10.4 Система зажигания (только бензиновые двигатели). Зажигание двигателя


Система зажигания бензиновых двигателей автомобиля

Система зажигания предназначена для поджигания топливовоздушной смеси в бензиновых и газовых двигателях внутреннего сгорания. Поджог осуществляется за счет электрического разряда между электродами свечи при подведении к ней напряжения в 18000 – 20000 Вольт.

Основные составные части системы зажигания (каждый из элементов описан подробно ниже):

  • выключатель зажигания;
  • катушка зажигания;
  • прерыватель-распределитель;
  • регуляторы опережения зажигания;
  • свечи зажигания;
  • провода, соединяющие данные элементы.

Система зажигания с распределителем

На рисунке 10.6 приведена типичная схема системы зажигания с распределителем.

Контактная система зажигания двигателя с распределителем

Рисунок 10.6 Контактная система зажигания двигателя с распределителем.

 Выключатель зажигания

Выключатель зажигания собран в сборе с замком зажигания. Основная функция данного выключателя — запитывание потребителей электрическим током от источников питания. Система зажигания в целом — это тоже потребитель электротока. Как видно из схемы ниже, через выключатель от источника питания запитывается первичная обмотка катушки зажигания.

 Катушка зажигания

По сути, катушка зажигания — это трансформатор, который преобразует низкое напряжение от бортовых источников питания (12 В) в напряжение, достаточное для получения мощной искры между электродами свечи, необходимой для поджигания топливовоздушной смеси в цилиндре двигателя. Достаточное напряжение – это 20 – 30, а то и 60 тысяч вольт.

Для такого рода преобразования в корпусе катушки имеются две обмотки – первичная и вторичная, а также сердечник. Каждая обмотка имеет различное количество витков и сечение проводов.

Когда вы поворачиваете ключ и включаете зажигание от аккумуляторной батареи, электрический ток поступает на первичную обмотку и через контакты замыкается на «массу». При прохождении через первичную обмотку тока вокруг катушки создается электромагнитное поле. Как только контакты разомкнутся и течение тока через первичную катушку резко прекратится, во вторичной катушке возникнет необходимое напряжение и ток. И уже ток в 30 и более тысяч вольт от вторичной обмотки катушки зажигания потечет через распределитель к свече зажигания.

 Прерыватель-распределитель

Прерыватель-распределитель (в простонародии — «трамблер») предназначен для того, чтобы прерывать и распределять: прерывать — ток, текущий через первичную обмотку катушки зажигания, распределять – ток от вторичной катушки зажигания между свечами зажигания в той последовательности, которая предусмотрена порядком работы двигателя. В центр крышки распределителя подсоединен высоковольтный провод от вторичной обмотки катушки зажигания, а по периметру крышки расположены выводы, которые через высоковольтные провода соединены со свечами зажигания.

Прерыватель может быть контактным и бесконтактным. В контактном прерывателе разрыв цепи первичной обмотки катушки зажигания происходит за счет контактов, что очень ненадежно.

ПримечаниеПричина ненадежности контактов в том, что исчезающее магнитное поле пересекает витки не только вторичной, но и первичной обмотки, вследствие чего в ней возникает ток самоиндукции и напряжение около 250-300 вольт. Это приводит к искрению и обгоранию контактов, кроме того, замедляется прерывание тока в первичной обмотке, что приводит к уменьшению напряжения во вторичной обмотке. Конечно, это решается установкой конденсатора (обычно емкостью в 0,25 мкф). Однако все-таки имеет место такое явление, как эрозия – постепенное разрушение поверхности контактов, вследствие которого контакты прилегают неплотно и понижается напряжение, возникающее во вторичной обмотке катушки зажигания.

Чтобы исключить механическую составляющую прерывателя, вместо контактов установили специальное устройство, называемое датчиком Холла. Никаких контактов, только управляющие импульсы, которые контролируют работу катушки зажигания.

 Регуляторы опережения зажигания

Для того чтобы топливовоздушная смесь успела сгореть, пока поршень движется от верхней мертвой точки к нижней, ее необходимо поджигать немного раньше. Основным показателем момента зажигания является угол опережения зажигания, который говорит нам о том, за сколько градусов до ВМТ на такте сжатия возникнет пробой между электродами свечи.

В распределителях описанного выше типа изменение угла опережения зажигания осуществляется механическим путем — проворачиванием контактов относительно приводного вала в ту или иную сторону.

 Свечи зажигания

Элемент, благодаря которому в цилиндре поджигается топливовоздушная смесь, называется свечой зажигания. Устройство этого элемента простейшее (смотрите рисунок 10.7): корпус с нарезанной резьбой и электродом (отрицательным, так как контактирует с «массой» — головкой блока цилиндров), изолятор, внутри которого проходит положительный электрод. К этому электроду с одной стороны через наконечник подсоединен высоковольтный провод системы зажигания. Положительный электрод расположен рядом с отрицательным электродом (воздушный зазор между ними составляет 0,8-1,2 мм — в зависимости от модели свечи). Когда от распределителя зажигания высоковольтный разряд по проводу подводится к положительному электроду, воздушный зазор пробивается, то есть возникает искра — довольно мощная, чтобы поджечь топливовоздушную смесь.

