и долговечность свечи оказывает техническое состояние двигателя, характер и условия эксплуатации, качество топлива и моторного масла.
Принцип действия свечи зажигания
Газы и их смеси являются идеальными изоляторами. Но при приложении к электродам свечи достаточно высокого напряжения происходит пробой газа, и в искровом зазоре образуется ионизированный канал, проводящий электрический ток.
Явление пробоя газа высоким напряжением обусловлено тем, что случайные электроны, появление которых вызвано проникающим ионизирующим излучением, под воздействием электромагнитного поля получают ускорение в сторону положительного электрода.
При столкновении с молекулами газа происходит цепная реакция ионизации, газ становится проводником, и образуется проводящий канал.
Это явление называется пробоем, первой фазой существования искры.
После пробоя электрическое сопротивление канала стремится к нулю, сила тока увеличивается до сотен ампер, а напряжение уменьшается.
Первоначально процесс протекает в очень узкой зоне, но вследствие быстрого нарастания температуры канал расширяется со сверхзвуковой скоростью. При этом образуется ударная волна, воспринимаемая на слух как характерный треск, создаваемый искрой.
Протекание сильного тока приводит к появлению электрической дуги, и температура в канале разряда при определенных условиях может достигнуть величины до 6000 К.
Скорость расширения проводящего канала стабилизируется. а затем уменьшается до нормальной скорости распространения пламени.
При силе тока ниже 100 мА возникает тлеющий разряд, и температура уменьшается до 3000 К.
По мере убывания энергии, запасенной во вторичной цепи системы зажигания, искровой разряд угасает.
Тлеющий разряд более продолжителен, чем дуговой, и плазма разряда может перемещаться относительно электродов свечи с потоком смеси газов в цилиндре, возникающим вследствие движения поршня. Эффективная длина искры возрастает, а напряжение разряда увеличивается.
Если напряжение оказывается недостаточным для поддержания искры, появляется вероятность ее угасания и повторного возникновения. Из-за остаточной ионизации в искровом зазоре повторная искра возникает при значительно меньшем напряжении, она по целому ряду причин менее эффективна для воспламенения.
В горючей смеси невозможно разделить процессы образования искрового разряда и воспламенения. Уже на этапе пробоя можно обнаружить продукты химических реакций горения. Эффективность первичного очага воспламенения определяется энергией искрового разряда и дополнительной энергией химических реакций горения.
Если скорость расширения плазмы разряда превышает скорость распространения пламени, большее значение имеет энергия искры. Когда скорость расширения канала уменьшается, большее значение приобретает энергия химических реакций.
Основные характеристики и определения свечи зажигания
Верхний температурный предел тепловой характеристики - величина, равная рабочей температуре свечи, при которой возникает калильное зажигание.
«Горячая» или «холодная» свечи - при прочих равных условиях имеющие соответственно большую или меньшую рабочую температуру.
Детонация - аномальный процесс сгорания, имеющий взрывной характер с резким местным повышением температуры и образованием ударной волны. Сопровождается звонким металлическим стуком, вызванным вибрацией деталей двигателя.
Искрообразование - возникновение искрового разряда в искровом зазоре свечи в период от пробоя до угасания.
Искровая свеча зажигания (свеча зажигания, свеча) - электрический ввод в комбинации с искровым разрядником, предназначенный для воспламенения горючей смеси в цилиндре двигателя при помощи искрового разряда в зазоре между электродами.
Искровой зазор - промежуток между изолированным центральным электродом и боковым электродом -массы».
Искровой разряд (электрическая искра, искра) - нестационарный электрический разряд в газе, возникающий в электрическом поле.
Калильное зажигание - воспламенение горючей смеси, вызванное отдельными перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.
Калильное число свечи - условная величина, численно равная среднему индикаторному давлению в цилиндре двигателя испытательной установки, при котором появляется калильное зажигание.
Контактная часть свечи - элементы со стороны высоковольтного провода: головка изолятора, контактная головка и контактная гайка.
Нагар - образовавшиеся на поверхности рабочей части свечи продукты неполного сгорания.
Нижний температурный предел тепловой характеристики - величина, равная температуре рабочей части свечи, при которой нагар выгорает.
Работоспособность свечи - обеспечение бесперебойного новообразования и герметичности в условиях, предусмотренных нормативно-технической документацией и стандартами.
Рабочая камера свечи - полость, образуемая внутренней поверхностью корпуса и наружной поверхностью теплового конуса изолятора, сообщающаяся с камерой сгорания двигателя.
Рабочая температура свечи - температура рабочей части свечи на данном режиме работы двигателя.
Рабочая часть свечи - элементы, расположенные непосредственно в камере сгорания: тепловой конус изолятора, торец центрального электрода и боковой электрод.
Тепловой конус изолятора (юбка изолятора) - часть изолятора, расположенная в рабочей камере свечи, воспринимающая своей поверхностью поток тепла от пламени и раскаленных сгоревших газов.
Тепловая характеристика свечи - зависимость рабочей температуры свечи от режимов работы двигателя.
Цоколь свечи - часть корпуса с резьбой, предназначенная для установки свечи в двигателе и для связи электрической цепи высокого напряжения системы зажигания с «массой».
Шунтирование системы зажигания - короткое замыкание высоковольтной цепи системы зажигания на «массу» при утечке тока по нагару на поверхности теплового конуса изолятора и (или) по токопроводящему мостику в искровом зазоре.
Электропроводный (токопроводящий) мостик - нагар, частично или полностью заполняющий искровой зазор, обладающий проводимостью и создающий электрическую цепь, замыкающую изолированный
Условия работы свечи зажигания
Современные поршневые двигатели внутреннего сгорания работают по четырехтактному или двухтактному рабочему циклу.
Автомобильные двигатели, за редким исключением, работают по четырехтактному циклу, осуществляемому за два полных оборота коленчатого вала и четыре хода поршня. Двигатели различного назначения особо малого рабочего объема работают по двухтактному циклу, осуществляемому за один оборот коленчатого вала и два хода поршня.
В процессе работы двигателя на свечи воздействуют переменные электрические, тепловые, механические и химические нагрузки с частотой, пропорциональной частоте вращения коленчатого вала. Нагрузка на свечу при работе на двухтактном двигателе по меньшей мере вдвое больше, чем на четырехтактном, что существенно уменьшает срок ее службы.
Тепловые нагрузки.
