Делаем СВЧ пушку из микроволновки своими руками. Свч зажигание


Свеча зажигания на основе свч разряда

 

Полезная модель относится к свечам зажигания основе высокочастотного (СВЧ) разряда, предназначенным для воспламенения топливных смесей в газотурбинных двигателях (ГТД) как транспортного (воздушного и наземного), так и энергетического назначения, и позволяет повысить надежность воспламенения топливовоздушной смеси и рабочий ресурс свечи зажигания. Свеча зажигания на основе СВЧ разряда содержит соосные внешний и внутренний электроды, размещенные с образованием канала для транспортировки СВЧ излучения от источника в направлении камеры сгорания, и расположенную в канале диэлектрическую вставку, при этом диэлектрическая вставка имеет участок, выступающий за торцевую поверхность внешнего электрода, внутренний электрод выполнен с заостренным концевым участком и расположен в осевом отверстии диэлектрической вставки таким образом, что расстояние от острия до торцевой поверхности диэлектрической вставки меньше расстояния между торцевыми поверхностями диэлектрической вставки и внешнего электрода. Илл.

Полезная модель относится к машиностроению, в частности, к свечам зажигания на основе высокочастотного (СВЧ) разряда, предназначенным для воспламенения топливных смесей в газотурбинных двигателях (ГТД) как транспортного (воздушного и наземного), так и энергетического назначения.

К свече зажигания, являющейся одним из основных элементов пусковой системы ГТД, предъявляются требования обеспечения надежного запуска двигателя в широком диапазоне топливных и газодинамических параметров топливовоздушной смеси -отношения концентраций окислителя и топлива, давления, температуры, скорости и режима течения потока, а также низкого уровня выбросов, загрязняющих атмосферу. При использовании свечи зажигания в составе пусковой системы ГТД летательного аппарата эти требования дополняются необходимостью надежного запуска как на земле, так и на высоте (в случае срыва пламени), где условия воспламенения топливной смеси существенно отличаются от наземных, а также обеспечением заданного ресурса и жесткими ограничениями по массогабаритным показателям и энергопотреблению в пусковом режиме (Лефевр А. Процессы в камерах сгорания ГТД. М., «Мир», 1986. с. 237).

Большинство из известных к настоящему времени теорий воспламенения базируется на модели, согласно которой свеча зажигания должна обеспечить подвод к топливной смеси энергии, достаточной для создания некоторого объема горючего газа, удовлетворяющего условию распространения пламени, т.е. условию превышения тепловыделения над теплоотводом (см. там же). В рамках этой модели минимальная энергия воспламенения определяется как количество энергии, необходимое для нагрева наименьшего объема топливной смеси, минимальный размер которого равен расстоянию гашения, до температуры, равной адиабатической температуре пламени. При этом к числу основных параметров плазменного факела, определяющих надежность воспламенения топливной смеси, относятся температура, длительность (время жизни), частота повторения поджигающих импульсов, пространственная протяженность и объем.

Известно устройство для воспламенения обедненных топливных смесей в двигателях внутреннего сгорания, содержащее электроискровую свечу, электроды которой выведены в форкамеру, и топливопровод системы впрыска топливовоздушной смеси стехиометрического состава, причем форкамера с помощью размещенного в ее корпусе отверстия сообщается с основной камерой сгорания двигателя (патент США

4041922, МПК F02B 23/00, опубл. 16.08.1977 г.). Последовательность операций по пуску двигателя с использованием данного устройства включает в себя впрыск в форкамеру небольшого количества топливовоздушной смеси стехиометрического состава, подачу на электроды электроискровой свечи импульса напряжения, обеспечивающего электрический пробой между ними и, как следствие, воспламенение находящейся в форкамере обогащенной топливовоздушной смеси, перенос полученного факела пламени через отверстие в форкамере в основную камеру сгорания, где он используется для воспламенения рабочего потока топливовоздушной смеси.

Несмотря на то, что известное устройство обеспечивает возможность запуска основной камеры сгорания ГТД в широком диапазоне топливных и газодинамических параметров топливовоздушной смеси, для его функционирования необходимы дополнительная камера сгорания (форкамера), снабженная системой подготовки и впрыска топливовоздушной смеси стехиометрического состава.

Наиболее близким аналогом (прототипом) предлагаемого технического решения является свеча зажигания на основе СВЧ разряда, содержащая соосные внешний и внутренний электроды, размещенные с образованием канала для транспортировки СВЧ излучения от источника в направлении камеры сгорания, и расположенную в указанном канале диэлектрическую вставку, выполненную в форме шайбы, плоской со стороны источника СВЧ излучения и выпуклой со стороны камеры сгорания и изготовленной из материала с малыми потерями на рабочей частоте генератора, причем внутренний электрод одним концом подключен к выводу энергии источника СВЧ излучения, а вторым концом введен в полость камеры сгорания (патент США

7204220, МПК F02P 23/04, опубл. 17.04.2007).

При включении источника СВЧ излучения по каналу, образованному внешним и внутренним электродами, распространяется волна электромагнитного излучения в направлении от источника к камере сгорания. Если мощность источника достаточна для электрического пробоя между внешним и внутренним электродами свечи, то в ее межэлектродном зазоре создается плазма, которая нагревается в результате поглощения излучения и инжектируется в полость камеры сгорания, где служит ядром воспламенения топливовоздушной смеси.

Недостатком данной конструкции свечи зажигания является ограничение надежности воспламенения вследствие конвективного охлаждения ядра воспламенения набегающим потоком топливовоздушной смеси. Кроме того, ограничен рабочий ресурс свечи вследствие интенсивной эрозии внутреннего электрода в зоне пробоя по межэлектродному зазору свечи.

Технический результат заявленной полезной модели - повышение надежности воспламенения топливовоздушной смеси и повышение рабочего ресурса свечи зажигания.

Указанный технический результат достигается тем, что в свече зажигания на основе СВЧ разряда, содержащей соосные внешний и внутренний электроды, размещенные с образованием канала для транспортировки СВЧ излучения от источника в направлении камеры сгорания, и расположенную в канале диэлектрическую вставку, согласно полезной модели, диэлектрическая вставка имеет участок, выступающий за торцевую поверхность внешнего электрода, при этом внутренний электрод выполнен с заостренным концевым участком и расположен в осевом отверстии диэлектрической вставки таким образом, что расстояние от его острия до торцевой поверхности диэлектрической вставки меньше расстояния между торцевыми поверхностями диэлектрической вставки и внешнего электрода.

Указанные признаки являются существенными, так как выполнение концевого участка внутреннего электрода заостренным и его размещение в полости осевого отверстия диэлектрической вставки обеспечивает возможность повышения рабочего ресурса свечи в результате снижения токовой нагрузки на концевой участок; расположение (заглубление) концевого участка внутреннего электрода на расстоянии относительно торцевой поверхности диэлектрической вставки позволяет существенно улучшить условия воспламенения топливовоздушной смеси в результате более эффективного формирования плазменного факела и снижения уровня конвективного и лучистого теплообмена в зоне ядра воспламенения.

На чертеже схематично представлена свеча зажигания (продольный осевой разрез).

Свеча содержит соосные внешний 1 и внутренний 2 электроды, образующие канал 3 для транспортировки СВЧ излучения от источника в направлении камеры сгорания (показано стрелками). В канале 3 расположена вставка 4, выполненная из диэлектрического материала, например термостойкой керамики, в форме ступенчатой цилиндрической втулки с осевым отверстием, в котором размещен внутренний электрод 2 с заостренным концевым участком с острием 5. Вставка 4 имеет участок длиной H, выступающий за торцевую поверхность внешнего электрода 1, причем осевая длина указанного участка превышает расстояние h от острия 5 внутреннего электрода 2 до торцевой поверхности вставки 4, т.е. H>h.

Диэлектрическая вставка также может быть выполнена в виде ступенчатой втулки конической формы, что позволяет обеспечить повышение надежности ее фиксации относительно внешнего электрода свечи, а также соосности внутреннего и внешнего электродов. Форму вставки выбирают для каждого конкретного случая, исходя из условий применения свечи в составе камеры сгорания двигателя.

