Контактно – транзисторная система зажигания. Система зажигания транзисторная
Контактно-транзисторная система зажигания
Явилась переходным этапом от контактной к бесконтактным электронным системам.
В ней устраняется недостаток контактной системы - подгорание и износ контактов прерывателя, коммутирующих цепь с индуктивностью и значительной силой тока.
В контактно-транзисторной системе первичную цепь обмотки возбуждения коммутирует транзистор, управляемый контактами прерывателя.
С применением контактно-транзисторной системы на автомобиле появился новый блок - электронный коммутатор, объединяющий в себе силовой коммутирующий транзистор и элементы схемы его управления и защиты.
На рис. 4 представлена схема контактно-транзисторного зажигания с коммутатором ТК102, которая обеспечивает зажигание восьмицилиндровых двигателей автомобилей ЗИЛ и ГАЗ.
При замыкании контактов прерывателя через них начинает протекать базовый ток транзистора VT, который открывается и включает первичную цепь обмотки возбуждения в питающую сеть. При размыкании контактов прерывателя транзисторVTзакрывается, ток в первичной цепи резко прерывается и на свечах появляется всплеск высокого напряжения, как это и было в контактной системе.
Характеристики контактно-транзисторной системы аналогичны контактной, за исключением того, что снижения вторичного напряжения на низких частотах вращения кулачка не происходит.
Импульсный трансформатор Тв схеме ускоряет запирание транзистора, цепьVD1,VD2защищает транзистор от перенапряжений, а конденсаторС2- от случайных импульсов напряжения по цепи питания.
Конденсатор С1способствует уменьшению коммутационных потерь в транзисторе. Добавочный резистор 4 закорачивается при пуске.
Срок службы контактов прерывателя в контактно-транзисторной системе больше, чем в контактной, так как базовый ток, коммутируемый ими, невелик. Однако механический износ механизма прерывателя и влияние вибраций на работу контактов в этой системе не устранены.
В настоящее время выпускаются различные электронные блоки, улучшающие работу контактной системы зажигания и фактически превращающие ее в контактно-транзисторную (ТАНДЕМ-2, БУЗ-06, ОКТАН‑1, ЭРУОЗ и др.).
Контрольные вопросы
Чем приводится в движение кулачек прерывателя и какова его роль в работе системы зажигания?
Зачем в первичную цепь катушки зажигания включают добавочный резистор?
Через какой механизм высокое напряжение подается к свечам зажигания?
Что представляет собой катушка зажигания, из чего она состоит и как работает?
Как изменяется вторичное напряжение катушки зажигания в зависимости от частоты вращения двигателя и почему?
Чем отличается контактно-транзисторная система зажигания от контактной, как она работает и в чем ее преимущество?
10. Электронные системы зажигания
В электронных системах зажигания контактный прерыватель заменен бесконтактными датчиками. В качестве датчиков используются оптоэлектронные датчики, датчики Виганда, но наиболее часто - магнитоэлектрические датчики (МЭД) и датчики Холла (ДХ).
МЭД бывают генераторного и коммутаторного типов. В генераторном датчике вращается постоянный магнит, помещенный внутрь клювообразного магнитопровода. При этом в катушке, надетой на свой клювообразный магнитопровод, наводится ЭДС. В МЭД коммутаторного типа вращается зубчатый ротор из магнитомягкого материала, а магнит неподвижен. ЭДС в катушке наводится за счет изменения величины ее магнитного потока при совпадении и расхождении выступов статора и ротора. Недостатком МЭД является зависимость выходного сигнала от частоты вращения, а также значительная индуктивность катушки, вызывающая запаздывание в прохождении сигнала.
От этих недостатков избавлен датчик Холла Особенность его состоит в том, что ЭДС, снимаемая с двух граней его чувствительного элемента, пропорциональна произведению силы тока, подводимого к двум другим граням, на индукцию магнитного поля, пронизывающего датчик. В реальных системах магнитное поле создается неподвижным магнитом, который отделен от датчика магнитомягким экраном с прорезями.