Свечу устанавливают в головке блока цилиндров так, что ее рабочая часть находится в камере сгорания, а контактная - в подкапотном пространстве. Температура газов в камере сгорания изменяется от нескольких десятков градусов Цельсия на впуске до двух-трех тысяч при сгорании. Температура под капотом автомобиля может достигать 150°С.
На многих автомобилях, и тем более мотоциклах, не исключена возможность попадания воды на свечу, особенно при мойке, что может привести к повреждению изолятора.
Из-за неравномерности нагрева температура 8 различных сечениях свечи может отличаться на сотни градусов, что приводит к тепловым напряжениям и деформациям. Это усугубляется тем, что изолятор и металлические детали значительно отличаются по величине коэффициента термического расширения.
Механические нагрузки.
Давление в цилиндре двигателя изменяется от давления ниже атмосферного на впуске до 50 кгс/см2 и выше при сгорании. При этом свечи дополнительно подвергаются вибрационным нагрузкам.
Химические нагрузки.
При сгорании образуется целый «букет» химически активных веществ, способных вызвать окисление даже весьма стойких материалов, тем более что рабочая часть изолятора и электродов может иметь рабочую температуру до 900°С.
Электрические нагрузки.
При искрообразовании, длительность которого может составлять до 3мс, изолятор свечи оказывается под воздействием импульса высокого напряжения, максимальное значение которого зависит от давления и температуры в камере сгорания и величины искрового зазора. В некоторых случаях напряжение может достигать 20-25 кВ (амплитудное значение).
Некоторые типы систем зажигания могут создавать напряжение значительно выше, но его ограничивает пробивное напряжение искрового зазора или напряжение поверхностного перекрытия изолятора.
В дуговой фазе разряда протекание сильного тока приводит к появлению горячих катодных пятен на электроде. Электрическая дуга не может существовать без электронов, излучаемых горячими катодными пятнами. Температура пятен достигает 3000К, что выше температуры плавления любого материала электродов. Это приводит к неизбежному микроскопическому испарению материала электрода с каждой новой искрой. Скорость электрической эрозии при прочих равных условиях пропорциональна энергии искрового разряда и температуре электрода.
Отклонения от нормального процесса сгорания
Нормальное сгорание рабочей смеси происходит со скоростью нескольких десятков метров в секунду и сопровождается относительно плавным нарастанием температуры и давления в цилиндре двигателя. В результате искрового зажигания образуется первичный очаг воспламенения, затем формируется фронт пламени, который быстро распространяется по всему объему камеры сгорания. Несгоревшее топливо догорает уже за фронтом пламени, в пристеночных зонах, в зазорах между поршнем и цилиндром.
При некоторых условиях нормальный процесс сгорания может нарушаться, что отражается на надежности и сроке службы свечи. К таким нарушениям можно отнести следующие.
Пропуски воспламенения.
Могут возникнуть из-за переобеднения горючей смеси, пропусков искрообразования или недостаточной энергии искры. При этом усиливается процесс образования нагара на изоляторе и электродах.
Калильное зажигание.
Различают преждевременное, до появления искры, сопровождающее появление искры и запаздывающее, возникающее после воспламенения горючей смеси, вызванное перегретыми участками поверхностей выпускного клапана, поршня, цилиндра или свечи.
Преждевременное воспламенение может быть вызвано тлеющими частицами нагара.
При преждевременном калильном зажигании самопроизвольно увеличивается угол опережения зажигания. Это приводит к росту скорости нарастания давления и температуры, увеличивается их максимальное значение, детали двигателя перегреваются и угол опережения зажигания еще больше увеличивается. Процесс принимает ускоряющийся характер до момента, когда угол опережения зажигания станет таким, что мощность двигателя начнет стремительно падать.
При калильном зажигании вероятны повреждения выпускного клапана, поршня, поршневых колец, поверхности цилиндра и прокладки головки блока цилиндров. У свечи могут полностью или частично сгореть электроды, а в некоторых случаях может даже оплавиться изолятор.
Детонация.
Это явление возникает при недостаточной детонационной стойкости топлива в наиболее удаленном от свечи месте у горячих поверхностей, в результате сжатия еще не сгоревшей горючей смеси основным фронтом пламени.
Ударные волны при детонации распространяются со скоростью 1500-2500 м/с, что превышает скорость звука. Они многократно отражаются от стенок и вызывают вибрацию и локальный перегрев цилиндра, поршня, клапанов и свечи. Возможны повреждения, как при калильном зажигании, так как перегретые детали становятся неспособными выдерживать возросшую нагрузку. На изоляторе свечи могут образоваться сколы и трещины, электроды могут оплавиться и даже полностью выгореть.
Характерными признаками детонации являются металлические стуки, вибрация и потеря мощности двигателя, увеличение расхода топлива и иногда появление черного дыма из выпускной трубы.
Особенностью детонации является некоторая задержка по времени от момента наступления необходимых условий до ее возникновения. Задержка необходима для образования активных веществ, способствующих возникновению взрывного процесса. В связи с этим детонация более вероятна при относительно небольших оборотах коленчатого вала и полной нагрузке.
Наиболее вероятен выход на этот режим при движении автомобиля на подьеме при полностью нажатой педали газа. Если при этом мощность двигателя оказывается недостаточной, скорость автомобиля и частота вращения коленчатого вала уменьшаются. При недостаточном в данных условиях октановом числе топлива возникает детонация, сопровождаемая звонким металлическим стуком.
Для устранения детонации достаточно перейти на пониженную передачу и увеличить обороты двигателя.
Безусловным является требование использовать только топливо, соответствующее двигателю по октановому числу.
Дизелинг.
В некоторых случаях возникает крайне неравномерная неуправляемая работа бензинового двигателя с выключенным зажиганием при очень малой частоте вращения коленчатого вала. Это явление возникает из-за самовоспламенения горючей смеси при сжатии, подобно тому, как это происходит в дизелях. В русской технической литературе «дизелинг» является сравнительно новым термином, взятым из английского языка (dieseling).
На двигателях, преимущественно карбюраторных, где не исключена возможность подачи топлива в цилиндр при выключенном зажигании, дизелинг возникает при попытке остановить двигатель. При выключении зажигания двигатель продолжает работать с очень малыми оборотами и крайне неравномерно. Это может продолжаться несколько секунд, иногда дольше, затем двигатель самопроизвольно останавливается. Объяснять это явление калильным зажиганием от перегретой свечи было бы неправильно, она тут ни при чем.