В качестве источника СВЧ излучения могут быть выбраны электровакуумные или полупроводниковые генераторы (усилители) дециметрового или сантиметрового диапазона длин волн, обладающие достаточным уровнем выходной мощности для обеспечения эффективной автоэлектронной эмиссии в зоне концевого участка внутреннего электрода свечи. Выбор типа источника также определяется условиями применения и специальными требованиями к двигателю.

В качестве материала диэлектрической вставки могут быть использованы термостойкие керамики, обладающие минимальными потерями в выбранном СВЧ диапазоне, например, на основе окислов редкоземельных металлов или электрокорунда.

Соосные внешний и внутренний электроды в совокупности образуют коаксиальную линию передачи, подключенную с одной стороны к выводу энергии источника СВЧ излучения, а с другой стороны - к электродам свечи зажигания, внешний электрод которой установлен на стенке камеры сгорания. Длина L электродов определяется из условия максимума электрической составляющей электромагнитной волны в зоне заостренного участка внутреннего электрода свечи: L=(2n+1)кэфф/4, где n0 - целое число, а эфф - эффективная длина волны в коаксиальной линии передачи. Форма электродов определяется из условия оптимального согласования вывода энергии источника СВЧ излучения с нагрузкой - свечой зажигания при заданной рабочей частоте (длине волны) источника.

Предлагаемая свеча зажигания функционирует следующим образом.

Источник СВЧ излучения возбуждает электромагнитную волну в канале, образованном электродами 1 и 2 и представляющем собой коаксиальную линию передачи. При выборе линии передачи четвертьволновой длины напряженность электрического поля в зоне острия 5 внутреннего электрода 2 максимальна, что при достаточной мощности СВЧ источника приводит к автоэлектронной эмиссии с острия и, как следствие, к созданию в полости диэлектрической вставки плазменного образования, которое нагревается в результате поглощения энергии электромагнитной волны и служит ядром воспламенения топливовоздушной смеси, находящейся в полости вставки 4. Нагрев плазменного образования приводит к повышению газокинетического давления в полости вставки 4, под действием которого происходит инжекция ядра воспламенения в камеру сгорания. При этом условия воспламенения в указанной зоне существенно лучше, чем в основном потоке камеры сгорания, поскольку уровни конвективного и лучистого теплообмена здесь ограничены стенками вставки 4. Кроме того, заглубление вставки в полость камеры сгорания на расстояние, превышающее длину выступающей части внутреннего электрода 2, позволяет в результате увеличения площади эмитирующей поверхности снизить токовую нагрузку в зоне его острия 5, что обеспечивает возможность повышения рабочего ресурса свечи.

Оптимальные значения параметров H и h определяются рабочей частотой (длиной волны) источника СВЧ излучения и комбинацией топливных и газодинамических параметров топливовоздушной смеси - отношения концентраций окислителя и топлива, давления, температуры, скорости и режима течения потока. Как показали проведенные исследования, в режимах, типичных для розжига камеры сгорания ГТД, эти значения лежат в диапазонах: d<h<2d<H<4d, где d - диаметр внутреннего электрода свечи.

Таким образом, предложенная конструкция свечи зажигания позволяет повысить надежность воспламенения в широком диапазоне топливных и газодинамических параметров топливовоздушной смеси при розжиге камеры сгорания ГТД в результате снижения уровня конвективного и лучистого теплообмена в зоне ядра воспламенения, а также увеличить рабочий ресурс свечи в результате снижения токовой нагрузки на ее электрод.

Свеча зажигания на основе СВЧ разряда, содержащая соосные внешний и внутренний электроды, размещенные с образованием канала для транспортировки СВЧ излучения от источника в направлении камеры сгорания, и расположенную в канале диэлектрическую вставку, отличающаяся тем, что диэлектрическая вставка имеет участок, выступающий за торцевую поверхность внешнего электрода, при этом внутренний электрод выполнен с заостренным концевым участком и расположен в осевом отверстии диэлектрической вставки таким образом, что расстояние от острия до торцевой поверхности диэлектрической вставки меньше расстояния между торцевыми поверхностями диэлектрической вставки и внешнего электрода.

РИСУНКИ

poleznayamodel.ru

Магнетрон: принцип действия и устройство

Чтобы получить частные и высокие колебания, используют магнетроны. Электрические и магнитные поля действуют с высокой силой. В результате происходят колебания высокой частоты. Часто применяемой разновидностью устройства является многорезонаторная. В таком магнетроне на электроны действуют сразу три поля:

  • электрическое;
  • магнитное;
  • СВЧ.

Магнетрон: что это и как появилось

Впервые этот термин был использован в 1921 году американским ученым-физиком А. Халлом. Его исследования и эксперименты были продолжены далее, что привело к появлению многих разновидностей магнетронов, которые стали использовать в радиоэлектронике. магнетрон принцип действия Патент на это изобретение получил А. Жаке в 1924 году. Именно он изобрел современный магнетрон, принцип действия которого основывается на взаимодействии двух полей.

В последующее десятилетие велись разработки магнетронов для генерации волн СВЧ. Главная задача заключалась в увеличении частоты колебаний, что удалось сделать только советским ученым. Они увеличили исходное значение в два раза, применив в качестве материала анода медь.

Устройство

Сердцем магнетрона является блок анода, состоящий из медного цилиндра, с пустотой внутри. В центре его имеются полости, они являются кольцевой системой объемных резонаторов. В середине анода имеется отверстие, именно через него идет подключение к питанию. магнетрон для микроволновой печи 2m218 jf daewoo Также от него анод подключается к катоду. Им является нить накала, она подогреваемая и проходит через всю середину анода. Чтобы обеспечить выход высокочастотных колебаний, такой выход устанавливают в одном из резонаторов. Внутри анодного блока вакуум. Для его охлаждения на поверхности устанавливают ребристые радиаторы.

Помещают этот блок так, что бы он оказался между магнитами, создающими магнитное поле достаточной силы. магнетрон на микроволновку lg Устанавливают напряжение между анодом и катодом, причем так, что положительно заряженный полюс находится у анода. Электроны от катода начинают двигаться из-за действия поля электричества. Двигаться они должны к аноду, а магнетрон, принцип действия которого заключается в магнитном поле, возвращает его образно к катоду.

Добиться эффекта, когда электроны движутся по описываемой окружности и при этом находятся рядом с анодом, но возвращаются обратно, можно, если соблюсти определенные условия в двух связанных полях. При таком состоянии на аноде остается лишь малая часть всех электронов, вылетевших с катода.

Возвратившись на катод, часть электронов заменяется. Этот процесс продолжается, образуя возле анода заряд в форме кольца. Такой заряд начинает образовываться возле каждого резонатора, появляются незатухающие высокочастотные колебания. Вывести такие колебания можно витками проводов, расположив их в любом из резонаторов. Следом эти колебания передаются на волновод (или коаксиальную линию).

Магнетроном можно назвать прибор СВЧ, он генераторный, вакуумный, движение электронов в нем происходит в двух полях: электронном и магнитном. Создает магнетрон принцип действия двух этих полей, которые образуют третье – СВЧ.

Применение

Использоваться могут они в радиотехнике. Например, при составлении радарных карт. Для этого магнетрон должен состоять не только из рупорного облучателя, но и из параболического отражателя. При помощи управления импульсами высокой интенсивности создается короткий импульс излучения микроволн. Часть энергии, отражаясь, возвращается обратно к волноводу и антенне, что направляют ее к приемнику. магнетрон для микроволновки После обработки данные появляются на радарной карте.

Применение в быту

В печах, работа которых основана на микроволнах, принцип действия немного другой. Магнетрон для микроволновки имеет на конце волновода прозрачное отверстие для радиочастот, которые образуются в отсеке для приготовления пищи. Поэтому важно включать такую печь только с наличием в ней еды. Без этого условия стоячие волны вызовут искрение, так как магнитные волны не поглотились, а были возвращены обратно. Если это продлится долгое время, магнетрон просто сломается. Скорость, при которой пища в микроволновке готовится, зависит напрямую от мощности магнетрона.

Большинство микроволновых печей имеет мощность от 700 до 850 Вт. Этого вполне хватит, чтобы вскипятить стакан воды всего за 2-3 минуты. Магнетрон для СВЧ "Сатурн", в зависимости от модели, может иметь разную мощность. Выбор СВЧ этой фирмы можно начать именно со сравнения магнетронов, а потом и дополнительных функций.