Свеча зажиганияРисунок 10.7 Свеча зажигания.

Микропроцессорная система зажигания

Как уже не раз было сказано, развитие автомобилестроения движется семимильными шагами и на смену системе зажигания с распределителем пришли микропроцессорные системы. В них нет каких-либо вращающихся и подвижных частей (смотрите рисунок 10.8), но есть катушки зажигания (все чаще — по катушке на каждый цилиндр), электронный блок управления (с интегрированным блоком зажигания) и коммутатор (если блок катушки зажигания один) или коммутаторы (если катушек зажигания несколько).

Система зажигания с микропроцессорным управлениемРисунок 10.8 Система зажигания с микропроцессорным управлением.

В электронный блок управления стекаются данные от ряда датчиков, обрабатывая которые ЭБУ выдает управляющий сигнал на коммутатор (или коммутаторы), определяющий, в какой момент поджечь в цилиндре топливовоздушную смесь. Получение каждого искрового разряда производится по электронным сигналам с очень высокой точностью и без использования каких-либо подвижных частей. Во многих двигателях искра образуется не только во время такта сжатия (это значит, что каждая свеча генерирует искровой разряд каждый раз, когда поршень доходит до ВМТ). Содержание вредных компонентов в отработавших газах при этом несколько снижается.

monolith.in.ua

Система зажигания двигателя - Cars History.ru

Приборы батарейного зажигания

Для получения надежного искрового разряда при расстоянии между электродами свечи зажигания 0,5 — 0,7 мм и давлении сжатой в цилиндре рабочей смеси, достигающем 1,0 — 1,2 Мн/м2 (10 — 12 кгс/см2), к электродам должен быть подведен ток напряжением не ниже 10 000 — 12 000 в.

У карбюраторных двигателей отечественных автомобилей применяют систему батарейного зажигания.

Схема батарейного зажигания

Схема батарейного зажигания

Схема батарейного зажигания:

Р, ВК, ВК-Б, КЗ — зажимы; 1 — конденсатор; 2 — кулачок прерывателя; 3 и 4 — контакты прерывателя; 5 — вторичная обмотка катушки зажигания; 6 — сердечник; 7 — первичная обмотка катушки зажигания; 8 — добавочное сопротивление; 9 — выключатель (замок) зажигания; 10 — тяговое реле стартера; 11 — контактный диск реле; 12 — аккумуляторная батарея; 13 — крышка распределителя; 14 — ротор; 15 — боковые контакты; 16 — провод высокого напряжения; 17 — свеча зажигания.

В систему зажигания входят: катушка зажигания, прерыватель-распределитель, конденсатор, свечи зажигания, выключатель (замок) зажигания и провода. Указанные приборы и детали образуют две электрические цепи — низкого и высокого напряжения.

Действует система зажигания следующим образом. При включенном зажигании и замкнутых контактах 3 и 4 прерывателя по цепи низкого напряжения проходит ток от аккумуляторной батареи. Цепь тока низкого напряжения: положительный выводной штырь батареи 12 — зажим тягового реле 10 стартера — выключатель зажигания 9 — зажим ВК-Б катушки зажигания — добавочное сопротивление 8 — зажим ВК — первичная обмотка 7 — зажим Р — подвижной контакт 3 прерывателя — неподвижный контакт 4 — масса — отрицательный выводной штырь батареи.

Ток низкого напряжения, протекающий по первичной обмотке катушки зажигания (первичный ток), создает в ее сердечнике 6 магнитное поле, пронизывающее витки обеих обмоток. Когда выступ вращающегося кулачка 2, нажимая рычаг подвижного контакта 3 прерывателя, отведет этот контакт от неподвижного контакта 4, цепь первичного тока прервется и сердечник катушки размагнитится.

Вследствие этого во вторичной обмотке 5 катушки зажигания индуцируется э.д.с., величина которой благодаря быстрому уменьшению магнитного потока в сердечнике и большому числу витков этой обмотки достигает 16 000 — 20 000 е. Под действием индуцированной во вторичной обмотке э.д.с. на электродах свечи возникает искровой разряд и в цепи вторичной обмотки появляется ток высокого напряжения (вторичный ток).

Цепь тока высокого напряжения: вторичная обмотка катушки — центральный контакт крышки 13 распределителя — ротор 14 — боковой контакт 15 — провод 16 высокого напряжения — электроды свечи 17 — масса — аккумуляторная батарея — зажим реле стартера — выключатель зажигания — добавочное сопротивление — первичная обмотка катушки — вторичная обмотка.