Причина дизелинга - в особенностях конструкции камеры сгорания и в качестве топлива (то есть дизелинг наступает при низкой стойкости топлива к самовоспламенению при сжатии). Свечи не могут являться причиной этого явления, так как их температура при малых оборотах явно недостаточна для воспламенения горючей смеси. Калильное зажигание возникает при температуре электродов и изолятора 850-900°С, такой величины она может достигнуть только при работе двигателя с максимальной мощностью. При остановке двигателя температура этих деталей не превышает 350°С. Свеча в этих условиях не причина, а скорее «жертва», так как из-за неполноты сгорания усиливается процесс образования нагара.
Качество топлива и моторного масла
Для обеспечения нормальной работы свечей автомобильные бензины должны иметь достаточную детонационную стойкость, минимальное коррозионное воздействие и не иметь склонности к отложениям.
Детонационная стойкость топлива зависит от его химического состава и структуры углеводородов, полученных при переработке нефти. Способность сопротивляться появлению детонации зависит от молекулярной массы - чем она выше, тем ниже стойкость топлива к детонации и наоборот. Стойкость бензина к детонации, так называемое октановое число, определяется в лабораторных условиях моторным и исследовательским методом на специальной моторной установке, путем сравнения стойкости испытуемого бензина и изооктана в смеси с гептаном. Октановое число изооктана принимают равным 100. Добавка гептана, нестойкого к детонации, снижает октановое число смеси.
Промышленное производство бензина включает первичную и вторичную переработку нефти с последующим смешением различных компонентов для получения необходимых свойств.
При первичной переработке нефти (прямой перегонке) получают 10-25% бензина невысокого качества с октановым числом 40-50. При вторичной переработке нефти на крупных нефтеперерабатывающих заводах ее подвергают сложной технологической обработке с целью расщепления крупных молекул на мелкие, стабилизации химического состава и удаления вредных примесей, особенно серы. Выход бензина увеличивается до 60 %. Затем, путем смешения продуктов первичной и вторичной переработки нефти с добавлением различных присадок получают товарные бензины. Автомобильные бензины одной мархи, производимые на разных предприятиях, в связи с разницей в технологии, имеют несколько различные составы.
Для повышения октанового числа в бензин добавляют антидетонаторы - химические соединения, подавляющие детонацию. Для удаления из камеры сгорания продуктов сгорания при применении антидетонационных присадок в топливо добавляют так называемые выносители - химические вещества, способствующие удалению продуктов сгорания. Тем не менее, условия работы свечи при использовании антидетонаторов существенно ухудшаются.
Полностью удалить продукты сгорания не удается, и на электродах и тепловом конусе изолятора свечи образуется нагар. Под воздействием температуры эти отложения могут стать электропроводящими и вызвать частичный или полный отказ 8 искрообразовании.
Небольшие фирмы получают высокооктановые бензины АИ-95 и АИ-98 путем добавки в бензины АИ-92 и АИ-95 до 12-15% метил-трет-бутилового эфира, при этом бензин имеет необходимое качество. Достаточно широко используются различные железосодержащие антидетонаторы и традиционный антидетонатор на основе тетраэтилсвинца (ТЭС). В бензин добавляют краситель, так как ТЭС ядовит.
К сожалению, недобросовестные производители изготавливают суррогатный бензин из низкооктановых бензинов, добавляя антидетонационные присадки свыше действующих норм.
Сверхнормативное использование (более 37 мг Fe/л) содержащих железо антидетонаторов, например ФерРоз, ФК-4 или АПК вызывает отложение токопроводящего нагара красного цвета на свечах. Этот нагар практически невозможно удалить, он приводит к полному и необратимому их отказу.
Коррозионное воздействие бензина определяется содержанием кислот, щелочей и сернистых соединений. Сильным коррозионным воздействием на металлы обладают минеральные кислоты и щелочи, их наличие в бензинах недопустимо. Сернистые соединения обладают высокой коррозионной активностью и способствуют образованию нагара, однако полностью избавиться от них непросто, особенно при переработке сернистой нефти.
Большинство моторных масел имеют нефтяное происхождение и содержат присадки: противостоящие износу, стабилизирующие, антикоррозионные, моющие и т. д. При сгорании масла, попавшего в камеру сгорания, образуются зольные остатки, которые, как и продукты неполного сгорания топлива, могут образовывать нагар на свечах.
Образование нагара и самоочищение
Нагар на свече - это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200°С и выше. Свойства, внешний вид и цвет нагара зависят от условий его образования, состава топлива и моторного масла. В некоторых случаях, особенно на двухтактных двигателях, нагар может образовать в искровом зазоре электропроводный мостик и вызвать короткое замыкание во вторичной цепи системы зажигания.
И в том, и в другом случае происходит частичное или полное прекращение искрообразования.
Если свечу очистить от нагара, то ее работоспособность восстанавливается. Поэтому одно из важнейших требований к свече - способность самоочищаться от нагара. Во многом степень совершенства ее конструкции определяется именно этим свойством.
Удаление нагара, если в продуктах сгорания нет несгораемых веществ, происходит при температуре 300-350°С - это нижний температурный предел работоспособности свечи.
Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры после пуска двигателя. С этой точки зрения длину теплового конуса изолятора необходимо выполнять как можно большей, а сам тепловой конус целесообразно выдвигать в камеру сгорания.
То же самое требуется для предотвращения утечек тока и соответственно для снижения потерь энергии зажигания.
Тепловая характеристика
Тепловая характеристика свечи - это зависимость температуры теплового конуса изолятора или центрального электрода от режима работы двигателя.
Различие в тепловых характеристиках свечей достигают в основном за счет изменения длины теплового конуса изолятора.
Удлинение теплового конуса изолятора приводит к увеличению подвода тепла в свечу и к росту ее рабочей температуры. Максимальное значение температуры не может превышать
1,2,3
avtomehi.ru
Свечи зажигания
Свечи зажигания.
Назначение и свечей зажигания.
Задачей свечи зажигания в бензиновом двигателе автомобиля является воспламенение топливно-воздушной смеси в камере сгорания. Детали свечи, находящиеся в камере сгорания, подвергаются высоким термическим, механическим, электрическим нагрузкам, а также химическому воздействию продуктов неполного сгорания топлива. Температура в ней изменяется от 70 до 2500°С, давление газов достигает 50-60 бар, а напряжение на электродах доходит до 20 кВ и выше. Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, так как от бесперебойности искрообразования зависят мощность, топливная экономичность, пусковые свойства двигателей, а также токсичность отработавших газов. С целью увеличения срока эксплуатации выпускаются свечи зажигания с несколькими боковыми электродами и тонкоэлектродные с центральным электродом, покрытым слоем платины или иридия. Срок службы свечей зажигания (в зависимости от конструкции) составляет от 30 до 100 тыс. км.