Покупка СВЧ

При покупке микроволновой печи следует знать принцип ее действия. Многие насторожено относятся к этой технике, ошибочно полагая, что это источник радиации. На самом деле, в ней действует принцип СВЧ, что следует из самого названия. СВЧ - не что иное, как «сверхвысокие частоты». Радиацию она, конечно, не излучает, но обращаться с такой техникой нужно осторожно.

Сама микроволновка уже изначально имеет защиту окружающих от СВЧ-излучения. Такая печь оборудована специальным датчиком, который отключит магнетрон, если открыта дверца. Завершить работу магнетрон, принцип действия которого заключается в выработке СВЧ-волн, не сможет, если нарушены правила эксплуатации. Если поместить в печь, например, металлическую миску, она просто выведет из строя весь прибор.

Волны от СВЧ-печи могут выходить наружу не дальше чем на пять метров. магнетрон для микроволновки самсунг Поэтому в то время, когда она работает, лучше находиться подальше. Однако планировка кухонь большинства квартир делать этого не позволяет, ибо придется выходить в другую комнату.

Электромагнитное поле бесконтактно разогревает пищу, помещенную в микроволновую печь. Более того, процесс нагрева происходит непосредственно в пределах продукта, что сокращает время приготовления до нескольких минут. Не надо предварительно нагревать посуду, в которой находится пища.

Для лучшего результата готовки надо знать кулинарные хитрости приготовления тех или иных продуктов. С учетом того, что время идет, а устройство СВЧ-печей не меняется, можно предположить их дальнейшее и постоянное закрепление за кухнями многих потребителей.

Покупка магнетрона к СВЧ

Покупая самостоятельно магнетрон, нужно обязательно знать маркировку. Чтобы не совершить ошибку, покупая магнетрон на микроволновку LG, нужно ознакомиться с тем, какие же они бывают. Самая слабая мощность у магнетрона 2M213. У него выходная мощность при нагрузке и типовая равны 700 и 600 W соответственно, анодное значение - 3,95 kVp, а частота - 2460 MHz.

Магнетронов со средними значениями величин несколько. Основной из них: 2M214. У этой модели частота такая же, анодное значение чуть выше - 4.20 kVp. Выходная мощность при нагрузке и типовая – 1000 и 850 W соответственно.

Максимальные значения показателей у магнетрона марки2M246. магнетрон для свч сатурн При той же частоте анодное значение больше - 4.40 kVp, средние мощности на выходе при нагрузке – 1150 W, типовая - 1000 W.

Возможна ли замена своими руками

Любой из видов магнетрона для микроволновок LG можно заменить аналогичным для другой фирмы, например, "Самсунг". Аналогично можно заменить магнетрон для микроволновки "Самсунг" подходящим по мощности элементом от другой фирмы. Если модель бытовой сверхвысокочастотной печи выпущена очень давно, то найти деталь соответствующей марки очень трудно. Возможно, производитель уже снял с производства данный вид.

магнетрон для микроволновой печи 2m218 jf daewoo Но даже если вы знаете принцип работы магнетрона, не следует заниматься починкой такой техники дома самостоятельно.

Приобрести магнетрон для микроволновой печи 2M218 JF Daewoo можно самостоятельно, заказав в специализированных магазинах или непосредственно у производителя. Стоит он порядка 2 тысяч рублей.

Основа работы микроволновки

Разогрев продуктов в микроволновке происходит так: любая пища содержит в себе молекулы воды, она, в свою очередь, состоит из заряженных положительно и отрицательно частиц. Такие молекулы выступают диполем, потому что хорошо проводят волны электричества. магнетрон что это

Заключение

Частая поломка СВЧ-печей - выход из строя магнетрона. Купить магнетрон на микроволновку LG (как, впрочем, и других производителей данных бытовых приборов) и заменить его самостоятельно будет достаточно проблематично. Даже если найдется подходящий элемент, установить его сможет только мастер.

Перед покупкой устройства стоит сравнить его цену со стоимостью самой микроволновки. Часто бывает, что ремонт обойдется дороже покупки. Всегда учитывайте данный фактор.

Итак, мы выяснили, для чего нужен такой элемент, как магнетрон, и в каких сферах он применяется.

fb.ru

СВЧ пушка из микроволновки своими руками

Пользуясь дома бытовой техникой, мы редко задумываемся, какие удивительные приборы и мощь находятся внутри привычных нам аппаратов. Другое дело, если техника приходит в негодность и в надежде на спасение начинаем изучать интернет и имеющиеся схемы. Интересуясь возможностями, можно найти информацию о том, как изготавливается СВЧ пушка из микроволновки, на ютуб. Очень занимательное, но грозное оружие, имеющее много полезных функций. Например, с его помощью великолепно истребляются жуки.

Магнетрон

Магнетрон

Согласитесь — немного необычная находка. Такие креативные эксперименты предлагает — Kreosan. Многих любопытных исследователей эксперименты зачаровывают, и люди начинают творить самостоятельно.

Конструируем СВЧ пушку

Сегодня и мы расскажем, каким образом конструируется СВЧ пушка из микроволновки, описанная Kreosan на ютуб. Итак, нам понадобится:

  • Микроволновая печь (рабочая).
  • Банка из-под кофе или консервная, ещё лучше корпус от громкоговорителя (колокол).
  • Проволока.
  • Необходимая мелочёвка.
Схема магнетрона

Схема магнетрона

Главный элемент, находящийся в микроволновке — магнетрон. Его предназначение, генерировать волны сверхвысокой частоты и огромной мощности. Мы должны извлечь нужный прибор. Для незнающих он имеет забавный вид. Сверху из железной штуки, являющейся радиатором большой мощности, торчит штырь. Он является СВЧ-излучателем. Мощность излучения около 700–800 Вт.

Схема магнетронной пушки

Схема магнетронной пушки

Поэтому необходимо работать с особой осторожностью. Попав в фокус излучения, данная мощность может навредить здоровью, особенно пострадают глаза. Радует, что излучение исходящие от штыря, рассеянное и более-менее безопасное. В любом случае не стоит рисковать и подходить очень близко.

Антенна

Чтобы СВЧ пушка из микроволновки своими руками, действовала целенаправленно, Kreosan рекомендует изготовить антенну. Именно теперь понадобится кофейная банка. В ней нужно будет прорезать отверстие.

Пушка с антенной

Пушка с антенной

Схема прорези, следующая:

  1. При высоте банки — 175 мм;
  2. Диаметре — 75мм;
  3. Отверстие делаем диаметром 20 мм, на боковой стенке, отступая от дна — 37 мм.

Остаётся вынести магнетрон из микроволновки. Провода, присоединённые к нему, просто удлиняем, а антенну закрепляем к корпусу изделия при помощи проволоки. Наша СВЧ-пушка готова и изготовлена своими руками!

Возможности самодельной пушки из микроволновки

Как же можно использовать приспособление? Оказывается, пушка из магнетрона, серьёзно воздействует на бытовые приборы:

  • Она имеет ту же частоту что и wi-fi. Поэтому можно запросто сбросить соседский wi-fi роутер.
  • Две стены не будут препятствием, для убавления звука в телевизоре глухого соседа. Но будьте внимательны со своими приборами, так как в 10 м от пушки телефон может зависнуть, а в компьютере и телевизоре искажается звук. Нельзя воздействовать на приборы слишком долго — возможен взрыв.
Испытание СВЧ-пушки

Испытание СВЧ-пушки

  • Развлечь друзей можно лампами дневного света, которые под воздействием пушки зажигаются на большом расстоянии.
  • Жуки древоточцы, живущие в строениях из дерева, запросто уничтожаются пушкой СВЧ.
  • Также можно простерилизовать крупы от бактерий и избавиться от жуков СВЧ пушкой измикроволновки, заводящихся внутри сыпучих продуктов.
  • Мощи магнетрона хватит для того, чтобы расплавить цветной металл.
  • Можно вскипятить не слишком большое количество воды.

Став конструктором, соблюдайте технику безопасности. Нельзя включать аппарат надолго, так как он сильно нагревается. Помните — излучения СВЧ волн на организм человека полностью не изучено. Не используйте подобное излучение без личной защиты и старайтесь избегать ситуаций, несущих риск несчастных случаев!