В момент размыкания цепи тока низкого напряжения в первичной обмотке катушки индуцируется э.д.с. самоиндукции величиной 200 — 300 в. Под ее действием в цепи низкого напряжения возникает ток самоиндукции. Поскольку направление тока самоиндукции совпадает с направлением прерванного первичного тока, он противодействует размагничиванию сердечника катушки и этим снижает напряжение вторичного тока. Кроме того, ток самоиндукции, проходя через начинающие размыкаться контакты прерывателя, вызывает искрение между ними и быстрое подгорание контактов.

Это вредное влияние тока самоиндукции устраняет конденсатор 1. Возникающий в момент начала размыкания контактов прерывателя кратковременный ток самоиндукции заряжает конденсатор. Так как конденсатор включен параллельно контактам прерывателя, они почти не подгорают.

Конденсатор разряжается через первичную обмотку катушки зажигания. При этом разрядный ток конденсатора, протекая по этой обмотке в направлении, противоположном направлению первичного тока, способствует более резкому исчезновению магнитного поля, созданного первичным током, благодаря чему повышается напряжение вторичного тока.

Катушка зажигания, преобразующая ток аккумуляторной батареи (первичный ток) в ток высокого напряжения, поступающий к свечам (вторичный ток), состоит из стального корпуса, сердечника, первичной и вторичной обмоток, карболитовой крышки с центральным контактом и зажимами В К-Б, В К и Р и добавочного сопротивления.

Корпус катушки при помощи хомута и винтов укреплен в моторном отсеке автомобиля. Сердечник изготовлен из отдельных, полосок электротехнической стали, благодаря чему ослабляются индуцируемые в нем вихревые токи. Вторичная обмотка состоит из 18 — 20 тыс. витков эмалированного провода диаметром 0,07 — 0,10 мм и намотана на картонную трубку, установленную на сердечнике.

Первичная обмотка, имеющая 300 — 350 витков изолированного провода диаметром 0,7 — 0,85 мм, намотана поверх вторичной и изолирована от нее слоем специальной бумаги. Чтобы повысить надежность изоляции, обе обмотки пропитаны трансформаторным маслом. С этой же целью все свободные полости в корпусе катушки залиты специальной изоляционной массой, а у некоторых катушек зажигания (например, Б-13 автомобилей ЗИЛ-130, ГАЗ-13 «Чайка» и др.) заполнены трансформаторным маслом.

Добавочное сопротивление (вариатор) 8 улучшает работу катушки зажигания при больших числах оборотов коленчатого вала двигателя, а также облегчает пуск двигателя стартером. Когда двигатель работает на малых оборотах, контакты прерывателя остаются замкнутыми сравнительно длительное время, и в течение него сила тока в первичной обмотке успевает достигнуть максимальной величины.

При этом стальная спираль вариатора нагревается и ее электрическое сопротивление возрастает, ограничивая силу тока в первичной цепи. Во время работы на больших оборотах время замкнутого состояния контактов уменьшается и сила тока в первичной обмотке не успевает возрасти до максимальной величины. Нагрев и сопротивление вариатора уменьшаются, что частично компенсирует ослабление тока в первичной обмотке. Поэтому напряжение вторичного тока остается достаточно высоким.

При пуске двигателя стартером вариатор выключается (замыкается накоротко) контактным диском и реле стартера. Поэтому, несмотря на падение напряжения аккумуляторной батареи в момент включения стартера, сила тока в первичной обмотке катушки зажигания и напряжение во вторичной обмотке сохраняют достаточную величину.

«Автомобиль», под. ред. И.П.Плеханова

Прерыватель-распределитель

Прерыватель-распределитель состоит из прерывателя и распределителя, объединенных в один прибор с общим приводом. Прерыватель разрывает в требуемые моменты цепь первичного тока. Он состоит из чугунного корпуса 19, неподвижного опорного 7 и подвижного 8 дисков, вольфрамовых контактов 25 и 26, валика 12, кулачка 22, центробежного и вакуумного регуляторов опережения зажигания и октан-корректора. Прерыватель-распределитель Прерыватель-распределитель: 1 —…

Опережение зажигания

Искровой разряд (искра) должен появляться в свече, когда поршень несколько не доходит до в.м.т. в конце сжатия, т. е. с опережением до в.м.т. Это необходимо, чтобы к моменту прохождения поршнем в.м.т. рабочая смесь успела полностью воспламениться. Величину опережения зажигания измеряют углом поворота коленчатого вала от момента появления искры до прихода поршня в в.м.т. Этот угол…

Свечи зажигания

В стальном корпусе 4 помещен керамический изолятор 7 с центральным электродом 1. Изолятор зажат между медными кольцевыми прокладками 5 и 6 и укреплен путем завальцовывания верхней кромки корпуса свечи. В нижнюю часть корпуса запрессован боковой электрод 2. Нижняя часть центрального электрода и боковой электрод изготовлены из сплава никеля с марганцем. Между электродами должен быть зазор…