Маркировка свечей.
В маркировке свечи зажигания указываются ее геометрические и посадочные размеры, особенности конструкции и калильное число. Разные производители имеют свою систему обозначений. Ниже приведены маркировки, применямые российскими и ведущими зарубежными изготовителями, а также таблица взаимозаменяемости свечей разных марок.
РОССИЯ | AUTOLITE | BERU | BOSCH | BRISK | CHAMPION | EYQUEM | MAGNETI MARELLI | NGK | NIPPON DENSO |
А11,А11-1,А11-3 | 425 | 14-9A | W9A | N19 | L86 | 406 | FL4N | B4H | W14F |
А11Р | 414 | 14R-9A | WR9A | NR19 | RL86 | - | FL4NR | BR4H | W14FR |
А14В, А14В-2 | 275 | 14-8B | W8B | N17Y | L92Y | 550S | FL5NR | BP5H | W16FP |
А14ВМ | 275 | 14-8BU | W8BC | N17YC | L92YC | C32S | F5NC | BP5HS | W16FP-U |
А14ВР | - | 14R-7B | WR8B | NR17Y | - | - | FL5NPR | BPR5H | W14FPR |
А14Д | 405 | 14-8C | W8C | L17 | N5 | - | FL5L | B5EB | W17E |
А14ДВ | 55 | 14-8D | W8D | L17Y | N11Y | 600LS | FL5LP | BP5E | W16EX |
А14ДВР | 4265 | 14R-8D | WR8D | LR17Y | NR11Y | - | FL5LPR | BPR5E | W16EXR |
А14ДВРМ | 65 | 14R-8DU | WR8DC | LR17YC | RN11YC | RC52LS | F5LCR | BPR5ES | W16EXR-U |
А17В | 273 | 14-7B | W7B | N15Y | L87Y | 600S | FL6NP | BP6H | W20FP |
А17Д | 404 | 14-7C | W7C | L15 | N4 | - | FL6L | B6EM | W20EA |
А17ДВ, А17ДВ-1, А17ДВ-10 | 64 | 14-7D | W7D | L15Y | N9Y | 707LS | FL7LP | BP6E | W20EP |
А17ДВМ | 64 | 14-7DU | W7DC | L15YC | N9YC | C52LS | F7LC | BP6ES | W20EP-U |
А17ДВР | 64 | 14R-7D | WR7D | LR15Y | RN9Y | - | FL7LPR | BPR6E | W20EXR |
А17ДВРМ | 64 | 14R-7DU | WR7DC | LR15YC | RN9YC | RC52LS | F7LPR | BPR6ES | W20EPR-U |
АУ17ДВРМ | 3924 | 14FR-7DU | FR7DCU | DR15YC | RC9YC | RFC52LS | 7LPR | BCPR6ES | Q20PR-U |
А20Д, А20Д-1 | 4054 | 14-6C | W6C | L14 | N3 | - | FL7L | B7E | W22ES |
А23-2 | 4092 | 14-5A | W5A | N12 | L82 | - | FL8N | B8H | W24FS |
А23В | 273 | 14-5B | W5B | N12Y | L82Y | 755 | FL8NP | BP8H | W24FP |
А23ДМ | 403 | 14-5CU | W5CC | L82C | N3C | 75LB | CW8L | B8ES | W24ES-U |
А23ДВМ | 52 | 14-5DU | W5DC | L12YC | N6YC | C82LS | F8LC | BP8ES | W24EP-U |
Калильное число является показателем тепловых свойств свечи (ее способности нагреваться при различных тепловых нагрузках двигателя). Оно пропорционально среднему давлению, при котором в процессе испытаний свечи на моторной тарировочной установке в ее цилиндре начинает появляться калильное зажигание (неуправляемый процесс воспламенения рабочей смеси от раскаленных элементов свечи). Свечи с небольшим калильным числом называют горячими. Их тепловой конус нагревается до температуры 900°С (температура начала калильного зажигания) при относительно небольшой тепловой нагрузке. Такие свечи применяются на малофорсированных двигателях с небольшими степенями сжатия. У холодных свечей калильное зажигание возникает при больших тепловых нагрузках, и они используются на высокофорсированных двигателях.
Пока тепловой конус не нагреется до 400°С, на нем образуется нагар, приводящий к утечкам тока и нарушению искрообразования. По достижении этой температуры он (нагар) начинает сгорать, происходит очищение свечи (самоочищение). Чем длиннее тепловой конус, тем больше его площадь, поэтому он нагревается до температуры самоочищения при меньшей тепловой нагрузке. К тому же выступание этой части изолятора из корпуса усиливает ее обдув газами, что дополнительно ускоряет прогрев и улучшает очищение от нагара. Увеличение длины теплового конуса приводит к уменьшению калильного числа (свеча становится "горячее").
Величина искрового зазора свечи находится в пределах от 0,5 до 2 мм. Для каждого конкретного автомобиля этот параметр указывается в инструкции по эксплуатации. В зависимости от конструкции электродов зазор бывает регулируемым (за счет подгибания бокового электрода) и нерегулируемым (в свечах с несколькими «объединенными» боковыми электродами или не имеющих боковых электродов).
Диагностика.
Внешний вид свечи зажигания является хорошим индикатором состояния двигателя. Нормально работающая свеча исправного двигателя имеет чистые электроды с тонким слоем светло-серого или светло-коричневого налета. Появление черного жирного нагара говорит о том, что либо из-за износа поршневых колец в камеру сгорания попадает масло, либо рабочая смесь слишком переобогащена.
Похожий на известняк нагар не что иное, как несгорающие присадки к маслу. Такие же отложения скапливаются на клапанах, и на днищах поршней. Проблема заключается в том, что такой нагар не выжигается - его можно удалить только механически.
Бархатистый нагар черного цвета говорит о переобогащении смеси. Этот нагар находится в динамическом равновесии, т.е. после регулировки системы зажигания и питания он исчезает самостоятельно.
Если нагар на свече светлый, а возле центрального электрода видны мельчайшие капельки металла - свеча перегревается при работе (горячая свеча). Или эта свеча не подходит к двигателю, или зажигание слишком позднее, или у двигателя проблемы с охлаждением.