Для большей доступности в конструировании можно просмотреть видео youtube.

Это интересно:

tehnika.vyborkuhni.ru

Магнетрон из микроволновки и СВЧ оружие

Магнетрон из микроволновки Основным элементом обычной микроволновки является магнетрон, вакуумный прибор для генерирования СВЧ-излучения. Его старшие родственники стоят во всяких радарах и системах радиолокации. Именно за счёт испускаемого им СВЧ микроволновки разогревают еду: частота подобрана так, что вызывает резонансные явления в молекулах воды, которые содержатся почти в любой пище, и те начинают разогреваться. Из-за большой мощности магнетрона нагрев оказывается весьма ощутимым, что и даёт искомый эффект.

Магнетрон из этой самой печки, понятно, можно извлечь. Выглядит он как вот такая вот забавная штуковина с мощным радиатором. Торчащий сверху штырь — собственно СВЧ-излучатель, от которого и прёт излучение. Типичная мощность — около 700-800 ватт, что, надо сказать, очень и очень дохрена много и легко вскипятит незрелые мозги (а точнее, глаза) попавшего в фокус такого излучателя. К счастью, от штыря магнетрона излучение всенаправленное и потому относительно безопасно, если не подходить слишком близко.

Магниты и собственно магнетрон Если содрать радиатор, то останется довольно небольшая меднокерамическая хренька с двумя магнитами. Если же разбирать и дальше, и распилить её пополам, внутри окажется довольно любопытная ромашковидная структура. За конкретными принципами её действия и генерации там микроволн отсылаю в более специализированные источники, здесь этому уже не место. Разрезанный магнетрон Кстати, интересная особенность магнетрона: на накал (катод) у него идёт минус, а корпус, он же анод — заземляется. Из той же микроволновки можно полностью выдрать и питание для магнетрона — МОТ, конденсатор и диод, и, собственно, подключить — так же, как он был подключен в печке. Накальная обмотка МОТа питает накал, корпуса МОТа и магнетрона соединены, конденсатор и диод образуют шифтер, причём подключенный горячим выводом (точка соединения кондёра и диода) к одному из накальных выводов магнетрона (именно поэтому накальная обмотка у мота выполнена высоковольным проводом).

[Not a valid template] При включениях следует таки соблюдать осторожность, надолго не врубать и беречь глаза, особенно при запусках в помещениях. Если поставить наверх вывода острый кусочек металла, можно получить факел на 2.4 ГГц. Только обгорает этот вывод очень быстро.

[Not a valid template] Но просто развлекаться с магнетроном довольно скучно. Куда интереснее приспособить к нему антенну для получения более или менее направленного потока излучения. Идеальной была бы параболическая тарелка. Вот только диаметр требуется метров в пять. Чуть хуже, но тоже неплоха антенна типа «рупор», но её изготовление довольно утомительно и она оказывается изрядно громоздкой, хотя, конечно, меньше параболы. Я в итоге остановился на баночной антенне (гуглим «cantenna»), снискавшей любовь у любителей усиления вайфая. [Not a valid template] Поскольку магнетрон работает ровно на той же частоте, что и вайфай, можно просто считать банку как для вайфай-антенны. Усиление от неё не очень велико, форма потока тоже оставляет желать лучшего, но зато ей можно очень приятственно засвечивать газоразрядные приборы, кипятить глаза мышам небольшие объёмы воды, и сбрасывать соседский wifi-роутер. Кстати, в метре от банки антенны вырубается фотоаппарат. Для лучшего охлаждения поставлен кулер к магнетрону, ибо последний изрядно нагревается во время работы.

[Not a valid template] [Not a valid template] [Not a valid template]

СВЧ-пушка и коробка ИН-19А YouTube Трейлер

 

YouTube Трейлер Метки отсутствуют.

teslacoil.ru

Микроволновая печь ремонт-своими руками. Схема микроволновки

Уважаемые посетители!!!

В данной теме Вы ознакомитесь с устройством микроволновой печи, с ее электрической схемой, а также, с деталями микроволновки.  По фотоснимкам, Вы сможете получить дополнительную информацию, имеющую  отношение к проверке  магнетрона и силового трансформатора.

i (9)

Ремонт микроволновки-своими руками

 Чтобы разобраться с таким вопросом: «Как отремонтировать микроволновую печь», нужно понять, на чем основан принцип работы данного вида бытовой техники.   Причины неисправности могут быть разнообразные, включая простейшие причины:

  • разрыв провода \по длине сетевого шнура\;
  • неисправность электрической вилки;
  • несоответствие в разъемном соединении вилки с розеткой \искрение в соединении\

и другие причины.

Схема микроволновой печи

i (10)

Схема микроволновой печи состоит из следующих элементов:

  • трансформатора силового;
  • вторичной обмотки;
  • предохранительного диода;
  • высоковольтного диода;
  • накальной обмотки;
  • конденсатора;
  • сопротивления;
  • магнетрона.

Высоковольтный трансформатор микроволновой печи

Силовой трансформатор микроволновой печи представляет из себя повышающий трансформатор \2 кВ\ мощность — 850 Вт., необходимый для преобразования электрической энергии переменного тока одного напряжения в электрическую энергию другого  напряжения при неизменной частоте.

i (8)

Как устроен магнетрон микроволновки

Магнетрон состоящий в схеме, состоит из следующих элементов:

  • излучатель \антенна\;
  • резонансные полости \резонаторы\;
  • анод \стенки камеры\;
  • катод \металлическая нить\;
  • изолятор;
  • оплетка;
  • фланец;
  • магнит;
  • корпус;
  • радиатор;
  • выводы питания;
  • фильтр;
  • ферритовый стержень;
  • катушка;
  • крышка;
  • связки;
  • петля связи.

i (3)i (7)i (2)

Основные элементы магнетрона СВЧ, это:

  • антенна \излучатель\;
  • резонансные полости;
  • анод \стенки камеры\;
  • катод \металлическая нить\.

Из чего состоит микроволновая  печь

Микроволновая печь  состоит из:

  • полости \где непосредственно происходит разогрев пищи\;
  • магнетрона;
  • трансформатора;
  • волновода.

i (5)i (4)

Разобравшись в устройстве микроволновой печи, нетрудно будет ее починить.  Причиной поломки могут быть любые перечисленные элементы,  проверка  электрических цепей и  элементов,-  проводится пассивным  способом  \без подключения к внешнему источнику\.

Неисправности микроволновой печи lg

Разборка микроволновой печи LG  \фото №1\ практически ничем не отличается от разборки других модификаций таких печей.

Первоначально снимается верхняя облицовка и затем проводится диагностика как для отдельных участков электрической цепи так и для отдельных элементов, состоящих в электрической схеме микроволновой печи.

IMG_2903IMG_2904

фото №1

При визуальном осмотре микроволновой печи для данного примера \фото №2\ видно, что во внутренней полости где непосредственно происходит разогрев пищи, имеется обгорание со стороны стенки магнетрона.    То-есть, сам волновод магнетрона \фотоснимок справа\ в результате определенного срока эксплуатации подвергался нагреванию и в результате деформации пластины волновода, — произошло замыкание на корпус микроволновой печи.

IMG_2905IMG_2907

фото №2

Причинами подобной неисправности магнетрона микроволновой печи,  на мой взгляд,  могут быть следующие:

  1. превышающее значение напряжения внешнего источника;
  2. первоначальная неисправность силового трансформатора;
  3.  эксплуатация данного электроприбора в противоречии с техническими требованиями \инструкцией\ по пользованию.
Проверка магнетрона микроволновой печи

IMG_2914IMG_2916

фото №3

Методом проведения диагностики можно определить, — годен ли магнетрон к дальнейшей эксплуатации  или же его следует заменить.

На фотоснимке справа \фото №3\ видно, что при измерении сопротивления, данный показатель составляет нулевое значение или же другими словами, это будет означать «режим короткого замыкания».

Проверка трансформатора микроволновки

                                                                                                                                                                           IMG_2909IMG_2910

                                                                                                                                                                                                                                                                               фото №4

На двух представленных фотоснимках \фото №4\ дано изображение силового трансформатора микроволновой печи.