В описанной выше системе батарейного зажигания с ростом частоты вращения коленчатого вала двигателя снижается напряжение во вторичной цепи, вызываемое (особенно у двигателей с большим числом цилиндров) сокращением времени замкнутого состояния контактов прерывателя, вследствие чего уменьшается магнитный поток в катушке зажигания. Этого можно было бы избежать, увеличив силу тока в первичной цепи, но такое увеличение вызывает…

Неисправности в системе зажигания приводят к нарушению моментов воспламенения рабочей смеси в цилиндрах, перебоям в работе свечей или полному прекращению искрообразования. Для проверки наличия тока высокого напряжения снимают крышку распределителя, вынимают из гнезда центрального контакта провод высокого напряжения, включают зажигание и, удерживая конец провода высокого напряжения на расстоянии 4 — 5 мм от двигателя (массы),…

Уход за приборами зажигания

Ежедневное обслуживание Проверить внешним осмотром состояние прерывателя-распределителя, свечей зажигания и проводов низкого и высокого напряжения. Первое и второе технические обслуживания: очистить приборы зажигания снаружи; смазать прерыватель; проверить состояние и действие прерывателя-распределителя, свечей и катушки зажигания, установку момента зажигания. Выполнение операций обслуживания приборов зажигания Смазка прерывателя-распределителя. Необходимо смазать: втулки валика прерывателя, повернув на один оборот крышку…

www.carshistory.ru

зажигание двигателя - это... Что такое зажигание двигателя?

 зажигание двигателя

Engineering: engine ignition

Универсальный русско-английский словарь. Академик.ру. 2011.

  • зажигание газовой горелки
  • зажигание дуги

Смотреть что такое "зажигание двигателя" в других словарях:

  • ЗАЖИГАНИЕ — воспламенение рабочей смеси в цилиндрах двигателя внутреннего сгорания от электрической искры свечи зажигания …   Большой Энциклопедический словарь

  • ЗАЖИГАНИЕ — система воспламенения горючей смеси в цилиндрах двигателя. В современных карбюраторных и газовых двигателях осуществляется электрической искрой, источником которой являются аккумулятор, динамо машина или магнето. Самойлов К. И. Морской словарь. М …   Морской словарь

  • зажигание — я; ср. 1. к Зажигать. Долго провозился с зажиганием костра из за дождя. 2. Приспособление для воспламенения горючей смеси в двигателях внутреннего сгорания. Включить з. Замок зажигания. Повернуть ключ от зажигания. * * * зажигание воспламенение… …   Энциклопедический словарь

  • Зажигание — Система зажигания  это совокупность всех приборов и устройств, обеспечивающих появление искры в момент, соответствующий порядку и режиму работы двигателя. Зажигание ханукии Зажигание меноры …   Википедия

  • Зажигание —         в двигателях внутреннего сгорания (ДВС), принудительное воспламенение рабочей смеси в камере сгорания ДВС. Получили распространение две системы З. батарейное и от Магнето. При батарейном З. (рис.) электрический ток низкого напряжения (6… …   Большая советская энциклопедия

  • зажигание — в двигателях внутреннего сгорания, принудительное воспламенение горючей смеси в камере сгорания двигателя. В бензиновых и газовых двигателях зажигание происходит от искры, возникающей между электродами свечи зажигания при электрическом разряде. В …   Энциклопедия техники

  • Зажигание — (в двигателях внутреннего сгорания), воспламенение рабочей смеси в цилиндрах двигателя внутреннего сгорания от электрической искры свечи зажигания …   Автомобильный словарь

  • Пусковая система двигателя внутреннего сгорания — Запрос «Кикстартер» перенаправляется сюда; О сайте см. Kickstarter. Двигатель внутреннего сгорания любого типа не создаёт вращающего момента в неподвижном состоянии. Прежде чем он начнёт работать, его нужно раскрутить с помощью внешнего источника …   Википедия

  • Запуск двигателя внутреннего сгорания — Содержание 1 Мускульная сила человека 2 Электростартёр 3 Вспомогательный ДВС …   Википедия

  • Пусковая система двигателя — Содержание 1 Мускульная сила человека 2 Электростартёр 3 Вспомогательный ДВС …   Википедия