У Вас есть вопросы по изложенному материалу, предлагаю обсудить на форуме.
www.pro100gaz.ru
Как подобрать свечи зажигания на автомобиль, машину по марке
В настоящее время при выборе свечей зажигания для своего автомобиля водители руководствуются авторитетностью производителей, приемлемостью цен и качественными характеристиками изделий. Миновали те дни, когда при решении этого вопроса автовладельцам приходилось рассчитывать исключительно на свой практический опыт.
Сейчас испытательные лаборатории проводят разномасштабные исследования, а специализированные магазины предлагают широкий ассортимент устройств для воспламенения топливно-воздушной смеси в тепловых двигателях.
Предназначение свечей зажигания
Система зажигания в бензиновых двигателях является одной из самых важных в автомобильном устройстве, поскольку ее неисправность приводит к блокировке возможности движения. Она способна генерировать искровое зажигание в камере сгорания и является ответственной за обработку тока низкого напряжения. При выборе свечей зажигания уделяется внимание физическим параметрам изделий, форме камере сгорания, степени охлаждения, марке топлива и возможностям самой системы зажигания.
Свечи зажигания играют огромную роль в формировании максимальных показателей мощности двигателя, сохраняя при этом расход топлива и уменьшая вредные выбросы. Они представляют собой устойчивые к перепадам температур изолирующие керамические втулки с 2-4 электродами. Многие производители используют новейшие технологии с применением драгметаллов для продления срока службы свечей и гарантии их наибольшей производительности.
Производство свечей и их разновидности
Среди самых известных изготовителей свечей зажигания можно выделить такие компании как Bosch, NGK, Champion, Denso. Сначала в свободной продаже появились экземпляры с биметаллическим центральным электродом. Через некоторое время разработчики фирмы Champion представили рынку модели с боковым биметаллическим электродом, расширив термопластичность единицы. В 80-х годах появились устройства с центральным электродом из тончайшей платиновой проволоки, которые превзошли по всем показателям биметаллические аналоги. В гоночной и спортивной технике зачастую применяют свечи с серебряными электродами, но последней новинкой стала продукция компании NGK с электродами из сплава иридия.
В большинстве своем свечи зажигания рассчитаны на срок службы, не превышающий 30 тысяч километров. Работая внутри цилиндра, они выдерживают нагрузку в 100 бар давления, 40 тысяч вольт напряжения и 10 тысяч градусов плюсовой температуры. На сегодняшний день рынок автозапчастей предлагает свечи следующих видов:
- стандартные конструкции;
- изделия с повышенной прочностью (многоэлектродные, иттриевые, с платиновым или иридиевым наконечником).
Классические экземпляры с двумя электродами имеют относительно невысокую стоимость и стандартный срок службы. Свечи с платиновыми наконечниками широко используют при усиленной эксплуатации автомобиля, поскольку служат они в два раза дольше, хорошо устойчивы к жаре и эрозии, обладают пониженным напряжением и меньше подвержены износу. Иридиевые электроды считаются венцом творения в инженерии, так как за счет своего уменьшенного диаметра (0,6 мм) позволяют значительно снижать уровень напряжения, обеспечивая мгновенное воспламенение и безопасную работу системы. Их коническая форма способствует уменьшению расхода топлива и обеспечивает устойчивость к высоким температурным режимам. Свечи с иридиевыми наконечниками медленнее износятся и практически не подвергаются эрозии.
Параметры выбора свечей зажигания
Задаваясь целью купить свечи для своей машины, рекомендуется руководствоваться принципом следующего содержания: «Лучшими в эксплуатации свечами зажигания считаются единицы, соответствующие изначально установленному оборудованию». К старой подержанной машине не стоит подыскивать устройство с дорогим платиновым наконечником, если ее технические требования вполне сможет удовлетворить традиционный никелевый электрод диаметром 2,5 мм. При выборе свечей можно учитывать следующие показатели:
- изоляционные свойства образца;
- надежность его работы при высоких температурах;
- материал изготовления электродов;
- диаметр резьбы и резьбовой части штекера;
- величину искрового промежутка;
- количество боковых электродов;
- теплопроводность изолятора и электродов;
- тепловой диапазон;
- сопротивляемость коррозии в камере сгорания;
- рабочий ресурс изделия.
Современные материалы при изготовлении свечей разнообразны: никель, медь, платина, иридий, серебро, золото. Свечи имеют определенный диаметр, длину резьбы и тип головки цилиндра. От их соответствующего подбора будет зависеть успешная работа поршневых двигателей. Модели с двумя, тремя и четырьмя электродами призваны стабилизировать работу двигателя при низких оборотах. Калильное число, указывающее величину давления в цилиндре, непременно должно совпадать с типом двигателя, куда будут устанавливаться свечи.
Новым словом техники считаются свечи без наличия боковых электродов, но имеющие дополнительные наконечники на изоляторе. Они функционируют по принципу формирования переменной искры и образования нескольких разрядов. Медные электроды характеризуются хорошей теплопроводностью и обладают высокой коррозийной стойкостью.
Золотые наконечники обеспечивают дополнительные возможности для работы двигателя, облегчая старт и сокращая загрязняющие отложения. Серебряные аналоги удовлетворяют самым критичным требованиям, выдерживая максимальное давление, снижая шанс осечки и выдавая пиковую выходную мощность.
Электроды из платины продлевают сроки службы свечей зажигания и повышают их производительность. Наконечники из иридия имеют высочайшую прочность, обеспечивают улучшенную приемистость и подают неизменно стабильную искру.
Какие же свечи зажигания лучше всего? Однозначного ответа на этот вопрос не найти, потому что их выбор будет напрямую зависеть от типа автомобиля, которому они предназначаются. Старым двигателям вполне подойдут единицы из стандартных наборов, а новым машинам могут потребоваться свечи с двумя и более заземляющими электродами из редких металлов. Главное, следить за их исправностью и безупречной работой двигателя, чтобы можно было обеспечить безопасное перемещение всем участникам дорожного движения.
golifehack.ru
Назначение и устройство свечей зажигания
Устройство свечи зажигания
Корпус свечи ввинчивается в головку цилиндров. Высокопрочная техническая керамика служит материалом изолятора. Внутри керамической части свечи закреплены контактный стержень и центральный электрод. Между ними может быть расположен резистор, который подавляет радиопомехи. К корпусу приварен боковой электрод.
Из-за особенностей конструкций центрального электрода и конструктивных особенностей изолятора свечей, делятся они на холодные и горячие.