Если между магнитом и чувствительным элементом попадает стальной выступ, магнитный поток им шунтируется и на датчик не попадает, ЭДС на выходе чувствительного элемента отсутствует. Прорезь беспрепятственно пропускает магнитный поток, и на выходе элемента появляется ЭДС.
Наиболее простой в схемном и функциональном исполнении является бесконтактная система зажигания с нерегулируемым временем накопления энергии.
Бесконтактные системы зажигания с нерегулируемым временем накопления энергии.
Такая система зажигания принципиально отличается от контактно-транзисторной только тем, что в ней контактный прерыватель заменен бесконтактным датчиком.
На рис. 1 приведена схема системы с коммутатором 13.3734-01 автомобилей «Волга».
Сигнал с обмотки Lмагнитоэлектрического датчика через диодVD2, пропускающий только положительную полуволну напряжения, и резисторыR2,R3поступает на базу транзистораVT1. Транзистор открывается, шунтирует переход база-эмиттер транзистораVT2, который закрывается. Закрывается и транзисторVT3, ток в первичной обмотке катушки зажигания прерывается и на выходе вторичной обмотки возникает высокое напряжение. В отрицательную полуволну напряжения транзисторVT1закрыт, открытыVT2иVT3, и ток начинает протекать через первичную обмотку катушки зажигания. Очевидно, что число пар полюсов датчика должно соответствовать числу цилиндров двигателя.
Цепь R3-C1осуществляет фазосдвигающие функции, компенсирующие фазовое запаздывание протекания тока в базе транзистораVT1из-за значительной индуктивности обмотки датчикаL, что снижает погрешность момента искрообразования.
Стабилитрон VD3и резисторR4защищают схему коммутатора от повышенного напряжения в аварийных режимах, так как, если напряжение в бортовой цепи превышает 18В, цепочка начинает пропускать ток, транзисторVT1открывается и закрывается выходной транзисторVT3. В цепях защиты от опасных импульсов напряжения служат конденсаторыСЗ,С4,С5,С6; диодVD4защищает схему от изменений полярности бортовой сети.
Бесконтактная система зажигания с регулированием времени накопления энергии.
Регулируя время накопления энергии, т.е. время, когда первичная цепь катушки зажигания подключена к сети питания, можно сделать ток разрыва этой цепи независимым или мало зависимым от частоты вращения коленчатого вала двигателя, а значит, и избавиться от недостатка контактной системы зажигания - снижения вторичного напряжения с ростом частоты вращения. Принцип такого регулирования состоит в том, чтобы с ростом частоты вращения увеличить относительное время включения катушки зажигания в сеть так, чтобы абсолютное время включения осталось неизменным. На рис. 2 представлена система зажигания автомобиля ВАЗ-2108 с электронным коммутатором 36.3734-20 и датчиком Холла.
В коммутаторе применена микросхема L497B. Стабилизация вторичного напряжения достигается в схеме двумя путями: регулированием времени нахождения транзистора VT1в открытом состоянии (т.е. времени включения первичной цепи катушки зажигания в сеть) или ограничением силы тока в первичной цепи значением около 8 А. Последнее, кроме того, предотвращает перегрев катушки.
Схема работает следующим образом. С датчика Холла на вход коммутатора приходит сигнал прямоугольной формы, который приблизительно на 3В меньше напряжения питания, с длительностью, соответствующей прохождению выступов экрана мимо чувствительного элемента датчика. Нижний уровень сигнала 0,4 В соответствует прохождению прорези.
В момент перехода от высокого уровня к низкому, происходит искрообразование. В микросхеме коммутатора сигнал в блоке формирования периода накопления энергии сначала инвертируется, затем интегрируется.
На выходе интегратора образуется пикообразное напряжение, которое тем больше, чем меньше частота вращения двигателя. Это напряжение поступает на вход коммутатора, на другой вход которого подано опорное напряжение.