Нам допустим  необходимо определить, — является ли пригодным трансформатор к своей дальнейшей эксплуатации?    Соответственно, здесь так же необходимо измерить сопротивление:

  • первичной;
  • вторичной

обмоток трансформатора.

Чтобы провести  диагностику, необходимо разъединить контактные соединения проводов с первичной и вторичной обмоток трансформатора.

                                        IMG_2912

                                                                                       фото №5

Измерение  сопротивления первичной обмотки трансформатора \фото №5\,  можно проделать двумя способами:

  1. подсоединить щупы прибора к разъему первичной обмотки;
  2. подсоединить щупы прибора к выводным контактам первичной обмотки,

— разницы здесь никакой нет.

Дисплей прибора при измерении сопротивления первичной обмотки показывает нулевое значение и здесь нам становится ясно, что первичная обмотка пришла в негодность \замкнута накоротко\.

IMG_2913

фото №6

При измерении сопротивления вторичной обмотки трансформатора \фото №6\,   наглядно видно, что данный показатель сопротивления по своему значению — так же не допустим.

Полагал бы, что причиной подобной неисправности магнетрона, являлась первоначальная неисправность силового трансформатора микроволновой печи.

Итак, в наглядном примере мы рассмотрели две основных причины неисправности микроволновки:

  1. неисправность силового трансформатора;
  2. неисправность магнетрона.

Остается дело лишь за последним, либо заменить два непригодных элемента состоящих в схеме  микроволновки, либо микроволновку оставить на запчасти и приобрести новую.

Принять то или иное решение, — индивидуальный выбор каждого из нас.

На этом пока все.  Следите за рубрикой.

 

zapiski-elektrika.ru

Устройство микроволновой печи: изучаем конструкцию

Микроволновая печь работает, пользуясь простым фактом: излучение 2,4 ГГц ударно поглощается водой. Пищевой продукт (даже печенье) содержит влагу. Мясо, овощи фрукты процентов на 60-90 образованы живительной влагой. Понятно, пропуская излучение частотой 2,4 ГГц через пищу, можно подогреть содержащуюся воду до приличного уровня. Устройство микроволновой печи позволит сделать. Близкую частоту занял WiFi, пользователи персональных компьютеров не поджариваются: излучение дозировано. Некоторые передатчики требуют получить разрешение перед использованием. Иначе ждите последствий, самым безобидным считаем повышение температуры тела. Страдают репродуктивная функция, иммунная система.

Внутри микроволновой печи

Сердцем микроволновой печи работает магнетрон. Испускает волны, нагревающие продукт. С какой мощность работает прибор. Как большинство электрических экземпляров бытовой техники, потребление мало зависит от того, что происходит с объектом труда. Температура магнетроном не отслеживается. Не так очевидно бросившим первый взгляд. Мощность газовой горелки падает по двум причинам:

  1. Потери кастрюли растут синхронно температуре.
  2. Эффективность нагрева падает с повышением жара.

Устройство СВЧ печи

Мощность отбирается от источника, преобразуется, вручается по месту назначения. Какой бы горячести ни было блюдо, получает фиксированное количество ватт каждый промежуток времени. Микроволновая печь управляется механическим программатором. Новое поколение приборов оснащено инфракрасным датчиком, измеряющим температуру пищи, гибко регулирующим скважность пачек питающих магнетрон импульсов. Условия готовки выдерживаются точно, стабильно, мощность микроволновой печи меняется, определяясь потребностями рецепта. Разумеется, потребление розетки не остается прежним.

Рассмотрим устройство магнетрона. Вакуумная камера изощренной формы, стенки которой образуют резонаторы выбранной длине волны (2,4 ГГц). Начальные колебания образованы пустотой. Вселенная неидеальна, микромир полон флуктуаций, порождающих процессы разной частоты. Благодаря резонаторам рост получают колебания, укладывающиеся в нужную длину волны. Прочие затухают. Чтобы электроны легче покидали катод, элемент накаляется переменным напряжением 6,3 В (примерное значение), подается разность потенциалов в единицы киловольт относительно положительного электрода. Получается демонстрируемая громадная мощность.

Приходилось слышать доводы за существование некоего напряжения: колебания образуются, не достигая анода. Получается якобы вечный двигатель, может греть, давать энергию. Господам теоретикам уместно напомнить: если петлей перестанет отбираться энергия, выходной ток станет нулевым. На анод не упадут электроны, нагрев отсутствует. Следовательно, домыслы хороши, когда требуется найти идеальный режим прибора, экономя энергию. Смысл глубок, идея витающих по спирали электронов, не достигающих анода, смотрится любопытно: отбор энергии Вселенной в произвольной точке пространства.

Принцип работы микроволновой печи целиком эксплуатирует ток розетки, уходящий питать магнетрон, греющий пищу. Волны снимаются петлей, находящейся в резонаторе. Передаются волноводу, создающему условия распространения волны 2,4 ГГц с минимальными потерями. Один открытый торец волновода касается рабочей камеры, прикрыт слюдяной пластиной, второй — закупорен. Штырь петли связи торчит ровно посередине, на расстоянии от ограничительной стенки, избегая мешать волнам отражаться в сторону рабочей камеры. Важный аспект, можно найти положение штырька, когда суммарное излученное поля равно нулю. Энергия сложится в канале противофазно, нагрев пищи отсутствует.

Устройство микроволновки

Высокочастотные колебания, образуя интерференционную картину, складываются, учитывая разницу фаз, количественно равна 180 градусов (противофаза) — получается полный нуль. Визуально наблюдаем, правильно сложив излучение двух лазеров (необходимо когерентное излучение). На уроках физики средних школ, ВУЗов часто демонстрируется подобное. Происходит с микроволновой печью. Картина поля изменчива. Внутри волновода излучение боле менее постоянно выходит в рабочую камеру, место дислокации тарелки изменяет процесс суперпозиции. Интерференционная картина определена размерами посуды, типом пищи. Мощность, преподносимая техническими характеристиками микроволновых печей, частично достигает съестного.

Много энергии гасится неправильным сложением фаз, фиксированное число улетучивается через дверцу. Суммарно КПД определяют, выставляя чаши, наполненные водой, греют от одной температуры до другой, пытаясь понять, оценить результат. Практически условия даже близко не стояли с опытом. Нацеливаем внимание читателей: микроволновая печь несовершенное устройство. КПД ниже 100%, вред может выйти немалый, будь экран поломан. Проверка – вопрос отдельный.

СВЧ печь изнутри

Практика показывает: металлическая сетка дверцы пропускает микроволновое излучение сотового телефона. Частота немного иная… Попробуем ноутбук и вайфай.

  1. Выключите прибор, вилку из сети повремените вынимать.
  2. Положите внутрь ноутбук с работающей сетью.
  3. Закройте дверцу.
  4. Наблюдайте уровень сигнала.

Ловит? Защита недостаточно эффективна. Держитесь от работающей микроволновой печи на почтительном расстоянии. Корпус прибора заземлен штатно, согласно общепринятым нормам. Полагаем, читатели потрудились выполнить предписания:

  1. Параметры микроволновых печей оценивали в лаборатории.
  2. Поле измерялось при работающем, загруженном приборе.
  3. Уровень не должен превышать норм.

Проблема проста: вопрос излучений, дозировки плохо изучен, измерениям доверять можно с натяжкой. Люди, работающие на предприятиях с излучениями, получают надбавку за вредность. Вопрос щекотливый, прибор пришел из США. Купите лучше мультиварку…

Конструкция микроволновой печи

Микроволновая печь хороша разогреть быстро. Детские бутылочки с молоком ставят в камеру. Не стали бы использовать принцип действия микроволновой печи в этих целях. Решайте сами, как поступить. В Швейцарии провели опыты, обосновывающие нашу точку зрения. Противоположная поддерживается рекламой, силой лобби промышленников, недостаточной изученностью вопроса.