Горячие свечи зажигания имеют большую поверхность изолятора, которая выдается в камеру, и «доступна» для обогрева горящими газами, а зону перехода от изолятора к оболочке — маленькую.
Холодные имеют большую зону для отвода тепла, и их рабочие поверхности нагреваются меньше. Калильным числом свечи характеризуется способность накапливать тепло.
Чтобы правильно подобрать свечу, нужно использовать таблицу взаимозаменяемости или фирменный каталог, потому что каждая фирма – изготовитель применяет свою систему кодировки.
Чтобы двигатель работал, необходимо, чтобы воспламенялась смесь в цилиндрах. Воспламенение происходит от искры, возникающей между электродами свечи.
Если зазор между электродами 0,6 – 0,8 мм, и при нормальном составе смеси искра появляется, когда разность потенциалов между электродами около 10 киловольт.
Искра пробивает между электродами, смесь в небольшом количестве нагревается до температуры воспламенения, и вспыхивает остальная смесь. Дальше пламя распространяется по всей камере сгорания.
Если зазор между электродами меньше, то искра появляется при меньшем напряжении. Это не лучший вариант. Снижается мощность и увеличивается расход топлива. Если же зазор между электродами свечи больше нормы, то искра, наоборот, появляется при высоком напряжении. Это приводит к перебоям в работе двигателя, к проблеме при запуске, особенно, в сырую погоду.
Не только свеча влияет на работу двигателя, но и сам двигатель может испортить свечу. Свечу может загубить слишком богатая, или слишком бедная смесь, неисправности в катушках зажигания, или в проводах.
Свечи снабжают платиновыми вставками на электродах для усиления работы. Платина устойчивее к коррозии, чем хромо-никелевые сплавы.
Свечи могут быть с тремя, или с четырьмя боковыми электродами. Часто думают, что четыре электрода улучшают воспламеняемость смеси, но оказывается, совсем наоборот. Поджигаемость и эффективность сгорания ухудшаются, но увеличивается срок службы свечи. В свече с четырьмя боковыми электродами искра появляется между центральным и ближайшим боковым электродом. Когда этот боковой электрод изнашивается, в дело вступает следующий ближайший. Так, боковые электроды и работают по очереди, увеличивая срок службы свечи.
Сгорание смеси свечей с несколькими электродами ухудшается, потому что доступ к искре затруднен. И тем более чем больше электродов в свече, тем интенсивнее отводится тепло от свечи. На таких свечах больше образовывается нагара. По внешнему виду свечи можно поставить диагноз топливной системе.
Если отложения на свече коричневого цвета, значит, двигатель работает нормально. Также это указывает на правильно настроенные карбюратор/инжектор и зажигание.
Нагар бархатистого черного цвета говорит о слишком обогащенной смеси, слишком частом запуске без работы под нагрузкой, или о позднем зажигании. После регулировки зажигания и питания такой нагар самостоятельно исчезает. Чтобы быстро выжечь нагар, осуществляют поездку на высоких оборотах. Но если причина образования отложений не выяснена, это делать бесполезно.
Нагар черный маслянистый, который похож на деготь, говорит о холодной свече. Это может быть, если свеча не подходит двигателю, если компрессия почти отсутствует, если искра на свече появляется нерегулярно, если в камеру сгорания попадает лишнее масло или засорилось вентиляционное отверстие картера. В этом случае цилиндр не выдает нужной мощности, в цилиндре изнашивается зеркало, двигатель троит.
Свечи светлого цвета с оплавленными электродами говорят о бедной смеси, образовании отложений в цилиндре, и о раннем зажигании.
Отложения красно – коричневого, желтого или белого цвета на работу свечи не влияют, но могут создавать перебои при работе на высоких оборотах. Такие отложения также скапливаются на днищах поршней и на клапанах. Отложения такого вида ухудшают тепло-отвод, а отложения на тарелке и стержне клапана ухудшают наполнение цилиндров. Проблема в таком нагаре заключается в том, что он не выжигается, а удаляется только механически.
Детонация.
К детонации ведут низкое октановое число бензина, или слишком раннее зажигание. Все это вызывает сильнейший удар в камере сгорания, что приводит к повреждению различных деталей, в том числе, и свечи. Результатом длительной детонации является облом бокового электрода свечи. А самое неприятное, что может случиться — это повреждение поршневой группы.
В результате теплового удара образуются трещины и откол изолятора. Причины теплового удара — это низкосортное топливо и слишком раннее зажигание. К тепловому удару и излому приводит быстрое увеличение температуры изолятора при высоких оборотах.
Если при установке свечи недостаточно её затянуть, возникнет плохой контакт между резьбой в двигателе и свечой. Это приводит к плохой теплоотдаче, в результате чего возникает перегрев свечи и выгорание электродов. Но не следует стараться затянуть свечу изо всех сил. Если сорвете резьбу, столкнетесь с огромными проблемами. После закручивания свечи рукой, свечу с плоским уплотнением дотягивают на 90 градусов, а с коническим — на 15 градусов.
Свечи зажигания, особенно в российских условиях, являются расходным материалом. Если необходимо поменять свечи, то обязательно меняйте их, не откладывайте на потом. Это не так дорого, зато сохраните свои нервы и сократите износ вашего автомобиля.
portalvaz.ru
Свеча зажигания. » Motorhelp.ru диагностика и ремонт инжекторных двигателей
Свеча зажигания играет важнейшую роль в бензиновом двигателе - она отвечает за воспламенение топливно-воздушной смеси. Качество этого воспламенения влияет на многие факторы и в том числе на рабочие характеристики двигателя и вредные выбросы в окружающую среду. Очень важное значение имеют такие показатели как пуск, плавность хода, мощность, эффективность сгорания топливной смеси, которые непосредственно зависят от свечей зажигания. Свеча зажигания должна надежно выполнять свою функцию в любое время года и при любом режиме работы двигателя. И это притом, что свеча подвергается чрезвычайно высокой нагрузке в камере сгорания. Если представить, что одна свеча зажигания должна воспламенять смесь от 400 до 4000 раз в минуту, притом что максимальная температура в камере сгорания кратковременно может достигать отметки в 2500 °C, а давление до 120 бар, то становится ясно, насколько важна и сложна правильная работа свечи.Немного истории. Впервые патент на свечу зажигания был получен фирмой Bosch в 1902 году.