Компаратор преобразует напряжение во время. Сигнал на входе компаратора имеет место тогда, когда значение пилообразного напряжения достигает опорного и превышает его.
При большой частоте вращения пилообразное напряжение мало, соответственно и мала длительность сигнала на выходе компаратора. С исчезновением выходного сигнала компаратора через схему управления открывается транзистор VT1 и первичная цепь зажигания включается в сеть. Следовательно, время накопления энергии в катушке соответствует времени отсутствия сигнала на выходе компаратора. Уменьшение длительности сигнала компаратора позволяет увеличить относительную величину времени накопления энергии и тем самым стабилизировать ее абсолютное значение.
Блок ограничения силы выходного тока срабатывает по сигналу, снимаемому с резисторов, включенных последовательно в первичную цепь зажигания. Если этот сигнал достигает уровня, соответствующего силе тока 8 А, блок переводит выходной транзистор в активное состояние с фиксированием этого значения тока. Блок безыскровой отсечки отключает катушку зажигания в случае, если включено электропитание, но вал двигателя неподвижен. При остановленном после вращения двигателе отключение происходит сразу, в противном случае - через 2-5 с.
Схема насыщена элементами защиты от всплесков напряжения и включения обратной полярности питания. Регулировка угла опережения зажигания осуществляется традиционными способами, т.е. центробежным и вакуумным регуляторами.
Микросхема L497B применяется в двухканальном коммутаторе 64.3734-20 для систем с низковольтным распределителем энергии. В коммутаторе 6420.3734 применен выходной транзистор BY 931 ZPF1 с внутренней защитой от перенапряжения, что в значительной мере повышает надежность работы коммутатора.
Контрольные вопросы
Какими устройствами в электронных системах зажигания заменен прерыватель контактной системы?
Как работает бесконтактная система зажигания с нерегулируемым временем накопления энергии и в чем ее недостаток?
В чем преимущество бесконтактной система зажигания с регулированием времени накопления энергии и как работает ее электронная схема?
studfiles.net
Контактно – транзисторная система зажигания
Контактно – транзисторная система зажигания
В описанной выше системе контактного батарейного зажигания с ростом частоты вращения коленчатого вала двигателя снижается напряжение во вторичной цепи, вызываемое сокращением времени замкнутого состояния контактов прерывателя, вследствие чего уменьшается магнитный поток в катушке зажигания. Этого можно избежать увеличив силу тока в первичной цепи, но такое увеличение вызывает после 10 000 – 15000 километров пробега подгорание контактов прерывателя, наблюдается ненадежное воспламенение смеси в современных высокооборотных многоцилиндровых двигателях.
Поэтому на последних моделях грузовых автомобилей применяют более сложную систему зажигания с применением транзисторов, которая имеет ряд преимуществ перед системой контактного батарейного зажигания. Транзисторная система зажигания обеспечивает надежную и экономичную работу высокооборотных, многоцилиндровых двигателей с повышенной степенью сжатия.
Помимо деталей и приборов, входящих в обычную систему батарейного зажигания, контактно – транзисторная система имеет транзисторный коммутатор1 и блок добавочных сопротивлений. Механический прерыватель управляет работой транзистора, подавая на него управляющий ток. Прерыватель контактно – транзисторной системы размыкает не первичную цепь системы зажигания, а цепь сравнительно слабого тока 0,75А управления германиевым транзистором, являющимся основной частью транзисторного коммутатора. В свою очередь транзистор прерывает более сильный ток первичной обмотки 2 катушки зажигания. Сила тока базы транзистора незначительна, при разрыве контактов износа от электрической искры практически не происходит, на срок службы контактов влияет только механический износ и поскольку контакты прерывателя разгружены от первичного тока, срок их службы увеличивается до 100 тыс. километров пробега и более.