Работа микроволновой печи

Много хорошего узнали о микроволновых печах, интересно знать, как работают агрегаты. Внутри обычный сетевой фильтр, с которого в конечном итоге питается трансформатор. Выходных обмоток две. Одна достаточно символическая, представлена парой витков изолированного провода. Отсюда получается 6 вольт питания накала катода магнетрона микроволновой печи. Прочие обмотки намотаны проводом с лаковой изоляцией, выглядят повнушительнее. Напряжение вторичной части составляет 1-2 кВ. Затем следует выпрямитель, сформированный высоковольтным диодом, впечатляющего размера конденсатором. Диод заперт, идет процесс заряда, на другой полуволне катод окажется под удвоенным напряжением. Потенциал составит 2-4 кВ.

Импульсы питают магнетрон, выдающий энергию рабочей камере. Работа контролируется механическим программатором. Аналогичный, посложнее, стоит в стиральных машинах. Устройство микроволновой печи не требует сложных операций. Внутри набор кулачков, задающих режим работы гриля, факт включения магнетрона, мощность микроволн регулируется периодами работы/бездействия. Внутри стоит таймер, включаемый-выключаемый трансформатором. Процесс сопровождается обычным замыканием-размыканием цепи. Чтобы исключить искру, цепь дополняют реле, которое в начальный период времени не пускает ток на трансформатор, ждет, пока поднимется напряжение управляющего затвора. Элемент забирает удар, от качественного исполнения зависит многое.

В результате трансформатор включается в цепь, выключается. Синхронно функционирует магнетрон. Вот как работает микроволновая печь. Современные модели в режиме измерения температуры используют инверторную схему, трансформатор питается формируемыми импульсами с нужными параметрами. Датчик отключается, прибор возвращается в исходное состояние.

В рассказе о том, как устроена микроволновая печь, нельзя умолчать об обилии внутренних микропереключателей, которые контролируют, закрыта ли дверца. От пустого включения (без пищи) защиты нет! Микроволновая печь требует контроля.

Это интересно! Высоковольтные линии порождают ионизацию воздуха. Обычно атмосфера заполняется избытком положительных частиц, вредных для здоровья. Главными врагами были кинескопы. Сегодняшние плазменные, жидкокристаллические дисплеи ведут себя поскромнее.

vashtehnik.ru

свч плазменный конвертор - патент РФ 2522636

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и может быть использовано при получении углеродных нанотрубок и водорода. СВЧ плазменный конвертор содержит проточный реактор 1 из радиопрозрачного термостойкого материала, заполненный газопроницаемым электропроводящим веществом - катализатором 2, помещенный в сверхвысокочастотный волновод 3, соединенный с источником сверхвысокочастотного электромагнитного излучения 5, снабженный концентратором СВЧ электромагнитного поля, выполненным в виде волноводно-коаксиального перехода (ВКП) 8 с полыми внешним и внутренним 9 проводниками, образующими разрядную камеру 11, и системой вспомогательного разряда. Система вспомогательного разряда выполнена из N разрядников 12, где N больше 1, расположенных в плоскости поперечного сечения разрядной камеры 11 равномерно по ее окружности. Продольные оси разрядников 12 ориентированы тангенциально по отношению к боковой поверхности разрядной камеры 11 в одном направлении. На выходном конце внутреннего полого проводника 9 коаксиала ВКП 8 выполнено сопло 10. Каждый из разрядников 12 снабжен индивидуальным газопроводом 13 для подачи плазмообразующего газа в зону разряда. Изобретение позволяет увеличить реакционный объём, производительность и продолжительность непрерывной работы, а также стабилизировать «горение» СВЧ разряда. 2 з.п. ф-лы, 2 ил. свч плазменный конвертор, патент № 2522636

Рисунки к патенту РФ 2522636

свч плазменный конвертор, патент № 2522636 свч плазменный конвертор, патент № 2522636

Изобретение относится к технике переработки углеводородного сырья, в частности природного газа, и производства углерода и водорода.

Одной из важнейших проблем рационального природопользования является глубокая переработка природного и попутного газа нефтедобычи. Здесь возможны многие варианты: превращение газа в жидкую фракцию, использование в качестве источника для производства электроэнергии, конверсия в такие ценные продукты как углерод и водород, потребность в которых достаточно высока. Перспективность получения углерода подтверждается большим интересом, связанным с его главной ролью в нанотехнологиях. В связи с этим следует отметить уникальность известных углеродных модификаций - фуллеренов и нанотрубок, открывающую широкие возможности их применения в фармакологии, материаловедении, электронике, автомобильной и авиакосмической отраслях, в военном деле и т.п.

Не менее значима и проблема получения водорода, необходимость в котором для нужд энергетики трудно переоценить. Для его получения в качестве основного сырья используется углеводородный газ.

Таким образом, подтверждается актуальность разработки технологии и средств получения чистого углерода и водорода, повышение эффективности процессов.

Известно устройство, реализующее способ эндотермических гетерофазных реакций, к которым относится и реакция диссоциации молекул углеводорода [СВЧ каталитический реактор для эндотермических гетерофазных реакций. Патент РФ № 2116826]. Новизна устройства состоит в том, что реактор выполнен в форме СВЧ резонатора, а рабочая смесь открыта для проникновения электромагнитного поля. Это позволяет осуществлять дополнительный нагрев рабочей смеси сырья и катализатора диссипацией СВЧ энергии на резистивных потерях материала. Устройство обладает недостатками, свойственными пиролизной диссоциации: низкая производительность, закоксовывание и, следовательно, малый срок службы катализатора.

Известно устройство для получения углерода и водорода из углеводородного газа (метана) [А.И.Бабарицкий и др. Импульсно-периодический СВЧ-разряд как катализатор химической реакции // ЖТФ. - 2000. - Т.70. - Вып. 11. - с.36-41], которое реализует процесс термической диссоциации метана на углерод и водород: СН4свч плазменный конвертор, патент № 2522636 2Н2+С при воздействии плазмы импульсно-периодического СВЧ разряда на предварительно нагретый газ. Устройство содержит источник для нагрева газа, СВЧ генератор, ферритовый циркулятор, разрядную камеру, волноводы для подвода СВЧ энергии в разрядную камеру. Недостатки известного устройства: необходимость дополнительного внешнего источника тепла для предварительного нагрева исходного углеводородного газа, т.е. неизбежные потери тепла и усложнение конструкции, а также относительно низкие степень конверсии метана и выход углерода и водорода.

Известно устройство для плазмохимической конверсии углеводородного газа (метана) в водород и углерод [Патент РФ № 2393988, опубл. 10.07.2010. Бюл. № 19], в котором предварительный нагрев и последующее разложение углеводородного газа на углерод и водород в плазме СВЧ разряда осуществляют совмещенным действием СВЧ электромагнитного поля и вещества-инициатора (катализатора). По совокупности технических признаков данный аналог выбран в качестве прототипа предлагаемого изобретения. Устройство содержит проточный реактор с раздельным входом углеводородного газа и выходом углерода и водорода, выполненный из радиопрозрачного, термостойкого материала, например кварцевого стекла, заполненный катализатором, снабженный концентратором сверхвысокочастотного электромагнитного поля и помещенный в S-образный волновод прямоугольного сечения через его середину перпендикулярно широким стенкам. К выходу реактора примыкает концентратор сверхвысокочастотного электромагнитного поля, выполненный в виде волноводно-коаксиального перехода (ВКП) с полым внутренним проводником, в котором аксиально размещен высоковольтный электрод, соединенный с источником высокого напряжения и образующий с внутренним проводником коаксиала ВКП систему вспомогательного разряда (электрический газовый разрядник), при этом высоковольтный электрод выполнен в виде трубки, заглушенной на выходном конце, и снабжен системой диаметрально противоположных отверстий. Во внутреннем проводнике коаксиала ВКП также выполнена система радиальных отверстий. Обе системы отверстий изолированы друг от друга газонепроницаемой диэлектрической перегородкой, расположенной в поперечном сечении внутреннего проводника коаксиала ВКП. Полость, ограниченная торцом внутреннего проводника и боковой внутренней поверхностью внешнего проводника коаксиала, образует разрядную камеру.