Подробнее о работе бензинового двигателя, в которой рассмотрено функциональное назначение свечи зажигания, можно ознакомиться в разделе теория. Здесь же коснемся вопросов конструкции и требований, которые предъявляются свече зажигания для надежного воспламенения смеси.
Конструкция свечи зажигания1. Контактный терминал обычно выполнен в виде SAE – соединения или в виде резьбы 4 мм. К нему подключается провод высокого напряжения или индивидуальная катушка зажигания. Через это соединение передается высокое напряжение на искрообразующую часть свечи. 2. Керамический изолятор прежде всего служит для изоляции от пробоя высокого напряжения на массу двигателя. Также он отводит тепло, выделяющееся при сгорании, от электродов на головку блока цилиндров. 3. Барьеры утечки тока. На внешней стороне изолятора имеются волнообразные канавки, которые препятствуют утечке высокого напряжения на массу двигателя. Они удлиняют возможный путь утечки тока по поверхности изолятора и таким образом повышают общее электрическое сопротивление, что обеспечивает прохождение тока по пути наименьшего сопротивления – через центральный электрод.4. Металлический корпус свечи зажигания играет важную роль в отведении тепла от свечи зажигания, через него тепло передается от изолятора в головку блока цилиндров. 5. Центральный электрод стандартной свечи зажигания в основном состоит из сплава никеля. Обычно сердечник этого электрода изготавливают из меди, что значительно улучшает теплоотводящие свойства свечи зажигания. 6. Резистор. Для обеспечения электромагнитной совместимости и исправной работы бортовой электроники, в свечу зажигания в качестве помехоподавляющего резистора помещается стекломасса. 7. Боковой электрод стандартной свечи зажигания изготовлен из сплава никеля.8. Прокладка. Металлическое уплотнительное кольцо предотвращает утечку газов через свечу под воздействием высокого давления при воспламенении смеси в двигателе. Другая важная функция прокладки состоит в том, чтобы обеспечить хороший отвод тепла к головке блока цилиндров.9. Внутренние уплотнения создают герметичное соединение между изолятором и металлическим корпусом. Между двумя уплотнительными кольцами из металла помещается специальный порошок, в основе которого лежит тальк. В процессе изготовления свечи, порошок плотно сжимается и заполняет мельчайшие полости. Таким образом создается оптимальная герметизация.
Оптимальное температурное окно.Для лучшего функционирования температура свечи зажигания должна поддерживаться в определенном температурном диапазоне. Нижняя граница этого окна имеет значение около 450 °C. Это минимальная температура, начиная с которой, скапливающиеся на внутренней части изолятора проводящие углеродистые отложения начинают выгорать. Углеродистые отложения – это побочный продукт процесса сгорания. Если рабочая температура свечи зажигания долгое время сохраняется ниже 450 °C, то возможно отложение электропроводящего нагара, вследствие чего нарушается нормальное искрообразование. При температуре свечи зажигания выше 800 °C электроды настолько сильно нагреваются, что могут стать причиной калильного зажигания до момента образования искры. Такое неконтролируемое воспламенение может привести к серьезной поломке двигателя.
Значение калильного числа.Тепловыделение сильно варьируется у разных двигателей. Например, спортивный двигатель с турбонаддувом выделяет значительно больше тепла, чем обычный атмосферный двигатель. Поэтому для каждого двигателя подбирается такая свеча зажигания, которая обеспечит отвод точно определенного количества тепла в головку блока цилиндров для выдерживания оптимальных температурных условий. Информацию о температурных свойствах свечи зажигания дает так называемое калильное число. У разных производителей калильное число по-разному обозначается в маркировке. Например для свечей NGK действует правило: чем выше калильное число, тем свеча холоднее, то есть может нести большую температурную нагрузку. (5 – горячая свеча, 9 – холодная).
Теплоотвод и тепловой поток.Подавляющее количество тепловой энергии отводится от центрального электрода через резьбу и уплотнительное кольцо на головке блока цилиндров. Небольшое количество тепла отводится также через внешнюю часть изолятора и по центральному электроду. Изолятор поглощает тепло в камере сгорания и отводит его внутрь свечи зажигания. В местах соприкосновения изолятора и металлического корпуса происходит дальнейший отвод тепла в головку блока цилиндров. Поэтому, увеличивая или уменьшая площадь соприкосновения изолятора и металлического корпуса можно менять количество отводимого тепла и соответственно будет меняться температурная характеристика и калильное число свечи зажигания.
Износ.Каждая искра выжигает микроскопическое количество металла с электродов свечи. Со временем, вследствие этой эрозии искровой зазор увеличивается, электроды меняют форму и пробивное напряжение повышается, что приводит к перегрузке всей системы зажигания. Сильно изношенные свечи приводят к пропускам зажигания, повышенному выбросу вредных веществ в атмосферу и увеличенному расходу топлива. Производители автомобилей устанавливают для свечей зажигания интервалы замены в диапазоне от 20.000 км (для простых одноэлектродных) до 120.000 км ( для свечей с электродами из благородных металлов таких как платина и иридий).
Установка.Для правильного монтажа свечи зажигания требуется динамометрический ключ, поскольку вручную оценить момент затяжки достаточно сложно даже для специалиста. Большинство поломок свечей зажигания происходит из-за неправильного момента затяжки. Если он будет слишком низким, то возникнут потери компрессии и перегрев свечи. Если же наоборот крутящий момент будет слишком большим, то свеча может деформироваться и сломаться. Применяемый момент затяжки зависит от диаметра резьбы свечи зажигания, материала головки блока цилиндров и от типа уплотняющей поверхности ( с уплотнительным кольцом или конусом).Таблица моментов затяжки свечей зажигания.
Статья написана по материалам фирмы NGK.Скачать каталог свечей NGK можно по ссылке.скачать dle 10.6фильмы бесплатно
Метки к статье: Свечи зажигания
www.motorhelp.ru
«Назначение и устройство свечей зажигания»
Тема урока: «Назначение и устройство свечей зажигания» Цели урока: Образовательная. Научиться: 1) Определять причину неисправностей приборов свечей зажигания и способы их устранения. 2) Проводить их плановое техническое обслуживание. Развивающая. Формирование умений различать типы свечей зажигания
Воспитательная. Воспитание заинтересованности в определении причин неисправностей свечей зажигания, продления срока службы приборов этой системы, бережного отношения к технике и любви к своей профессии.
Тип урока – комбинированный
Ход урока I. Организационная часть (5 мин.)
Проверка наличия учащихся.