Прерыватель – распределитель I контактно-транзисторной системы устроен так же, как прерыватель – распределитель обычной системы зажигания, но не имеет конденсатора. Катушка зажигания контактно – транзисторной системы отличается меньшим, чем у обычных катушек, сопротивлением первичной обмотки, благодаря чему максимальный ток первичной цепи достигает 8А, тогда как в обычной катушке он не превышает 4А. Кроме того, с целью исключения перегрузки транзистора высоким напряжением вторичная обмотка катушки не соединена с первичной.
Ток, поступающий на первичную обмотку через транзистор повышает напряжение во вторичной цепи примерно на четверть. Это позволяет увеличить зазор между электродами свечи зажигания до 1, 2 мм и тем самым увеличить длину искры и добиться полного сгорания рабочей смеси в цилиндрах двигателя при любой частоте вращения коленчатого вала. При этом облегчается пуск двигателя и увеличивается его экономичность.
Транзисторный коммутатор смонтирован в оребренном корпусе из оцинкованного сплава. В корпусе находятся транзистор и импульсный трансформатор. Поделитесь на страничкеСледующая глава >
tech.wikireading.ru
Транзисторные системы зажигания. CAVR.ru
Рассказать в: К сожалению, автомобильным транзисторным системам зажигания [1, 2] сейчас стали уделять мало внимания, в том числе и в журнале . Высказывалось даже мнение о нецелесообразности конструирования транзисторных систем зажигания в любительских усло-виях [3]. Объясняется это, видимо, тем, что у применяемых в них мощных транзисторов КТ805А, КТ808А недостаточное допускаемое напряжение на коллекторе [4]. К тому же такие системы требуют использования специальных катушек зажигания с пониженными индуктивностью и активным сопротивлением первичной обмотки (Б 114, Б 116), что увеличивает потребляемую от бортовой сети автомобиля мощность до 60...100 Вт. Но сегодня в распоряжении радиолюбителей есть мощные транзисторы КТ812А, КТ812Б с импульсным коллекторным напряжением до 500 и даже 700 В, пригодные для простых и надежно работающих систем с использованием в них традиционных катушек зажигания Б 115 (Б7-А). Хорошие же частотные свойства современных транзисторов позволяют исключить из этих систем цепи положительной обратной связи, вводимые обычно для ускорения процессов переключения. Заметим, что транзисторные системы обладают очень важным достоинством - большой длительностью искрового разряда в свече (2,5... 3 мс). Разряд такой длительности обеспечивает надежное поджигание в цилиндрах обедненной рабочей смеси, уменьшает выброс токсичных выхлопных газов и облегчает запуск холодного двигателя, а также ослабляет зависимость мощности двигателя от угла опережения зажигания [41. Предлагаю для повторения радиолюбителями две транзисторные системы зажигания - контактную и бесконтактную, испытанные на автомобиле ГАЗ-2401. В обеих системах на малой частоте вращения коленчатого вала двигателя ток через первичную обмотку катушки зажигания Б115 в момент размыкания контактов прерывателя равен 5...5,3 А. При включении во вторичную обмотку (в качестве нагрузки) последовательно соединенных запальной свечи с зазором 3 мм и резистора ПЭ-15 сопротивлением 10 кОм длительность искры в воздухе (от начала емкостной до конца его индуктивной фазы [4]) равна 3 мс; при замыкании этого резистора длительность искрового разряда увеличивается до 3,5...3,7 мс. Таким образом, введение многоискрового зажигания становится совершенно излишним. В обеих системах воздействие центробежного и вакуумного регуляторов на опережение зажигания происходит так же, как в обычной классической. Удалось подавить и помехи радиоприему в автомобиле даже при работе от внутренней антенны. Схема контактной системы зажигания показана на рис. 1.


www.cavr.ru
Контактно транзисторная система зажигания | Автоэлектрик

Увеличивая силу тока в первичной цепи эту проблему можно было бы разрешить, но такая мера приводит к подгоранию контактов после пробега порядка 10-15 тысяч км. Это предопределило переход на контактно-транзисторную систему зажигания (КТСЗ), которая позволяет использовать более высокое напряжение во вторичной цепи, чем при обычной системе батарейного зажигания. Контактно-транзисторная система зажигания нашла применение, в частности, на автомобиле зил-130.