Устройство-прототип работает следующим образом. После продувки реактора азотом с целью вытеснения из его объема кислорода в S-образный волновод подается СВЧ энергия от сверхвысокочастотного генератора (магнетрона), работающего в непрерывном режиме. При воздействии СВЧ энергии в реакторе происходит разогрев катализатора за счет диссипации энергии на резистивных потерях до температур 400÷700°C. На втором этапе работы на высоковольтный электрод системы вспомогательного разряда подается импульс от источника высокого напряжения, под действием которого в пространстве между высоковольтным электродом и внутренним проводником коаксиала ВКП загорается тлеющий разряд. Данный разряд играет роль вспомогательного для создания начальной концентрации плазмы, достаточной для инициирования и поддержания в дальнейшем СВЧ разряда. Часть СВЧ энергии после прохождения через катализатор поступает в зону тлеющего разряда. При достаточном уровне напряженности электрической составляющей электромагнитного поля пробивается газ (азот) и поджигается СВЧ разряд. На третьем этапе в реактор подается метан (СНЧ) и отключается подача азота. Проходя нагретый катализатор, метан нагревается, что приводит к предварительному возбуждению молекул и образованию непредельных углеводородов (этилен, ацетилен). Эти продукты выносятся в зону СВЧ разряда, в плазме которого происходит окончательное разложение непредельных углеводородов на углерод и водород.

В ходе экспериментальной проверки условий поджига и поддержания вспомогательного (тлеющего) и основного (СВ4) разрядов было установлено, что используемое в прототипе конструктивное исполнение системы вспомогательного разряда обеспечивает стабильное инициирование и поддержание основного СВЧ разряда в смеси азот - метан при расходах метана до 1 м3/час и СВЧ мощности, вкладываемой в разряд порядка 2000 Вт. При увеличении расхода метана свыше 1 м3/час для обеспечения высокой степени конверсии необходимо повышать уровень СВЧ мощности, вводимой в зону разряда. При высокой мощности, рассеиваемой в разряде, возникают проблемы с нагревом и эрозией внутреннего проводника коаксиала (электрода) вплоть до его плавления. Уменьшение мощности с целью устранения перегрева электрода может приводить либо к невозможности инициирования СВЧ разряда, либо к его погасанию.

Недостатком системы вспомогательного разряда, реализованной в прототипе, является также «привязка» вспомогательного разряда к определенной точке электрода, что нарушает пространственную однородность плазмы инициирования СВЧ разряда атмосферного давления из-за его контракции, приводящей к снижению эффективности процесса конверсии.

С другой стороны, при увеличении расхода метана, проходящего через зону разряда, может оказаться недостаточной величина энерговклада вспомогательного разряда для создания начальной, необходимой для инициирования концентрации плазмы. При этом во всех режимах разложения метана (расход, температура, энерговклад) мощность вспомогательного разряда должны быть меньше мощности, вкладываемой в основной СВЧ разряд. Это условие диктуется общей эффективностью системы.

К недостаткам следует отнести и то, что при увеличении мощности вспомогательного разряда и расхода метана на разогретом до высокой температуры электроде разрядника в присутствии метана происходит образование углерода, который в виде углеродного мостика перекрывает разрядный промежуток вплоть до срыва вспомогательного и, как следствие, основного СВЧ разряда.

Технический результат предлагаемого изобретения заключается в повышении эффективности за счет увеличения реакционного объема, стабильности «горения» СВЧ разряда и вихревого стабилизирующего действия на плазменный факел СВЧ разряда, увеличении выхода целевых продуктов, производительности и продолжительности непрерывной работы конвертора.

Указанный технический результат достигается тем, что в предлагаемом СВЧ плазменном конверторе, содержащем, как и прототип, проточный реактор из радиопрозрачного термостойкого материала, заполненный газопроницаемым электропроводящим веществом - катализатором, помещенный в сверхвысокочастотный волновод, соединенный с источником сверхвысокочастотного электромагнитного излучения, снабженный концентратором СВЧ электромагнитного поля, выполненным в виде волноводно-коаксиального перехода (ВКП) с полыми внешним и внутренним проводниками, образующими разрядную камеру, и системой вспомогательного разряда, в отличие от прототипа, система вспомогательного разряда выполнена из N разрядников, где N>1, расположенных в плоскости поперечного сечения разрядной камеры равномерно по ее окружности, при этом продольные оси разрядников ориентированы тангенциально по отношению к боковой поверхности разрядной камеры в одном направлении.

Целесообразно, чтобы во внутреннем полом проводнике коаксиала ВКП на его выходном конце было выполнено сопло.

Целесообразно, чтобы каждый из разрядников был снабжен индивидуальным газопроводом для подачи плазмообразующего газа в зону разряда.

По сравнению с системой вспомогательного разряда прототипа предложенное исполнение системы в виде N разрядников, во-первых, увеличивает плазменный объем вспомогательного разряда, обеспечивая тем самым надежность инициирования основного СВЧ разряда, во-вторых, тангенциальное расположение разрядников в одном направлении относительно нормали к боковой поверхности разрядной камеры создает закрученный поток плазмообразующего газа (азота), увеличивая реакционный объем плазменного образования, время взаимодействия конвертируемого природного газа (метана) с плазмой, повышая стабильность «горения» СВЧ разряда и оказывая вихревое стабилизирующее действие на плазменный факел СВЧ разряда.

За счет данного исполнения системы вспомогательного разряда повышается эффективность конверсии, выход углерода и водорода при повышенных (более 1.0 м3 /час) расходах конвертируемого газа, требующих повышения энерговклада в разряд.

На фиг.1 схематически представлен пример выполнения конструкции заявляемого устройства. На фиг.2 представлено поперечное сечение разрядной камеры с системой вспомогательного разряда.

Предлагаемое устройство содержит реактор 1, выполненный из трубчатого радиопрозрачного термостойкого материала, например кварцевого стекла, заполненного гранулированной массой вещества - катализатора 2, например железными опилками. Реактор 1 установлен поперек (например, S-образного) волновода 3 прямоугольного сечения, через середину его широких стенок (в частности, перпендикулярно стенкам в максимуме напряженности электрического поля волны Н 10 в волноводе прямоугольного сечения). Вход волновода 3 через циркулятор 4 соединен с источником сверхвысокочастотного электромагнитного излучения (магнетроном) 5. Волновод 3 оснащен запредельным круглым волноводом 6, который предотвращает излучение СВЧ энергии наружу. В выходном конце волновода 3 установлен подвижный короткозамыкающий поршень 7. Гранулированное вещество - катализатор 2 размещено в полости реактора 1 в ассоциированном (уплотненном) состоянии, обеспечивающем незатрудненное сквозное протекание газа. К выходному концу реактора примыкает концентратор СВЧ электромагнитной энергии, выполненный в виде волноводно-коаксиального перехода (ВКП) 8, с полым внутренним проводником 9, на выходном конце которого выполнено сопло 10. Охлаждаемая разрядная камера 11, ограниченная внешним проводником коаксиала ВКП, содержит систему вспомогательного разряда, состоящую из N, где N>1, разрядников 12, каждый из которых снабжен индивидуальным газопроводом 13 для подачи плазмообразующего газа в разрядный (межэлектродный) промежуток и содержит изолированные друг от друга внешний 14 и внутренний 15 электроды.

Разрядники 12 расположены равномерно по окружности и ориентированы своими продольными осями тангенциально к боковой поверхности разрядной камеры 11 в одном направлении.

Предлагаемое устройство работает следующим образом.

На первом этапе реактор 1 продувается инертным газом (азотом) с целью вытеснения из его объема кислорода воздуха. Затем в волновод 3 от магнетрона 5 подается СВЧ энергия, за счет которой в реакторе 1 происходит разогрев частиц вещества - катализатора 2 под действием наведенных вихревых токов и диссипативных потерь энергии до температур 500-800°С. При этом между частицами катализатора 2 возможны электрические микроразряды и автоэлектронная эмиссия, переходящая, по мере увеличения температуры частиц, в термоэлектронную.

На втором этапе работы на разрядники 12 подаются импульсы высокого напряжения от источника (не показан), под действием которых между электродами 14, 15 разрядников 12 загорается тлеющий разряд. Потоком азота, подаваемого в разрядный промежуток каждого разрядника, плазма разряда выдувается внутрь разрядной камеры 11. Концентрация этой плазмы оказывается достаточной для инициирования и поддержания в дальнейшем основного СВЧ разряда. Доля СВЧ энергии, не поглотившейся веществом - катализатором 2, поступает по волноводу 3 в зону вспомогательного разряда разрядной камеры 11. При достаточном уровне напряженности электрической составляющей электромагнитного СВЧ поля пробивается газ и в разрядной камере 11 в области торца внутреннего полого проводника 9 коаксиала ВКП возникает СВЧ разряд. Настройка ВКП на оптимальный режим работы осуществляется с помощью подвижного короткозамыкающего поршня 7.