  • Калильное зажигание — Двухтактный авиамодельный калильный двигатель …   Википедия

universal_ru_en.academic.ru

Двигатели с принудительным зажигание - Справочник химика 21

    В двигателях с принудительным зажиганием смесь топлива с воздухом может готовиться в специальном устройстве — карбюраторе, либо непосредственно в камере сгорания, куда бензин впрыскивается с помощью форсунки. Непосредственный впрыск бензина применяют в авиационных поршневых двигателях и в некоторых моделях зарубежных автомобильных двигателей. Во всех отечественных двигателях с принудительным зажиганием горючая смесь образуется в карбюраторах и затем по впускному трубопроводу попадает в камеры сгорания, т. е. отечественные бензиновые автомобильные двигатели являются карбюраторными. [c.8]     Описанные выше двигатели с принудительным зажиганием и дизели называют четырехтактными за один оборот коленчатого вала происходят впуск и сжатие, за следующий оборот — расщирение и выпуск. Но существуют и двухтактные двигатели. У них некоторые процессы совмещены, и весь цикл протекает за один оборот коленчатого вала. В конце такта расширения открывается выпускное окно, куда выводятся отработавшие газы, и затем открывается впускное окно или впускной клапан, через которые в цилиндр поступает горючая смесь или воздух (в дизеле). Поршень доходит до нижней мертвой точки (крайнее положение при движении поршня в сторону коленчатого вала) и начинает возвращаться к головке цилиндра, перекрывает впускные и выпускные окна, и смесь или воздух в цилиндре сжимается. Перед подходом поршня к верхней мертвой точке в камеру сгорания подается электрическая искра или с помощью форсунки впрыскивается топливо (в дизелях), и вновь начинается процесс расширения. [c.12]

    Среди оксигенатов наибольшее применение получают спирты, эфиры и их смеси. Спирты в качестве самостоятельных топлив или компонентов бензинов известны давно. Среди спиртов, с учетом колоссальных сырьевых ресурсов и ряда других технико-экономических факторов, наиболее перспективен в качестве компонента топлива для двигателей с принудительным зажиганием — метанол. [c.225]

    ДВИГАТЕЛЕЙ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ [c.323]

    Бензины — топливо для двигателей с принудительным зажиганием  [c.317]

    Таким образом, характерным отличием второй схемы рабочего цикла от первой является самовоспламенение топлива. Двигатели, рабочий цикл у которых протекает по второй схеме, называют дизелями. Процесс образования горючей смеси в да-зелях происходит внутри цилиндра. Для достижения высоких температур в дизельном двигателе приходится сжимать воздух во много раз больше (в 15—17 раз), чем сжимают топливовоздушную смесь в двигателе с принудительным воспламенением (в 7—9 раз). Более высокая степень сжатия в дизеле обеспечивает и более высокий коэффициент полезного действия в таких двигателях. Для совершения одной и той же работы в дизеле расходуется топлива примерно на 25—30% меньше, чем в двигателе с принудительным зажиганием. Высокая степень сжатия в дизеле обусловливает и высокие давления и нагрузки, что требует применения более прочных деталей. При одной и той же мощности материалоемкость дизельного двигателя обычно больше. Тем не менее планами развития народного хозяйства нашей страны предусмотрена широкая дизелизация автомобильного парка и значительное расширение использования дизелей во всех отраслях промышленности. [c.26]

    Газообразные углеводороды находят применение в качестве топлив для двигателей внутреннего сгорания и в первую очередь для двигателей с принудительным зажиганием. Появляется все больше автомобилей, рассчитанных на использование газового топлива. Углеводородные газовые топлива для автомобилей по их агрегатному состоянию при обычных температурах делят на сжатые сжиженные. [c.31]

    Из спиртов наиболее интересен метанол и как самостоятельный вид топлива, и как компонент топлив нефтяного происхождения. Метанол привлекает прежде всего широкими сырьевыми возможностями (рис. 4). Его можно производить из газа, угля, древесины, биомассы, различного рода отходов и др. Использовать метанол можно непосредственно как топливо или как промежуточное сырье для получения различных соединений. Добавление 5% метанола в бензин нефтяного происхождения не вызывает каких-либо трудностей в эксплуатации двигателей и уже сейчас практикуется в некоторых странах. Наряду с преимуществами метанол имеет и недостатки, над преодолением которых в настоящее время работают и у нас в стране и за рубежом. К недостаткам метанола следует отнести его высокую токсичность, меньшую теплоту сгорания, высокую теплоту испарения, коррозионную активность, гигроскопичность и др. Тем не менее широкие сырьевые ресурсы позволяют считать метанол перспективным топливом. Ведутся работы по применению метанола не только в двигателях с принудительным зажиганием, но и в дизелях. [c.33]

    Нормальное сгорание. В двигателях с принудительным зажиганием смесь паров топлива и воздуха с остаточными газами воспламеняется от электрической искры и сгорает в процессе распространения фронта пламени по всей камере сгорания. В этом процессе могут быть выделены три фазы сгорания (рис. 17)  [c.100]