Схема контактно-транзисторной системы зажигания немногим отличается от применявшейся системы прежде. К деталям и приборам, входившим в систему батарейного зажигания, добавились транзисторный коммутатор и блок дополнительных сопротивлений. При запуске двигателя во время работы стартера один из резисторов замыкается накоротко, что приводит к возрастанию напряжения в момент пуска.
Устройство прерывателя-распределителя контактно-транзисторной системы такое же, как и в обычной контактной системе, но не содержит конденсатора. В КТСЗ контакты прерывателя находятся под нагрузкой только тока управления транзистором, но не полным током катушки зажигания, что почти не допускает подгорания и эрозии контактов. Следует лишь следить за из чистотой, поскольку загрязнённые контакты могут препятствовать свободному прохождению малых токов (0,3-0,8 А) управления транзистором.
Главное преимущество КТСЗ перед контактной системой — возможность установки катушки зажигания с большим коэффициентом трансформации. Это позволяет существенно увеличить напряжение вторичной цепи и довести зазор в свечах зажигания до 1 мм, что способствует лучшему воспламенению рабочей смеси в цилиндре. Контактно-транзисторная система зажигания стала переходной на пути от контактной к бесконтактной системе. Одним из её преимуществ является также возможность регулирования угла опережения зажигания прямо из салона движущегося автомобиля.
Контактно-транзисторная система зажигания:
- 1 — генератор;
- 2 — реле-регулятор;
- 3 — реле стартера;
- 4 — замок зажигания,
- 6 — добавочный резистор;
- 7 — транзисторный коммутатор;
- 9 — распределитель;
- 10 — прерыватель;
- 11 — аккумулятор;
www.elektrik-avto.ru
Контактно-транзисторная система зажигания | Устройство автомобиля
Что входит в устройство контактно-транзисторной системы зажигания?Контактно-транзисторная система зажигания (рис.93) состоит из аккумуляторной батареи 1 напряжением 1.2 В; зажима 2 стартера; включателя (замка) зажигания 3; добавочных резисторов 4, изготовленных из константа новой проволоки; транзисторного коммутатора ТК-102, включающего электролитический конденсатор 5; германиевого диода 8; транзистора 9; резисторов 6 и 10 сопротивлением 20 Ом, импульсного трансформатора с первичной 11 и вторичной 12 обмотками; стабилитрона 22; прерывателя с подвижным 14 и неподвижным 15 контактами и кулачковой муфтой 21; распределителя 16 с токоразносной пластиной 17; свечей зажигания 18; катушки зажигания 19 и помехоподавительного сопротивления 20.
Рис.93. Схема контактно-транзисторного зажигания.
Транзисторный коммутатор смонтирован в алюминиевом ребристом корпусе, установленном в кабине автомобиля, и имеет четыре зажима «Р», «К», «М» и один зажим без обозначения. Зажим «М» надежно соединен с массой многожильным проводом; зажим «К» – с зажимом катушки зажигания; зажим без обозначения – с соответствующим зажимом этой же катушки зажигания и зажим «Р» – с подвижным контактом прерывателя.
Как работает контактно-транзисторная система зажигания?
Контактно-транзисторная система зажигания работает так. При выключенном зажигании или разомкнутых контактах прерывателя транзистор закрыт. С включением зажигания и при замкнутых контактах 14 и 15 (рис.93) прерывателя образуется цепь тока управления транзистором: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – зажим без обозначения транзисторного коммутатора – вторичная 12 обмотка импульсного трансформатора – резистор 10 – эмиттер – база транзистора – зажим 13, к которому подключена первичная 11 обмотка импульсного трансформатора – подвижный 14 – неподвижный 15 контакты прерывателя – «масса» – «–» аккумуляторной батареи.