Проверка наличия спецодежды.
Проверка наличия тетрадей и чертёжных принадлежностей.
II. Вводный инструктаж и тренировочные упражнения (60 мин.)1. Опрос учащихся по пройденной теме: «Устройство и работа центробежного и вакуумного регуляторов, октанкоректора» 2. Изложение нового материала: «Назначение и устройство свечей зажигания»
Свеча зажигания – это устройство, предназначенное для воспламенения топливно-воздушной смеси с разных типах двигателей. В бензиновых двигателях используют искровые свечи. Задачей свечи зажигания является подача высокого напряжения к камере сгорания и воспламенения воздушно-топливной смеси. Качественные свечи зажигания должны надежно работать при высоких напряжениях, иметь хорошие изоляционные свойства, иметь большую сопротивляемость химическим воздействиям и агрессивным отложениям в камере сгорания, а так же изолятор и электроды должны обладать хорошей теплопроводностью. Важный параметр в свечи зажигания – капильное число. Это число показывает, при каком давлении в цилиндре двигателя возникает капильное зажигание – воспламенение смеси от контакта с нагретыми участками свечи. Для каждого двигателя существует своё рекомендованное число.
Строение свечи зажигания можно посмотреть на приведенной ниже картинке
1. Контактный стержень – необходим для подключения свечи к проводам системы зажигания. Чаще всего имеет строение защелкивающегося контакта, который одевается на вывод свечи. В других типах конструкции может крепится к свече гайкой.
2. Изолятор – обычно изготавливается из алюминиево-оксидной керамики. Выдерживает температуру до 1 000 С и напряжение до 60 000 В.
3. Уплотнение – служит для предотвращения проникновения горячих газов из камеры сгорания.
4. Резистор - представляет собой токопроводящую стекломассу, которой заливается промежуток между электродом и стержнем.
5. Уплотнительная шайба – для более плотного и герметичного соединения.
6. Резьба. 7. Центральный электрод - соединяется с контактным стержнем через резистор. Изготавливают из железо-никелевых сплавов с добавлением меди.
8. Корпус – служит для заворачивания свечи и удерживания её в резьбе головки блока цилиндров.
9. Боковой электрод – изготавливается из никелевого сплава. Приваривается контактной сваркой к корпусу.
Ресурс современной свечи зажигания - от 30 000км и более, вплоть до 60 000км. Но надо помнить, что существуют факторы, влияющие на долговечность свечей зажигания – это конечно же качество бензина, качество заливаемого масла, манера езды владельца. И очень важно приобретать свечи зажигания проверенных брендов, так как дешевые свечи долго не прослужат, а так же могут навредить вашему двигателю.
Основными элементами свечи зажигания являются керамический изолятор, металлический корпус, контактный стержень и электроды. Подробнее про назначение и устройство свечей зажигания можно узнать из этой статьи.
Устройство свечи зажигания
Корпус свечи ввинчивается в головку цилиндров. Высокопрочная техническая керамика служит материалом изолятора. Внутри керамической части свечи закреплены контактный стержень и центральный электрод. Между ними может быть расположен резистор, который подавляет радиопомехи. К корпусу приварен боковой электрод.
Из-за особенностей конструкций центрального электрода и конструктивных особенностей изолятора свечей, делятся они на холодные и горячие.
Горячие свечи зажигания имеют большую поверхность изолятора, которая выдается в камеру, и «доступна» для обогрева горящими газами, а зону перехода от изолятора к оболочке - маленькую.
Холодные имеют большую зону для отвода тепла, и их рабочие поверхности нагреваются меньше. Калильным числом свечи характеризуется способность накапливать тепло.
Чтобы правильно подобрать свечу, нужно использовать таблицу взаимозаменяемости или фирменный каталог, потому что каждая фирма – изготовитель применяет свою систему кодировки.
Чтобы двигатель работал, необходимо, чтобы воспламенялась смесь в цилиндрах. Воспламенение происходит от искры, возникающей между электродами свечи.
Активизировать мышление учащихся.
Объяснение и показ трудовых приёмов и способов выполнения учебно-производственных работ, организации рабочих мест.
Тренировочные упражнения.
Объяснение характера и назначения предстоящей на уроке работы, порядка выполнения самостоятельной работы учащихся.
Разбор чертежей, схем, технических требований, демонстрация образцов (эталонов) предстоящих учебно-производственных работ.
Ознакомление учащихся с материалами, инструментами, приборами, приспособлениями и другими средствами выполнения работ, которые будут применяться на уроке.
Объяснение и показ наиболее рациональных приёмов, способов и последовательности выполнения заданий, а также способов контроля качества работы.
Рассмотрение типичных ошибок, способов их предупреждения и устранения.
Объяснение и показ способов рациональной организации рабочих мест при выполнении заданий.
Рассмотрение правил безопасности труда учащихся.
Закрепление и проверка усвоения учащимися материала вводного инструктажа, дополнительные повторные пояснения и показ приёмов и способов работы:
- каким должен быть зазор между электродами свечей батарейной системы зажигания, контактно-транзисторной, электронной?
- как определить неработающую свечу на двигателе?
Выдача заданий и распределение учащихся по рабочим местам.
ІІІ. Самостоятельная работа и текущее инструктирование (190 мин.)
Проверка (замена) свечей зажигания При снятии свечей будьте осторожны - если двигатель горячий, можно получить ожоги. Не тяните за провод. Прилагайте усилие к наконечнику. Зазор регулируйте только подгибанием бокового электрода. Во избежание повреждения резьбы в головке блока при установке свечей заверните их сначала от руки, затем дотяните штатным свечным ключом. Не затягивайте свечи слишком сильно. Зазор между электродами свечей для контактной системы зажигания должен быть 0, 5-0,6 мм, для бесконтактной - 0,7-0,8 мм.
ПОРЯДОК ВЫПОЛНЕНИЯ1.Откройте капот. Снимите со свечи наконечник.
2.Очистите от грязи пространство вокруг свечи 3.Ослабьте затяжку и выверните ее. свечи... 4. Очистите электроды
5. Проверьте зазор между электродами шкуркой щупом.
6. Если зазор отличается от рекомендованного, отрегулируйте его, подгибая боковой электрод.
IV. Заключительный инструктаж (15 мин.).
Проверить работы учащихся.
Отметить лучшие работы.
Указать на типичные ошибки, выяснить причину их возникновения.
Выставить оценки.
Подвести итог занятия. Задать домашнее задание
kopilkaurokov.ru