    Основной недостаток спиртов — низкая теплота сгорания. Кроме того, многие из них ограниченно растворимы в бензине, особенно в присутствии воды. Среди спиртов с учетом сырьевых ресурсов, технологии получения и ряда технико-экономических факторов наиболее перспективен в качестве топлива для двигателей с принудительным зажиганием — метанол. Безводный метанол при обычных температурах хорошо смешивается с бензином в любых соотношениях. Но даже малейшее попадание воды вызывает расслаивание смеси. Так, смесь метанола (15%) с бензином расслаивается при 0°С при содержании воды более 0,06%, а при 20°С — более 0,18%. Введение в смесь метанола с бензином небольшого количества изобутанола и бензилового спирта несколько повышает стабильность смеси, но не решает проблему полностью. [c.114]

    В существующих типах Д. с в. от с. степень сжатия колеблется от 14 до 17. Вследствие высокой степени сжатия уд. расход топлива на 30—40% ниже, чем в поршневых двигателях с принудительным зажиганием. [c.173]

    Дизельное топливо, в противоположность горючему для двигателей с принудительным зажиганием, оказывается тем лучше, чем легче воспламеняется при сжатии его смесь с воздухом. Поэтому здесь за стандарт хорошего топлива принят нормальный парафин—цетан Поведение исследуемого топлива [c.175]

    Дальнейшие пути их совершенствования — повышение экономичности (главным образом для двигателя с принудительным зажиганием), полноты сгорания топлива (прежде всего для дизелей), мощности за счет быстроходности и т. д. [c.99]

    Основное преимущество этой разновидности двигателя перед двигателем с принудительным зажиганием — более высокая экономичность. Это преимущество явилось причиной широкого распространения дизелей, что в свою очередь повлекло за собой изменение в расходе основных видов моторных топлив. Так, после второй мировой войны потребление бензинов упало с 49 до 28%, а дизельного топлива возросло с 17 до 27% [210]. [c.111]

    Такими веществами являются прежде всего соединения свинца и серы, содержащиеся в потребляемом топливе, окись углерода, углеводороды, окислы азота и твердые частицы, содержащиеся в отработавших газах, выделяющихся в процессе сжигания топлива. В Европе в Правила ЕЭК ООН, устанавливающие основополагающие требования к эмиссии двигателей автомобилей, вводятся все новые поправки, ужесточающие предельные значения концентраций загрязняющих веществ и совершенствующие методы их определения. Указанные нормативы Правил ЕЭК ООН названы в технической литературе Евро-1 , Евро-2 , Евро-3 , Евро-4 и т.д. Выполнение этих норм требует кардинального совершенствования двигателей внутреннего сгорания, в том числе внедрения электронного управления подачей топлива, обязательного применения в системе выпуска каталитических нейтрализаторов (для двигателей с принудительным зажиганием), полного отказа от использования этилированного бензина. [c.35]

    Первые попытки в этом направлении были сделаны проф. В. А. Константиновым, опубликовавшим [1, 2] метод построения и расчета термодинамических схем рабочего цикла поршневых двигателей внутреннего сгорания с учетом длительности процесса сгорания. Схема В. А. Константинова для двигателей с принудительным зажиганием показана на рис. 4. Согласно этой схеме, вызванное сгоранием нарастание давлении начинается в верхней мертвой точке. На протяжении процесса сгорания давление в координатах Р — V изменяется по закону непрерывной прямой линии Р = а ЬУ (рис. 4). [c.106]

    Таким образом, можно сделать следующие главные выводы в отношении динамики сгорания в двигателях с принудительным зажиганием  [c.169]

    Полученные посредством стробоскопического газового анализа, ионизационного метода и фотографирования скорости движения фронта пламени по камере свидетельствуют о значительном влиянии турбулентности на развитие сгорания в двигателе с принудительным зажиганием. [c.170]

    Бензины в силу своих физико-химических свойств применяются в двигателях с принудительным зажиганием (от искры). Более тяжелые дизельные топлива вследствие лучшей самовоспламеняемости применяются в двигателях с воспламенением от сжатия, т. е. в дизелях. [c.10]

    Природа стуков в дизеле и условия их возникновения совершенно отличны от тех, которые вызывают детонационное сгорание в двигателях с принудительным зажиганием. [c.114]

    Все те факторы, которые обычно вызывают или усиливают детонацию в двигателях с принудительным зажиганием, наоборот, устраняют или ослабляют стуки (жесткую работу) в двигателях с воспламенением от сжатия (дизелях). [c.114]

    Так, например, высокая степень сжатия, высокая температура воздуха и головки цилиндра усиливают детонацию в бензиновых двигателях с принудительным зажиганием и устраняют или ослабляют стуки в дизелях. [c.114]

    Вырабатываемые на нефтеперерабатывающих заводах продукты подразделяют на следующие группы, различающиеся по составу, свойствам и областям применения 1) топлива —бензины (топлива для двигателей с принудительным зажиганием), реактивные, дизельные, газотурбинные, печные, котельные, сжиженные газы коммунально-бытового назначения 2) нефтяные масла 3) парафины и церезины 4) ароматические углеводороды 5) нефтяные битумы 6) нефтяной кокс 7) пластичные смазки 8) присадки к топливам и маслам 9) прочие нефтепродукты различного назначения. [c.390]