В результате прохождения тока управления через переход эмиттер – база транзистора сопротивление перехода эмиттер – коллектор снижается и транзистор открывается. Образуется такая цепь рабочего тока низкого напряжения: «+» батареи – зажим стартера 2 – включатель зажигания 3 – резисторы 4 – первичная обмотка катушки зажигания – эмиттер – база – коллектор – зажим «М» транзисторного коммутатора – «масса» – «–» батареи. Благодаря небольшому сопротивлению транзистора в первичной обмотке катушки зажигания создается сильное магнитное поле, что способствует получению более высокого (до 30 тыс. В) напряжения во вторичной обмотке. При вращении коленчатого вала грань кулачковой муфты 21 воздействует на рычаг подвижного контакта 14, прерывая цепь тока управления, и транзистор закрывается, что ведет к прерыванию цепи рабочего тока низкого напряжения. В это же время во вторичной обмотке 12 импульсного трансформатора индуктируется ЭДС взаимоиндукции, действие которой противоположно направлению рабочего тока низкого напряжения. В результате этого ускоряется закрывание транзистора. При резком прерывании тока в первичной обмотке катушки зажигания ее магнитные силовые линии, исчезая, пересекают витки вторичной обмотки и в них индуктируется ток высокого напряжения (до 30 тыс. В). Этот ток проходит по проводу напряжения через помехоподавительное сопротивление 20 на центральную клемму распределителя 16. Далее токоразносной пластиной 17 подводится к боковому электроду и по проводу на свечи зажигания 18 воспламеняет горючую смесь и по «массе» на корпус 19 катушки зажигания и во вторичную обмотку катушки зажигания. Следовательно, ток высокого напряжения не проходит через транзистор, что предотвращает его пробой и повышает надежность работы системы зажигания.
Одновременно в первичной обмотке катушки зажигания теми же магнитными силовыми линиями индуктируется ток самоиндукции напряжением до 100 В, который может повредить (пробить) транзистор. Поэтому параллельно первичной обмотке катушки зажигания последовательно включены диод 8 и стабилитрон 22, со встречным направлением прямых проводимостей. Диод 8 препятствует протеканию тока через стабилитрон, минуя первичную обмотку катушки зажигания. Стабилитрон пропускает ток самоиндукции, если напряжение его превышает 100 В. В результате общее напряжение в цепи первичной обмотки катушки зажигания снижается.
В момент размыкания контактов прерывателя в первичной обмотке 11 импульсного трансформатора также индуктируется ЭДС самоиндукции. Она заряжает конденсатор 7, который затем разряжается на резистор 6, а он преобразует электрическую энергию в тепловую.
Электролитический конденсатор 5 включен параллельно генератору и аккумуляторной батарее и защищает транзистор от импульсных перенапряжений, возникающих в цепи генератор – батарея в случае выключения батареи, обрыва одной из фаз обмотки статора генератора переменного тока, обрыва провода, соединяющего корпуса генератора и регулятора напряжения. В этом случае конденсатор 5 будет заряжаться, что снизит напряжение в цепи приборов, предотвращая пробой транзистора.
Какие условия следует соблюдать при эксплуатации контактно-транзисторной системы зажигания?
Во время эксплуатации контактно-транзисторной системы зажигания необходимо тщательно контролировать чистоту контактов прерывателя, так как попадание масла на них или их окисление могут вызвать нарушение работы всей системы. Соединять с «массой» только «–» аккумуляторной батареи. Не менять местами провода, подсоединенные к транзисторному коммутатору или к резисторам. Не замыкать накоротко резисторы. Следить и своевременно регулировать зазор между контактами прерывателя и электродами свечей зажигания. Сразу же после остановки двигателя выключить зажигание. Разбирать транзисторный коммутатор только в специальной мастерской.