Созданная ранее системой вспомогательного разрядника совокупность тлеющих разрядов облегчает зажигание СВЧ разряда, что снимает проблемы, связанные с эрозией и разогревом внутреннего проводника 9, характерными для устройства-прототипа.

На третьем этапе в реактор 1 подается метан (СН 4) и отключается подача азота в реактор. Проходя нагретое вещество - катализатор 2 метан нагревается, что приводит к образованию непредельных углеводородов (этилен, ацетилен), а также активных частиц (радикалов ионов, возбужденных молекул), способствующих разложению углеводородов в цепных реакциях. Конвертированные и оставшиеся газы, углеводородные продукты выносятся в зону концентратора сверхвысокочастотного электромагнитного поля, где одновременно горят СВЧ газовый разряд и инициирующий его тлеющий разряд. Здесь в плазме газового СВЧ разряда происходит окончательное разложение непредельных углеводородов на углерод и водород, которые выносятся интенсивным газовым потоком из зоны плазмохимической реакции. Для предлагаемого устройства, как и для прототипа, предположительно участие вещества - катализатора 2 химической реакции, в результате которой при указанных выше температурах на его поверхности образуется кристаллический углерод (нанотрубки), За счет плазмы микроразрядов, возбуждаемых между отдельными частицами вещества - катализатора СВЧ электромагнитным полем, кристаллический углерод сбивается с поверхности частиц катализатора и уносится из реактора газовым потоком. Это позволяет увеличить «срок жизни» вещества -катализатора и повысить эффективность конверсии природного газа.

В ходе экспериментальной проверки условий поджига и стабильности вспомогательного (тлеющего) и основного (СВЧ) разрядов было установлено, что оба типа разрядов устойчиво горят в атмосфере азота. При переходе на азотно-метановую смесь или на чистый метан зафиксированы нарушения стабильности разряда, вплоть до его гашения за счет образования углеродного мостика между электродами в месте привязки разряда. При перемыкании электродов вспомогательный разряд гаснет и, соответственно, гаснет основной СВЧ разряд. В устройстве-прототипе эта проблема частично снята за счет создания конструкции разрядника, обеспечивающей горение вспомогательного разряда преимущественно в среде азота, а СВЧ разряда в среде метана. Однако с увеличением расхода метана до величин, представляющих практический интерес при фиксированном для вспомогательного разряда расходе азота, резко возрастает скорость образования углеродного материала на электродах, приводящая к гашению разрядов. Данная проблема решена за счет предлагаемой конструкции системы вспомогательного разряда.

В соответствии с чертежом тангенциально расположенные по периферии разрядной камеры 11 разрядники 12 вспомогательного разряда и полый проводник 9, по которому в разрядную камеру подается метан и в зоне которого зажигается СВЧ разряд, пространственно разнесены. Кроме этого, данное расположение разрядников и их исполнение обеспечивают вращательную стабилизацию факела плазмы СВЧ разряда потоком инертного газа (азота), отжимая его от стенок разрядной камеры. За счет этого уменьшается вероятность образования углеродных отложений на электродах разрядников и их перемыкания.

Благодаря предложенной конструкции системы вспомогательные разряды зажигаются и горят преимущественно в атмосфере азота. Газом они выдуваются в объем разрядной камеры и инициируют СВЧ разряд в зоне торца внутреннего проводника 9 коаксиала ВКП с преобладанием в ней концентрации метана. Данное исполнение системы вспомогательного разряда увеличивает объем плазменного образования, повышает стабильность СВЧ разряда и пространственную однородность его плазмы, повышает выход продуктов конверсии (углерода и водорода) и эффективность конвертора.

В конкретном примере реализации предлагаемого изобретения внутренний проводник 9 коаксиала ВКП, являющийся электродом разрядной камеры, выполнен из нержавеющей стали полым трубчатым диаметром 16 мм и длиной l, определяющейся из условия свч плазменный конвертор, патент № 2522636 ,

где m=0,1,2,3свч плазменный конвертор, патент № 2522636 - целые числа, свч плазменный конвертор, патент № 25226360/4 - четверть рабочей длины волны СВЧ генератора.

При значении рабочей частоты СВЧ генератора f 0=2450 МГц, свч плазменный конвертор, патент № 25226360=12,24 см данное условие выбора длины электрода диктуется необходимостью расположения торца электрода в пучности электрической напряженности СВЧ поля.

В выходном конце электрода выполнено конусное расширяющееся сопло для формирования плазменного факела. Внешний проводник коаксиала ВКП, представляющий собой цилиндрическую разрядную камеру, снабженную четырехэлектродной системой вспомогательного разряда, в своем продолжении является круглым волноводом с внутренним диаметром 40 мм, запредельным для волны СВЧ генератора свч плазменный конвертор, патент № 25226360=12,24 см. За счет образования отраженной волны от запредельного волновода увеличивается напряженность электрического поля у торца электрода до пробивной, что повышает стабильность зажигания СВЧ разряда и повышает эффективность процесса конверсии. Подвод СВЧ энергии в разрядную камеру осуществляется от СВЧ генератора с регулируемой выходной мощностью 5 через циркулятор 4 по волноводу прямоугольного сечения 90×45 мм. В качестве СВЧ генератора использован магнетрон типа М-168 с выходной мощностью до 5 кВт в непрерывном режиме, а в качестве циркулятора - ферритовый вентиль типа ВФВВ2-39. Оба этих прибора отечественного производства.

Ввод конвертируемого газа (метана) в реактор осуществляется через запредельный круглый волновод (он же трубопровод) 6.

Импульсы высокого напряжения от источника 15 кВ с частотой 100 Гц подают на центральные электроды 75 разрядников 12 через высоковольтные вводы, представляющие собой автомобильные свечи зажигания, например А20Д, у которых удален боковой электрод (не показано). Каждый из разрядников 12 снабжен индивидуальным газопроводом для подачи в межэлектродный промежуток плазмообразующего газа (азота). Из разрядной камеры продукты реакции поступают в сборники углерода и водорода (не показано).

В конверторе предусмотрено водяное охлаждение разрядной камеры.

Таким образом, новая конструкция системы вспомогательного разряда позволила достичь основного технического результата заявляемого изобретения - повышение эффективности конвертора за счет следующих факторов.

1. Увеличение плазменного образования (реакционного объема) в разрядной камере.

2. Повышение стабильности инициирования и поддержания СВЧ разряда.

3. Стабилизирующее действие вихревого газового потока на плазменный факел СВЧ разряда.

4. Повышенный энерговклад в СВЧ разряд при больших расходах конвертируемого газа.

5. Увеличение выхода целевых продуктов (углерода и водорода).

6. Повышение производительности и продолжительности непрерывной работы конвертора.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. СВЧ плазменный конвертор, содержащий проточный реактор из радиопрозрачного термостойкого материала, заполненный газопроницаемым электропроводящим веществом - катализатором, помещенный в сверхвысокочастотный волновод, соединенный с источником сверхвысокочастотного электромагнитного излучения, снабженный концентратором СВЧ электромагнитного поля, выполненным в виде волноводно-коаксиального перехода (ВКП) с полыми внешним и внутренним проводниками, образующими разрядную камеру, и системой вспомогательного разряда, отличающийся тем, что система вспомогательного разряда выполнена из N разрядников, где N>1, расположенных в плоскости поперечного сечения разрядной камеры равномерно по ее окружности, при этом продольные оси разрядников ориентированы тангенциально по отношению к боковой поверхности разрядной камеры в одном направлении.

2. СВЧ плазменный конвертор по п.1, отличающийся тем, что во внутреннем полом проводнике коаксиала ВКП на его выходном конце выполнено сопло.

3. СВЧ плазменный конвертор по п.1, отличающийся тем, что каждый из разрядников снабжен индивидуальным газопроводом для подачи плазмообразующего газа в зону разряда.

www.freepatent.ru