    Итак, возникло противоречие между необходимостью улучшать конструкцию двигателей с принудительным зажиганием и невозможностью эксплуатации таких двигателей без детонации. Это противоречие разрешается дальнейшим улучшением качества топлива и применением антидетонаторов. [c.90]

    В поршневых двигателях с принудительным зажиганием бензин из бака подают насосом по топливопроводам через фильтрующую систему и карбюратор в камеру сгорания (рис. 5.7). Рабочий процесс большин- [c.210]

Рис. 2.1 Зависимость Р - V для двигателя с принудительным зажиганием Рис. 2.1 Зависимость Р - V для двигателя с принудительным зажиганием
    Нормальное горение бензина в двигателях с принудительным зажиганием [c.19]

    ЭКОЛОГИЧЕСКИЕ СВОЙСТВА ТОПЛИВ ДЛЯ ДВИГАТЕЛЕЙ С ПРИНУДИТЕЛЬНЫМ ЗАЖИГАНИЕМ [c.323]

    Среди кислородных сое)щнений широко исследуются спирты, эфиры и их смеси. Примененив. спиртов в качестве самостоятельных топлив или компонентов бензинов известно давно. Они имеют высокую детонационную стойкость, удовлетворительную испаряемость, образуют минимальный нагар, а продукты их сгорания менее токсичны, чем продукты сгорания бензинов. Высокая теплота пспарения позволяет снизить температуру горючей смеси в такте впуска, повысить коэффициент наполнения и при малой склонности к нагарообразованию снизить требования двигателя к детонационной стойкости применяемых топлив. Основным недостатком спиртов как топлив является их низкая теплота сгорания. Кроме того, многие из них ограниченно растворимы в бензине особенно в присутствии воды. Среди спиртов с учетом сырьевых ресурсов, технологии получения и ряда технико-экономических факторов наиболее перспективен в качестве топлива для двигателей с принудительным зажиганием — метанол. Безводный метанол при обычных температурах хорошо смешивается с бензином в любых соотношениях. Но даже малейшее попадание воды вызывает расслаивание смеси. Так, смесь метанола (15%) с бензином расслаивается при О °С при содержании воды более 0,06%, а при 20 °С — более 0,18%. Введение в смесь метанола с бензином небольшого количества бензилового или изобутилового спиртов несколько увеличивает стабильность смеси, но не решает вопроса полностью. [c.170]

    Использование водорода в дизельных двигателях в значительной степени затрудняется высокими температурами самовоспламенения водородновоздушных смесей. Поэтому для организации устойчивого воспламенения водорода дизели переоборудуют в двигатели с принудительным зажиганием от свечи или переводят на работу по газожидкостному процессу — с впрыском запальной дозы жидкого топлива (обычно дизельного). Водород может подаваться как совместно с воздухом, так и непосредственным впрыском в цилиндры. Устойчивая работа дизеля на водороде обеспечивается только в узком диапазоне топливных смесей, ограничиваемом пропусками воспламенения и детонацией (рис. 4.22). [c.174]

    Под детонационной стойкостью понимают способность топлива сгорать в цилиндре двигателя с принудительным зажиганием без детонации (detono по латыни - феметь ). Явление детонации -следствие аномального горения ТВС в цилиндре. [c.177]

    Французский институт нефти предпринял в течение последних нескольких лет исследование эксплуатационных свойств топлив при их применении на двигателях французских автомобилей. Эксплуатационныо показатели топлив зависят от ряда факторов, среди которых решающее значение имеют антидетонационные свойства, проявляюящеся в исчезновении или ослаблении характерного стука, которым сопровождается ненормальное сгорание топлив в двигателях с принудительным зажиганием. Детонационная стойкость топлив характеризуется октановым числом, оценка которого производится на определенных испытательных двтателях по стандартизованной методике. Режим испытания подбирается так, чтобы обеспечить возможно лучшее совпадение между поведением испытуемых реальных тонлив и эталонных топлив (смесей изооктана и гептана) в эксплуатационных и в лабораторных условиях. [c.433]

    Дизельное топливо, в противоположность горючему для двигателей с принудительным зажиганием, оказывается тем лучше, чем легче воспламеняется при сжатии его смесь с воздухо.м. Поэтому здесь за стандарт хорошего топлива принят нормальный парафин — 1 етан 16h44. Поведение исследуемого топлива сравнивают с поведением смесей цетана и метилнафталина (циклический ароматический углеводород) и характеризуют топливо цетановым числом. [c.173]

    Особенности сгорания в двигателях с принудительным зажиганием позволяют охарактеризовать развитие этот о процесса теми я е основными параметрами, т оторыми определяются общтте законы сгорания в газовых смесях. [c.169]