***Проверьте свои знания и ответьте на контрольные вопросы по теме «Система электрического зажигания»
батарея, зажигание, зажим, катушка, контакт, напряжение, обмотка, ток, транзистор
Смотрите также:
avtomobil-1.ru
Принцип действия контактно-транзисторной системы зажигания
В состав контактно-транзисторной системы зажигания входят все элементы контактной системы зажигания (кроме конденсатора) и дополнительно транзисторный коммутатор, который представлен одним транзистором типа р-п-р, включенным последовательно в первичную цепь.
При включенном зажигании и замкнутых контактах прерывателя через последние на базу транзистора подается отрицательный потенциал, вследствие чего транзистор открывается и по первичной цепи проходит ток. Небольшой ток управления транзистором от эмиттера идет на базу, а затем через замкнутые контакты прерывателя - на массу и на массу аккумуляторной батареи.
Рис. 2. Схема контактно-транзисторной и бесконтактной систем зажигания
При размыкании контактов цепь управления транзистором прерывается, вследствие чего транзистор закрывается и во вторичной обмотке катушки зажигания индуктируется э.д.с. высокого напряжения, достаточная для пробоя зазора между электродами свечи и воспламенения рабочей смеси в цилиндре двигателя.
В дальнейшем при размыкании и замыкании контактов прерывателя процессы работы системы зажигания повторяются.
Использование транзисторного коммутатора дало возможность облегчись работу контактов прерывателя, поскольку через них проходит не весь ток первичной цепи, а лишь малый ток управления транзистором (до 1А) Прерывание тока в первичной цепи с помощью транзистора дало возможность повысить вторичное напряжение за счет увеличения тока первичной цепи и долговечность работы контактов прерывателя.
Однако контактно-транзисторная система зажигания не лишена всех недостатков, присущих контактной системе зажигания. Такие явления, как износ контактов и кулачка, вибрация и окисление контактов, ослабление упругости пружины подвижного контакта, остаются характерными и для контактно-транзисторных систем зажигания. Поэтому более перспективной является бесконтактная транзисторная система зажигания, в которой недостатки вышерассмотренных систем зажигания отсутствуют.
Похожие статьи:
poznayka.org
Транзисторная система - зажигание - Большая Энциклопедия Нефти и Газа, статья, страница 1
Транзисторная система - зажигание
Cтраница 1
Транзисторная система зажигания по сравнению с батарейной имеет следующие преимущества: значительно больший срок службы контактов прерывателя; удлиненный срок службы свечей зажигания и малую чувствительность их к снижению напряжения. Кроме того, напряжение на электродах свечи зажигания не зависит от частоты вращения коленчатого вала двигателя; можно увеличить искровой заряд в свече зажигания и улучшить пусковые свойства двигателя. [1]
Транзисторная система зажигания работает следующим образом. Если при включенном зажигании контакты прерывателя разомкнуты, то из-за большого сопротивления переход коллектор - эмиттер - транзистор оказывается запертым, и поэтому тока в первичной цепи катушки ( в цепи коллектора) практически нет. В момент замыкания контактов прерывателя ток управления ( ток базы) течет по цепи: отрицательный полюс аккумуляторной батареи АБ - масса - прерыватель ПР - первичная обмотка / импульсного трансформатора ИТ - база Б и эмиттер Э транзистора Т ( часть тока ответвляется, проходя через резистор 2 и вторичную обмотку / / трансформатора ИТ) - первичная обмотка / катушки зажигания КЗ - добавочные резисторы 3 и R4 - выключатель зажигания ВЗ - зажим тягового реле ТР стартера - положительный полюс батареи. [2]
Транзисторные системы зажигания ( рис. 8) состоят в основном из тех же элементов, что и обычная батарейная система ( см. рис. 1), и отличаются от нее наличием транзистора Гь резисторов RiR2 и отсутствием конденсатора Ci, ранее шунтировавшего контакты прерывателя. [3]
Транзисторная система зажигания [1, 2] состоит из тех же самых элементов, что и классическая система, и работает по такому же принципу. Отличие ее от классической состоит в том, что в нее вводится мощный транзистор, который коммутирует ток катушки зажигания, контакты же прерывателя коммутируют только небольшой ток базы транзистора. Это позволяет устранить один из основных недостатков классической системы зажигания - - снизить электрическую нагрузку контактов прерывателя. Однако полностью реализовать положительные свойства транзисторной системы зажигания удается лишь с применением специальной катушки зажигания. Таким образом, при установке транзисторной системы требуется также замена стандартной катушки зажигания на специальную. Это является недостатком транзисторной системы, так как не обеспечивает быстрый возврат к классической при выходе из строя электронного прибора. [4]
Более сложная транзисторная система зажигания требует строгого соблюдения правил эксплуатации и, в частности, не допускает нарушений установленной схемы соединений. Например, присоединение первичной обмотки катушки зажигания непосредственно к включателю зажигания, минуя добавочный резистор, приводит к увеличению тока первичной обмотки, который перегружает транзистор. При этом приходится менять весь транзисторный коммутатор, так как последний имеет неразборную конструкцию. Перегрев транзистора происходит и при стоянке автомобиля с невыключенным зажиганием. [5]
Недостатками транзисторной системы зажигания являются нестабильность теплового режима транзисторов и трудность отладки системы зажигания из-за большой силы тока в катушке зажигания. [6]
В транзисторной системе зажигания контакты работают в более благоприятных условиях, так как через них проходит очень небольшой ток управления транзистором. Во время размыкания контактов между ними не образуется электрическая дуга, потому что ток самоиндукции идет на стабилитрон Д2, минуя прерыватель. [7]
В транзисторной системе зажигания ток низкого напряжения не проходит через контакты прерывателя, что исключает окисление и износ их, поэтому повышается надежность работы системы зажигания на всех эксплуатационных режимах двигателя. [8]
В транзисторной системе зажигания напряжение во вторичной цепи на 25 - 30 % больше по сравнению с обычной системой зажигания что позволяет увеличить зазор между электродами свечей до 1 2 мм. С увеличением длины искры увеличивается площадь контакта ее с рабочей смесью, что способствует более быстрому и полному сгоранию даже обедненной смеси. В результате облегчается пуск и улучшается приемистость и экономичность работы двигателя. Кроме того, уменьшается выгорание электродов свечей зажигания. [9]
В транзисторной системе зажигания напряжение во вторичной цепи на 25 - 30 % больше по сравнению с обычной системой зажигания, что позволяет увеличить зазор между электродами свечей до 1 2 мм. С увеличением длины искры увеличивается площадь контакта ее с рабочей смесью, что способствует более быстрому и полному сгоранию даже обедненной смеси. В результате облегчается пуск и улучшается приемистость и экономичность работы двигателя. Кроме того, уменьшается выгорание электродов свечей зажигания. [10]
В транзисторной системе зажигания сохранены механически размыкаемые контакты и использованы полупроводники, которые включены в первичную цепь. [11]
В контактной, транзисторной системе зажигания триод 2 ( рис. 39) включен в цепь с общей базой. [13]
Ниже описывается транзисторная система зажигания и стенд для проверки транзисторов и блоков электронного зажигания, предложенные группой авторов ( В. Мельников) в журнале Радио, № 9 за 1967 год. [14]
К недостаткам транзисторной системы зажигания ( со специальной катушкой) следует отнести также большую потребляемую мощность, которая при неработающем двигателе и замкнутых контактах прерывателя достигает 100 Вт ( имеется в виду отечественная контактно-транзисторная система ТК-Ю2 с катушкой Б114, устанавливаемая на грузовых автомобилях ЗИЛ-130), а при работающем двигателе - 60 Вт, что вдвое превышает потребляемую мощность обычной батарейной системы зажигания. Последний недостаток делает нежелательным применение транзисторной системы зажигания на легковых автомобилях, оборудованных аккумулятором небольшой емкости. [15]
Страницы: 1 2 3
www.ngpedia.ru