    Принцип организации рабочего цроцесса в двигателе с принудительным зажиганием, получивший название форкамерно-факвльный, заключается в том, что, помимо основной камеры сгорания, имеется дополнительная, так называемая форкамера, соединяющаяся с основной камерой сгорания канатом (соплом) небольшого диаметра. [c.90]

chem21.info

Система зажигания двигателя – устройство, регулировка + видео » АвтоНоватор

Система зажигания двигателя обеспечивает с помощью искры своевременное воспламенение смеси, из горючего и воздуха, которая попадает в камеру сгорания. Однако это необходимо для бензиновых авто, с дизельными машинами все иначе. В них воздух и топливо попадают в цилиндры отдельно, причем воздух сильно сжимается и соответственно нагревается (температура может достичь 700 С), таким образом, происходит самовоспламенение. Значение этой системы для обоих видов моторов вкратце понятно, но также немногословно описать ее установку будет непросто, поэтому посвятим ей нашу статью.

Система зажигания двигателя – отличие «дизеля» от бензинового мотора

Из-за указанных различий в самом процессе воспламенения бензинового и дизельного топлива в двигателе, можно отметить разницу и в строении зажигания. Очевидно хотя бы то, что такой системы, как в бензиновом авто, состоящей из прерывателя-распределителя, коммутатора или же датчиков импульсов, в дизельной машине нет. Однако зимой иногда с трудом удается завести дизельный движок, из-за того, что воздух слишком холодный, поэтому устанавливают специальную систему предварительного подогрева, чтобы увеличивать температуру воздуха в камере сгорания.

Можно сказать, что установка зажигания на дизельном двигателе – это не что иное, как выбор угла опережения впрыска горючего. А достигается это регулированием положения поршня, в момент впрыскивания «дизеля» в цилиндр. Это очень важно, так как при неправильном выборе угла впрыскивание будет несвоевременным, и, как следствие, топливо не будет сгорать до конца. А это негативно отразится на слаженной работе цилиндров.

Допустив незначительную ошибку, всего-то в один градус, можно спровоцировать выход из строя всего силового агрегата, из-за чего потребуется капитальный ремонт.

Система зажигания дизельного двигателя – устройство и принцип регулировки

Подытоживая, можно сказать, что система зажигания дизельного двигателя включает насос высокого давления (ТНВД), посредством которого и происходит ввод горючего в камеру сгорания. Современные автомобилисты находят в таком устройстве системы эффективность и экономичность расхода топлива, поэтому дизельные моторы становятся более популярными. Именно из-за увеличивающегося числа пользователей мы решили приоткрыть секреты обслуживания описанной системы зажигания.

Если в автомобиле стоит дизельный силовой агрегат с механической топливной аппаратурой, то регулировать угол опережения впрыска можно посредством поворота насоса вокруг своей оси. Еще можно поворачивать зубчатый шкив относительно ступицы. Если же ТНВД и зубчатый шкив жёстко закреплены, тогда регулировка происходит только за счет углового сдвига зубчатого шкива распределительного вала. Но это все лирика, пора перейти к действиям.

Регулировка зажигания дизельного двигателя – инструкция для решительных

Регулировка зажигания дизельного двигателя может производиться и самостоятельно. Для начала следует поднять крышку капота и зафиксировать ее на опорной стойке. Сверху слева на задней части двигателя необходимо найти маховик (массивное колесо), на корпусе кожуха которого расположено механическое устройство. Шток этого устройства требуется сначала приподнять и развернуть на 90 градусов, затем опустить в прорезь, которая находится на корпусе.

Теперь снимите грязезащитный щиток, для этого на кожухе маховика ключом 17 мм нужно открутить два болта (проще подобраться к этому месту из-под машины). В отверстие маховика через прорезь кожуха следует вставить металлический стержень и поворачивать коленвал двигателя. Направить его нужно слева направо, пока его ход не будет застопорен штоком фиксатора сверху.

Теперь самое время посмотреть на вал привода насоса для горючего, он расположен сверху от развала блока цилиндров (ось, от которой ряды цилиндров расходятся). Если установочная шкала приводной муфты (фланца, который служит для передачи вращений от приводного вала) ТВНД повернута вверх, то в этом случае риску на фланце топливного насоса следует совместить с нулевой меткой привода и затянуть два крепежных болта. Если установочная шкала приводной муфты не повернута вверх, тогда потребуется приподнять стопор, а коленвал двигателя повернуть на один оборот, и следом все вышеперечисленные действия необходимо повторить в том же порядке.

Как только болты приводной муфты затянули, нужно поднять вверх стопор маховика, повернуть на 90 градусов и опустить в паз. На кожухе маховика снизу можно вернуть на свое место грязезащитный щиток (крепится болтами). Теперь капот автомобиля пора закрыть, работа закончена. Остается завести автомобиль и проверить четкость срабатывания системы.

Оцените статью: Поделитесь с друзьями!

carnovato.ru